Processing math: 100%

An environment for complex behaviour detection in bio-potential experiments

  • Received: 01 October 2007 Accepted: 29 June 2018 Published: 01 March 2008
  • MSC : 92C55.

  • We propose BioS (Bio-potential Study) as a new virtual data anal- ysis and management environment.It was devised to cope with the physiological signals, in order to manage different data using advanced methods of analy- sis and to find a simple way to decode and interpret data. BioS has been structured as a flexible, modular, and portable environment. It includes sev- eral modules as data importing and loading, data visualization (1D, 2D, 3D), pre-processing (frequency and saturation filtering, statistical analysis), spatio- temporal processing such as power spectrum, independent component analysis (ICA) in spatial and time domain, and nonlinear analysis for the extraction of the maximum Lyapunov exponent and d (d-inifnite) using optimized al- gorithms. The environment provides a user-friendly Graphic User Interface that allows inexperienced users to perform complex analyses and to speed up experimental data processing.

    Citation: Maide Bucolo, Federica Di Grazia, Luigi Fortuna, Mattia Frasca, Francesca Sapuppo. An environment for complex behaviour detection in bio-potential experiments[J]. Mathematical Biosciences and Engineering, 2008, 5(2): 261-276. doi: 10.3934/mbe.2008.5.261

    Related Papers:

    [1] José Ángel Juárez Morales, Jesús Romero Valencia, Raúl Juárez Morales, Gerardo Reyna Hernández . On the offensive alliance number for the zero divisor graph of Zn. Mathematical Biosciences and Engineering, 2023, 20(7): 12118-12129. doi: 10.3934/mbe.2023539
    [2] Na Li, Bao Li, Yili Feng, Junling Ma, Liyuan Zhang, Jian Liu, Youjun Liu . Impact of coronary bifurcated vessels flow-diameter scaling laws on fractional flow reserve based on computed tomography images (FFRCT). Mathematical Biosciences and Engineering, 2022, 19(3): 3127-3146. doi: 10.3934/mbe.2022145
    [3] Francesca Sapuppo, Elena Umana, Mattia Frasca, Manuela La Rosa, David Shannahoff-Khalsa, Luigi Fortuna, Maide Bucolo . Complex spatio-temporal features in meg data. Mathematical Biosciences and Engineering, 2006, 3(4): 697-716. doi: 10.3934/mbe.2006.3.697
    [4] Shuyan Liu, Peilin Li, Yuanhao Tan, Geqi Ding, Bo Peng . A robust local pulse wave imaging method based on digital image processing techniques. Mathematical Biosciences and Engineering, 2023, 20(4): 6721-6734. doi: 10.3934/mbe.2023289
    [5] Balázs Boros, Stefan Müller, Georg Regensburger . Complex-balanced equilibria of generalized mass-action systems: necessary conditions for linear stability. Mathematical Biosciences and Engineering, 2020, 17(1): 442-459. doi: 10.3934/mbe.2020024
    [6] Robert P. Gilbert, Philippe Guyenne, Ying Liu . Modeling of the kinetics of vitamin D3 in osteoblastic cells. Mathematical Biosciences and Engineering, 2013, 10(2): 319-344. doi: 10.3934/mbe.2013.10.319
    [7] Kun Zhang, Hanping Hou, Zhiqiang Dong, Ziheng Liu . Research on integrated inventory transportation optimization of inbound logistics via a VMI-TPL model of an existing enterprise. Mathematical Biosciences and Engineering, 2023, 20(9): 16212-16235. doi: 10.3934/mbe.2023724
    [8] Qian Zhang, Haigang Li, Ming Li, Lei Ding . Feature extraction of face image based on LBP and 2-D Gabor wavelet transform. Mathematical Biosciences and Engineering, 2020, 17(2): 1578-1592. doi: 10.3934/mbe.2020082
    [9] Abdul Qadeer Khan, Azhar Zafar Kiyani, Imtiaz Ahmad . Bifurcations and hybrid control in a 3×3 discrete-time predator-prey model. Mathematical Biosciences and Engineering, 2020, 17(6): 6963-6992. doi: 10.3934/mbe.2020360
    [10] Wei-wei Jiang, Guang-quan Zhou, Ka-Lee Lai, Song-yu Hu, Qing-yu Gao, Xiao-yan Wang, Yong-ping Zheng . A fast 3-D ultrasound projection imaging method for scoliosis assessment. Mathematical Biosciences and Engineering, 2019, 16(3): 1067-1081. doi: 10.3934/mbe.2019051
  • We propose BioS (Bio-potential Study) as a new virtual data anal- ysis and management environment.It was devised to cope with the physiological signals, in order to manage different data using advanced methods of analy- sis and to find a simple way to decode and interpret data. BioS has been structured as a flexible, modular, and portable environment. It includes sev- eral modules as data importing and loading, data visualization (1D, 2D, 3D), pre-processing (frequency and saturation filtering, statistical analysis), spatio- temporal processing such as power spectrum, independent component analysis (ICA) in spatial and time domain, and nonlinear analysis for the extraction of the maximum Lyapunov exponent and d (d-inifnite) using optimized al- gorithms. The environment provides a user-friendly Graphic User Interface that allows inexperienced users to perform complex analyses and to speed up experimental data processing.


  • Reader Comments
  • © 2008 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2316) PDF downloads(419) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog