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ABSTRACT. We propose BioS (Bio-potential Study) as a new virtual data anal-
ysis and management environment.It was devised to cope with the physiological
signals, in order to manage different data using advanced methods of analy-
sis and to find a simple way to decode and interpret data. BioS has been
structured as a flexible, modular, and portable environment. It includes sev-
eral modules as data importing and loading, data visualization (1D, 2D, 3D),
pre-processing (frequency and saturation filtering, statistical analysis), spatio-
temporal processing such as power spectrum, independent component analysis
(ICA) in spatial and time domain, and nonlinear analysis for the extraction
of the maximum Lyapunov exponent and do(d-inifnite) using optimized al-
gorithms. The environment provides a user-friendly Graphic User Interface
that allows inexperienced users to perform complex analyses and to speed up
experimental data processing.

1. Introduction. The term ”biosignal” can be used for any measurable signal pro-
duced by the human body. The measurable quantity can be electrical, magnetic
(EEG, MEG respectively), or may be represented by changes in pressure or volume
such as heart rate, nerve activity, renal blood flow, arterial pressure, or respiratory
signals. The complex variability of physiological control systems is evident in these
dynamic processes and this behaviour is motivated by the concept that physiolog-
ical functions require an integration of complex networks of control systems, e.g.,
feedback loop, and other regulatory mechanisms enabling a body to perform a vari-
ety of activities necessary to survive. The control systems of the human body exist
at molecular, subcellular, cellular, organ, and systemic levels of organization. The
continuous interplay among the electrical, chemical, and mechanical components of
these systems ensures that information is constantly exchanged, even if the body is
at rest [18].
The biological time-series analysis is necessary to identify hidden dynamical pat-
terns, which could be important in revealing information on the physiological mech-
anisms [16].

Achievements in the development of new tools for the acquisition and the use of
new methodologies are of great advantage for the study of bio-potentials presenting
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high temporal and often high spatial resolutions. The technological and method-
ological efforts are made in the attempting to define and discriminate dynamical
patterns in normal resting activity, in the effects of sensory stimulations, and in
different pathological states [13][19][11][12]. The possibility of continuous monitor-
ing of human activities, made possible by decreasing the memory’s price, and the
variety of biopotentials recorded both in space and time decreasing, have led an
efficient data management strategy for such increasing amounts of data, as weel as
the use of analysis methods to support the diagnosis processes decoding the data.

Numerous tools for biological signals analysis are well described in recent studies;
they are used for different applications and most of them are developed under the
Matlab environment; examples of commercial solutions [31] are PRANA, EMSE,
while some free-ware products [32] are BrainStorm [33] and EEGLAB[7].

The platform BioS (Bio-potential Study) proposed here was devised to deal with
the issues and requirements that both researchers and inexperienced users face
in the analysis of bio-potentials. The aim was to create a modular and portable
environment that could use well-known methodologies and examine new analysis
approaches, being both a decision supporting system and a research offline virtual
instrument. BioS was implemented in Matlab7 as an integrated development en-
vironment (IDE) for its flexibility, and the possibility of programming by scripts
using pre-existing toolboxes. The environment provides three main modules: load-
ing, visualization and analysis.

The loading module, described in section 2, was devised to import different types
of data depending on their formats (binary, ASCII, or Matlab), their physiological
origin (MEG, EEG, ECG, EOG) and medical instrumentations.

The visualization module allows for temporal, spatial, and spatio-temporal plots of
raw data and analysed data, according to the different geometries adopted by the
acquisition systems, as described in section 3.

The analysis module consists of two phases: the pre-processing and the process-
ing. The pre-processing functions, reported in section 4, include statistical analysis
for a first global and rapid look at the signals and frequency and saturation filter-
ing for the extraction of artefacts and for the detection of spurious disturbs and
data corruption due to instrumentation. The pre-processing methods represent a
preparatory step for the processing phase included in BioS, consisting of linear and
nonlinear analyses. The advantages of linear methods lay in their simple imple-
mentation and an interpretation of the results that is relatively straightforward.
The two features dedicated to the linear analysis are for extraction of the power
distribution and the Independent Component Analysis (ICA) approach [4][9]. The
ICA is attempt to separate data into maximally independent groups, in time or
space, yielding temporal-ICA (TICA)[1] and Spatial-ICA (SICA)[8][5]. An ad hoc
clustering procedure has also been implemented for a quantitative comparison of
Independent Components (ICs) founded in different experiments.

In recent studies, several features of nonlinear approaches have been proposed to
detect important properties of the physiological phenomenon.

The bio-potential signals are frequently characterized by such standard nonlinear
indicators as the maximum Lyapunov exponent (\), the asymptotic distance do(d-
infinite) and the correlation dimension [30][17][20]. In the theoretical determination
of the A and d,, it is fundamental the knowledge of the infinite difference equa-
tions in the discrete domain function as the differential equations in the continuous
domain. An example of the evaluation of d., for known nonlinear systems has been
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reported, particularly, in relation to the Chua’s circuit [2][3]. When the laws of
the systems under study are unknown and only experimental data are available,
the need arises for a calculation of the asymptotic distance doo for generic time
series. The computation of these parameters on time series involves the concepts
of time-delay embedding. So the reconstruction of the state-space requires the de-
termination of a time lag and an embedding dimension [23].Here, a new approach
for the evaluation of A and d., parameter is presented and it has been implemented
with a computationally optimized algorithm (DivA - Divergence Algorithm). In
addition, BioS supports a graphic user interface (GUI) designed to allow inexperi-
enced Matlab users to apply advanced signal processing techniques to their data,
an example of the main GUI and its functionality is shown in Figure 1.
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FIGURE 1. BioS main Graphic User Interface and its actual potentialities.

2. Loading and data structures. Biopotential data are usually recorded by dif-
ferent physiological systems adopting different numbers of acquisition channels or-
ganized with particular spatial distributions, therefore various geometries can be
loaded using ad hoc protocols. Two opportune files containing the coordinates of
the sensors (vertexes.mat) and the links existing between each channel and its three
nearest neighbours (faces.mat) have to be provided with the data set to be loaded.
The environment allows customers to load single data, as whole head for brain sig-
nals, double data, as two different sets of channels, one related to the left and one
to the right cerebral hemisphere. Moreover the multi data loading, for the simulta-
neously recordings of nasal cycle, blood pressure, EEG, etc, has been projected for
a future development.

Due to the wide range of acquisition instrumentations available in the market,
the main issue dealing with the implementation of the loading system is the parame-
terization of several characteristics of the acquisition protocols and the bio-potential
signals.
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The structure ”Bios-info” has been created to store variables related to data set,
as the number of data storage files (single data, double data, or multiple data),
the number of the acquired channels, the length of the recorded data (in minutes),
the sampling frequency of the acquired data, and some variables which are specific
for each analysis, such as the work-space variable name, the chosen channel/s and
minute/s for the analysis. Currently it is possible to acquire signals in different data
format as binary (Little-endian or Big-endian), ASCII, and Matlab. The Bios-info
structure can be accessed directly from the Matlab command line to extract pro-
cessing history and data info. The analysis results are given in a Matlab type and
can be saved in different format as required by the user.

The environment has been tested on Magneto-encephalography (MEG) data ac-
quired using two different systems: whole-head 148-channels (4-D Neuroimaging,
San Diego, California) MEG instrument and dual 37-channel bio-magnetometers
(BTI, Inc.) both located at The Scripps Research Institute (La Jolla, CA). A 3D
representation of the MEG head channels distribution is shown in Figure 2.

(a) (b)

FIGURE 2. Head channel distribution for:(a) whole-head 148 chan-
nels (b) dual 37channel bio-magnetometers.

3. Visualization. Different visualization modalities: temporal, spatial and spatio-
temporal plots can be performed using the loaded files vertexes.mat and faces.mat.
This represents a great potential available not only for the raw data but also for
the pre-processed and processed data.The visualization in time domain is allowed
by the traditional one-dimensional representation, thus, fixing a channel the signal
dynamics in time is obtained (Figure 3 a). In the spatial color coded plots, 2D
(Figure 3 b) and 3D (Figure 3 c¢), the value of the acquired channel in a unit of time
is represented at the i*" node of the mesh corresponding to the digital reconstruction
of the analyzed area, where i = 1,2,3,...,n (n is the number of channels). The
intermediate areas colour representation is obtained through linear interpolation
between neighbouring nodes.

As shown in Figure3 b, the sliding bar at the bottom allows to visualize 60 head
maps related to the average value over each second of a single minute, and three
different head maps over a second have been shown in Figure 3 d. Furthermore the
parameterization of the averaging time interval allows us to push the study to the
millisecond range, a time scale suitable for neuronal activity studies.

The complexity of Bio-potential data requires an environment that allows us to
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FIGURE 3. (a) One Dimensional visualization (b) Two dimen-
sional visualization (c) Three dimensional visualization. (d) Two
dimensional whole head map in time (e) Spatio-temporal map.

manage a big amount of data with high spatial and temporal resolution. Therefore
it is necessary to have a procedure devoted to the visualization of the signal trends
for the simultaneous comparison of multiple channels and for a first look at the
data to establish the analysis strategy to be followed. For this reason, in addition
to the conventional spatial maps, a spatio-temporal map (Figure 3 e), for a fixed
time window, is available in BioS to visualize arising patterns in biopotentials.
Figure 3 e illustrates, as an example, the evolution in a two-minute interval of the
whole-head channels value averaged over a one-minute slot. Thus, the colour of
the area (4, i) represents the color coded value of the MEG signal averaged over
the 7' minute for the i** channel, so the image’s i*" column represents the time
evolution of the i*" channel by one-minute time-windows. The advantage of this
representation is the possibility of having a complete view of the evolving parameters
under study for all channels, without losing the spatial information. Such spatio-
temporal representation can be extended to all the analysis results applied on the
signals.

4. Preprocessing. The preprocessing module is organized in two sections: the
statistical analysis, devised to apply multi-statistical methods, and filtering, includ-
ing frequency filtering, to remove known artefacts or to extract signal frequency
features, and saturation filtering in order to get rid of spurious values due to the
instrumentation.

In the statistical analysis section three functional panels are provided: the inside
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signal, the between signals and the among signals. The first allows the characteri-
zation of the signal related to one channel providing the extraction of the mean, the
standard deviation, the histogram (Figure 4 a) and its state-space representation
(Figure 4 d). The between signals examines the correlated event activity of two
different channels related to the same minute or to two different ones. This panel
extracts information related to the cross-correlation function (Figure 4 b) between
two channels such as the maximum cross-correlation value, the respective delay,
the value at zero lag, and the state space representation of one channel versus the
other. In order to characterize the spatio-temporal behavior of all channels, over
a selected time range, the among signal panel allows us to create a spatial map
and the histograms related to the means and standard deviations of each channel.
Moreover, through this panel the dynamics of one channel with respect to the others
can be examined, obtaining the spatial maps for the three parameters of the cross-
correlation (maximum value, the respective delay, the value at zero lag). In Figure
4 d an example of spatial map visualization related to cross-correlation maximum
values of the channel 10** with respect to the others is shown.
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FIGURE 4. (a) Signal histogram (b) Cross-correlation analysis be-
tween two signals (c) Signal State Space representation of 10"
channel (d) Spatial map of the maximum of the correlation be-
tween the channel 10" and the others.

The Frequency section provides the possibility of projecting different custom
filters or neural activity band (alpha, beta, gamma, delta, theta) filters [28]. They
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can be tested on chosen channel /s and then extended to all data sets, simultaneously.
An example, concerning channel 1 of the 5" minute, is shown in Figure 5 a, where
the grey line represents the dynamics of raw time series, while the black line is the
signal filtered by the theta band filter.

Saturation filtering is suitable for channels that present spurious values. Its
implementation permits us to chose the threshold over which the signal can be
considered saturated and the new value to be assigned to the saturated points
(Figure 5 b). The filtered signals are then available in the workspace to be fed into
the preprocessing functions.
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FIGURE 5. (a)Frequency filtering of a raw data (b) Saturation
filtering of a raw data.

5. Processing. Three analysis methods were integrated in the processing mod-
ule: two belonging to linear methods, the power distribution and the independent
components analysis [19][15] and one concerning the nonlinear analysis methods for
the extraction of the maximum Lyapunov exponent (\) and asymptotic divergence
between trajectories do (d-infinite) [30]. All the methods are extended both to the
spatial and temporal domain and can be applied both on raw data and pre-processed
signals.

5.1. Linear Analysis.

5.1.1. Power analysis. This traditional approach is used to characterize the distri-
bution of the power on the scalp using the maximum of the autocorrelation functions
for all channels.

The autocorrelation function, represented in Equation (1) as C;(h), is calculated on
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one-minute time series (N samples) for each channel ch; and the value in zero C;(0)
represents the power of the signal in that minute.

Cy( NZch hi(k + h) (1)

The power evaluated over a one-minute period is reported in Figure 6 in the
spatial map visualization, meanwhile the spatio-temporal maps for a two minutes
time window, minute 1 and 2, is shown in Figure 7.
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FIGURE 6. Spatial power map.
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FI1cURE 7. Spatio-Temporal map of a whole- head geometry.

5.1.2. Independent Component Analysis (ICA). ICA has become a popular mathe-
matical method for processing data sets in biomedical signal processing. It is used
to solve the blind source separation (BSS) problem, separating data into maximally
independent groups in time or space, using respectively temporal-ICA (TICA) and
spatial-ICA (SICA) [4]. Here, ICA is used in the temporal domain to extract com-
mon temporal features (TICs), while in the spatial domain it is used to isolate
Spatial Independent Components (SICs) that can be considered as Spatial Modes
(SMs).
For ICA analysis an existing Matlab tool, FastICA [9], has been used and integrated
into the BioS environment. In Figure 8 the BioS output for TICA analysis over one
minute is reported and it shows a clear presence of the artefact related to the heart
beat signal as ICY.

ICA assumes that the observed data X is a linear combination of underlying
independent components S € RF*Q. The proposed approach is described here by
considering a matrix X € RV*?

X =Ws (2)
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FiGURE 8. Temporal independent component analysis.

where S is an unknown source vector and the matrix W € V%P is an unknown
real-valued mixing matrix where P are the number of recovered ICs up to N.

Each IC is statistically independent from the others and has a non-Gaussian distri-
bution. The matrix S can be evaluated by considering the estimated matrix W as
follows:

S=wtX. (3)

The algorithm to estimate W is based on a recursive procedure [5] that includes
two pre-processing stages: Centring and Whitening. The first stage makes all mea-
surements at zero mean, and in the second one the Singular Value Decomposition
(SVD) of the covariance matrix X is applied in order to have uncorrelated data with
variance equal to one. Consequently, the value of P can be fixed by focusing on ICs
that have the largest eigenvalues in the SVD.

In the case of TICA approach, the dimension N corresponds to the number of
channels and Q is the number of time samples. Meanwhile for SICA method the
number of time samples correspond to the N dimension and the Q represents the
number of channels.

Concerning the SICA analysis, for a mathematical and computational issue, in order
to solve N equation in Q variables with N >> (@), it is necessary to split the usual
time window (i.e. one minute) in time sub slots and to extract from each of them the
SICA components. To have a unique representation of the whole time window (one
minute), it is necessary to group the SMs obtained for each sub slot, for this reason
a suitable clustering strategy has been integrated in BioS in order to obtain a set of
SMs that can represent the whole time window (minute). The clustering procedure
is iterative and starts from a number h of classes that represent all the SICs found by
analyzing each subset. Each class is characterized by a reference spatial mode (rSM)
$;, for i=1,. .. ,h, chosen as the highest uncorrelated SM in the class. Each procedure
step redistributes all SMs in the classes and updates their rSMs. In particular, each
spatial mode s is correlated to all the classes by evaluating the membership indexes
may,...,my. The membership index m; is defined by considering it as the absolute
value of the cross-correlation, between the spatial mode s and the reference spatial
mode §; at lag zero:

Q

> s(n)si(n)].

n=1

m; =

(4)

The spatial mode s is assigned to the i*" cluster that has the highest value of the
membership index according to the following equation:



270 BUCOLO, DI GRAZIA, FORTUNA, FRASCA AND SAPUPPO

where ¢ is the similarity threshold, increased up, by a step Atq, to a fixed value.
The rSM of the winning class is then updated by summing its old value with the
product of the learning velocity « and the classified spatial mode s:

<§i,new = e§1',0lai + as. (6)

Running the clustering procedure step, each SM is then attributed to a class.
When all SMs are classified, the total number of classes is modified by means of the
separation threshold t5. The separation threshold ¢, is defined to reduce the number
of clusters. If the rSM of the j** and i*" classes verify the following equation:

Q

> s(n)di(n)

n=1

m; = > to, (7)

the clusters are merged and the rSMs are averaged. All the iterative procedures
restart the classification of the SMs according to the modified values of the param-
eters: the number of classes and the rSMs, and stops when the similarity threshold
t1 reaches the desired value.

The software also provides a quantitative comparison of ICs found in time or
space in two different experiments through a second cluster algorithm based on
the traditional cross-correlation analysis. Thus, the output of this clustering pro-
cedure counsists of a set of common temporal/spatial ICs that represent the main
features of the compared experiments dynamics. Figure 9 shows how this cross-
correlation based approach permits us to extract Similarity Modes(a) and Dissimi-
larity Modes(b) in a comparison of two different minutes.

Cluster 1 Cluster 2 Cluster 3 Cluster 4

Cluster 5

Cluster 1 Cluster 2 Cluster 3 Cluster 4

FIGURE 9. (a) Similarity modes (b) Dissimilarity modes in Biopo-
tentials patterns.
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5.2. Nonlinear analysis. The nonlinear nature and space extension of the bio-
logical systems under investigation create physiological processes analysis similar to
the one associated to the extended complex systems theory.

In the present work, DivA (the acronym for Divergence Algorithm), an alternative
methodology to evaluate the trajectory divergence and to calculate the maximum
Lyapunov exponent A and the asymptotic distance d., in experimental data, is
adopted. This implementation is computationally less onerous than the conven-
tional ones, since it is not based on the time-delay embedding concept and no
intermediate computational steps are needed to obtain the final result. Therefore,
the procedure evaluates the d., as the asymptotic value of the average distance be-
tween trajectories that are directly extracted from the time series. This algorithm
is particularly suitable when coping with extended datasets, both in time and in
space.

The proposed method has been already applied to MEG signals in order to charac-
terize the occurrence of spatiotemporal nonlinear patterns [28].

5.2.1. A and ds from time series. Two key aspects of chaos are the stretching of
infinitesimal displacements and the existence of complex orbit-like structures, in
the form of a vast variety of possible unstable orbits, confined in a region of the
phase space called the attractor [30]. The stretching property is strictly related
to sensitive dependence on initial conditions. A quantitative characterization of
stretching properties is provided by A. Assuming that = denotes a k-dimensional
vector, and considering the dynamical system specified by the discrete map:

Tn4+1 = G(l'n) (8)

Considering N couples of trajectories starting from two nearby points separated by
a small distance d,

o) = o <ho 2l = Gulal) 2 = Gue) (9)

averaging the N couples of trajectories, the mean distance between trajectories after
j iteration can be defined as:

N
1 i i
dj:NZ‘x§-)—x;() (10)
i=1

where the || operator denotes the norm. The asymptotic value of d; is defined as:
1 n
doo = lim — d; 11
Jim ~ ; j (11)

It is well known [23] that, after n iterations, the stretching phenomenon stretches
the distance d,, as:

dpyr =™ do =€ d, = Ad, (12)
where A is the Lyapunov exponent of system. After a sufficiently large number
of iterations, the folding process takes place to keep the trajectories bound in the
phase space.
To take this phenomenon into account, the (12) can be considered as a first order
expansion of dy, and, in the hypothesis that d,, < 1 for any n, it includes a second
order correction term representing the folding action.

dpi1 = Ad,, —Td? (13)
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The fixed points of (13) are

d"=0 and d** =dy = % (14)
The characteristic values describing the evolution of nearby trajectories are A, T,
and d, although only two of these are actually needed because of the relationship
(14). It is important to note that, while A is only sensitive to the stretching mech-
anism, de, is sensitive to both the stretching and the folding mechanisms. For a
continuous system, the above assumptions still apply and a similar characterization
can be given [2].
The aim of DivA algorithm, given a signal s(t) (i.e. given a time series), is to
compute the divergence (d;) among trajectories ;. The algorithm starts with the
choice by the operator of an initial condition x(()o) and a distance hg, which identifies
a small range [(xo — ho/2), (xo+ho/2)] ("small” generally depends on the resolution
of the signal s(t) and on the number of trajectories found).
Then, points whose y-coordinate belongs to the range [(zo — ho/2), (xo + ho/2)],
are extracted; these points represent a set of candidates to become starting points
of the algorithm in relation to the equation (9). The first starting point found is
assumed to be z* = xgo)’ this point will be used as reference point for the following
steps.
The algorithm proceeds with the computing of the first derivate in x*. Among the
points in the set of the candidate starting points, only those whose derivative meets
constrain (15) will represent the final set of starting points from which trajectories
will be calculated.

@ — | = p- var(s' (1) (15)

Parameter p in (15) is the slope ratio, is chosen, empirically by the user,and is small
enough so that pairs of trajectories that have a different initial slope are discarded,
thus decreasing the number of trajectories for the calculation of the d;, but not
so strictly so that a sufficient number of trajectories, respecting the requirement
on the range and the initial slope, can be extracted. The term var(s’) represents
the variance of the derivative of signal s(t). The constrain on the slope has been
introduced in order to collect all points having the same properties in the zero order
and first order dynamics.
By means of the above described steps, a set of starting points is found: X =

(xéi),i =0,...,n). Each point l‘(()i) identifies a trajectory made up of all the sam-

ples in the range: [x(()z), (x((f) + lenght — trj — 1)], where length-trj is the length
of the trajectories chosen in a way that, when the distance between them is com-
puted, both the stretching and the folding effects are taken into account, and the
asymptotic behaviour of the system can be studied. Moreover, all the combinations
among points :céz) will be considered, discarding those couples whose distance (in
samples) is inferior to the parameter minimum trajectories delay(tamin), and their
differences will be computed thus obtaining d;.

The d, representing the asymptotic value of d; is then extracted and used as a
parameter for characterizing the nonlinear dynamics of the system. Moreover, from
the computed curve d;, the maximum Lyapunov exponent can be extracted as the
initial slope of the curve. This extraction can be computed in different ways, poly-
nomial fit, custom equation fit or in an empiric way. This last method is the one
used here.
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This method can be used for the characterization of time series coming from mea-
surements performed on real systems when the laws and structures are unknown
and chaotic dynamics are suspected. Since it is computationally efficient, it can be
easily applied to large data sets [20].

The output representation can be obtained in spatio-temporal and spatial maps for
any geometry as show in Figure 10 a and b respectively, were the d., has been
calculated over the minute 5.

b

5
:

2|

(a) (b)

FIGURE 10. (a) Spatio-temporal d., maps. (b) Average d, head maps.

6. Conclusions. The BioS platform developed in Matlab7 is a user-friendly inter-
active environment allowing bio-potential data processing and results representation
through images.

The analyses provided by BioS are useful for both inexperienced users, to study
bio-potential data without programming, and experienced ones, to speed up ex-
perimental data analysis. Thus, both the experienced and the inexperienced users
will be able to utilize BioS features such as data visualization, pre-processing, and
processing. This makes the Bios and all its functionality a valid and user-friendly
support to medical interpretations of data for clinical purposes.

The software architecture has been designed to be modular and flexible in order to
meet any future requirements. This software allows users to process biological data
from different acquisition systems, characterized by different sensor distribution ge-
ometries (single area, multiple areas) and by different data formats (binary, ASCII
and Matlab).

Concerning visualization, BioS allows a temporal, spatial, and spatio-temporal rep-
resentation not only for raw data, but also for the analyzed signals.

The BioS pre-processing feature permits users to perform statistical analyses and
frequency and saturation filtering, which are useful in preparing the data for the
analyses supported by the processing phase.

Currently, Bios includes three analysis methods, two belonging to linear methods,
the power distribution and the independent components analysis, and one related
to the nonlinear analysis methods for the extraction of the maximum Lyapunov ex-
ponent (A\) and asymptotic divergence between trajectories do(d-infinite). All the
methods are extended both to the spatial and temporal domain and can be applied
on both raw data and pre-processed signals. Moreover, to perform the nonlinear
analysis, a new optimized algorithm, DivA, has been designed and integrated.
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All BioS features were tested on MEG data acquired through two different instru-
mentations and geometries, but it is also possible to work with other types of data
(i.e. EEG data in txt format). Furthermore a section dedicated to multiple data
analysis (such as simultaneous recordings of nasal cycle, blood pressure, EEG) has
been designed for a future development.

Thanks to its modularity, BioS could support other pre-processing or process-

ing features. For example, in order to overcome the problem of limitations in the
study of spatially-extended biological systems in the presence of short times, it has
been considered the opportunity to study the interactions between dynamical sys-
tems, commonly quantified using linear techniques, i.e. coherency [21][22], or other
methods [10][27] such as ”synchronization likelihood” [29], which is based on the
statistical interdependence of brain activity signals, as an index of ” functional con-
nectivity”. With the same aim, other nonlinear methods, such as entropies (Sample
[26], Approximate [25] and Multiscale Entropy [6]) and fractal dimensions charac-
terization (Higuchi Dimension [14] and Detrended Fluctuation Analysis [24]), are
going to be implemented.
Moreover, a future development is represented by porting the Bios code on grid
computing architectures, parallelizing the data processing with respect to the space
(areas or channels) and time (minutes, seconds or milliseconds) domain. This would
offer the possibility of a massive characterization of bio-potential data and statis-
tical analyses, which are at the bases of Data Bases creation supporting diagnosis,
treatment, and prognosis in clinical studies.

Acknowledgements. Thanks to D. Shannahoff-Khalsa for his fruitful collabo-
ration working on Analysis of MEG data for treatment of Obsessive Compulsive
Disorder with yoga breathing technique. MEG data provided by the Institute for
Nonlinear Science, University of California, San Diego, La Jolla, California, USA.

REFERENCES

[1] B.B. Biswal and J.L. Ulmer, Blind source separation of multiple signal sources of fMRI data
sets using independent component analysis, J. Comput. Assist. Tomogr, 23 (1999), 265-271.

[2] A. Bonasera, M. Bucolo, L. Fortuna and A. Rizzo, The d-infinite parameter to characterise
chaotic dynamics, Proceedings of the IEEE-INNS- ENNS International Joint Conference on
Neural Networks, 5 (2000), 24-27.

[3] A. Bonasera, M. Bucolo, L. Fortuna and A. Rizzo, A New Characterization of Chaotic Dy-
namics: the d-infinite Parameter, Nonlinear Phenomena in Complex Systems, 6(3) (2003),
779-786.

[4] M. Bucolo, L. Fortuna, N. Frasca, M. La Rosa, D. S. Shannhoff-Khalsa, L. Schult and J.A.
Wright, Independent component analysis of magnetoencephalography data, ” Proceedings 23rd
EMBC”, (2001).

[5] G. Bucolo, M. Bucolo, M. Frasca, M. La Rosa, D. Shannahoff-Khalsa and M. Sorbello, Spatial
Modes in Magnetoencephalography Spatio- Temporal Patterns, Proceedings of the 25th Annual
International Conference of the IEEE EMBS, Cancun, Mexico, (2003).

[6] M. Costa, A.L. Goldberger and C.-K.Peng, Multiscale entropy analysis of complex physiologic
time series, Phys. Rev. Lett., 89(6) (2002), 68-102 .

[7] A. Delorme and S. Makeig, EEGLAB: an open source toolboz for analysis of single-trial EEG
dynamics, Journal of Neuroscience Methods, 134 (2002), 9-21.

[8] M.J. McKeown ,S. Makeig ,G.G. Brown ,T.-P. Jung , S.S. Kindermann and T.J. Sejnowski,

Analysis of fMRI data by blind separation into independent spatial components, Human Brain

Mapping, 6 (1998), 160-188.

The FastICA package is Copyright (C) 1996-2005 by Hugo Gvert, Jarmo Hurri, Jaakko Srel,

and Aapo Hyvrinen.

&)



(10]
(11]
(12]
(13]
14]
(15]

[16]

(17)

(18]
[19]
[20]

(21]

(22]

23]
24]
[25]
[26]

27]

(28]

29]
(30]
(31]

32]
(33]

COMPLEX BEHAVIOUR DETECTION IN BIO-POTENTIALS 275

P.J. Franaszczuk and G.K. Bergey, An autoregressive method for the measurement of syn-
chronization of interictal and ictal EEG signals, Biol Cybern, 81 (1999).

A. Fuchs, V. K. Jirsa, and J. A. S. Kelso, Theory of the Relation between Human Brain
Activity (MEG) and Hand Movements, Neurolmage, 11 (2000), 359-369.

A. Fuchs, V. K. Jirsa, and J. A. S. Kelso, Spatiotemporal forward solution of the EEG and
MEG using network modelling, IEEE Transaction on Medical Imaging, 21(5) (2002).

H. Haken, Nonlinearities in Biology: The Brain as an FExample, Lecture Notes in
Physics,Springer Berlin/Heidelberg GmbH, 542 (2000), 427-445.

T. Higuchi, Relationship between the fractal dimension and the power law index for a time
series: A numerical investigation, Physica D, 46 (1990), 254-264 .

A. Hyvarinen and E. Oja, Independent component analysis: algorithms and applications,
Neural Networks, 13 (2000), 411-430.

PCh. Ivanov ;MG Rosenblum ,C-K Peng ,J. Mietus ,S. Havlin ,HE. Stanley and AL. Gold-
berger , Scaling behaviour of heartbeat intervals obtained by wavelet-based time series analysis,
Nature, 383 (1996), 323-327.

Z. J. Kowalik, A. Schnitzler, H. J. Freund and O. W. Witte, Local Lyapunov exponents detect
epileptic zones in spike-less interictal MEG recordings, Clinical Neurophysiology, 112 (2001),
60-67.

L. A. Lipsitz, Physiological Complexity, Aging, and the Path to Frailty, Sci. Aging Knowl.
Environ., 16 (2004), pel6.

S.Makeig, A.J.Bell, T.P. Jung and T.J.Sejnowski, Independent component analysis of elec-
troencephalic data, Advances in Neural Information Processing Systems, 8 (1996), 145-151.
G. Nolte, T. Sander, A. Lueschow, and B. A. Pearlmutter, Nonlinear time series analysis of
human alpha rhythm, Proceedings of the BIOMAG, Jena (2002).

P.L. Nunez, R. Srinivasan, A.F. Westdorp, R.S. Wijesinghe, D.M. Tucker, R.B. Silberstein and
P.J. Cadusch, EEG coherency. I. Statistics, reference electrode, volume conduction, Lapla-
cians, cortical imaging, and interpretation at multiple scales, Electroenceph. Clin. Neuro-
physiol., 103 (1997).

P.L. Nunez, R.B. Silberstein, Z. Shi, M.R. Carpenter, R. Srinivasan, D.M. Tucker, S.M.
Doran, P.J. Cadusch and R.S. Wijesinghe, EEG coherency. II. Experimental comparisons of
multiple measures, Clin. Neurophysiol., 110 (1999).

U. Parlitz, Nonlinear Time-Series Analysis in Nonlinear Modeling Advanced Black-Box Tech-
niques, Eds. J.A.K. Suykens and J. Vandewalle Kluwer Academic Publishers (1998).

C.-K. Peng, S.V. Buldyrev, S. Havlin, M. Simons, H.E. Stanley and A.L. Goldberger, Mosaic
organizations of DNA nucleotides, Phys. Rev. E , 49 (1994), 1685-1689.

S.M. Pincus, Approzimate entropy (ApEn) as complezity measure, Chaos, 5(1) (1995), 110-
117.

J.S. Richman and J.R. Moorman, Physiological time-series analysis using approzimate en-
tropy and sample entropy, Heart Circ. Physiol., 278 (2000), 2039-2049.

M.G. Rosenblum and J. Kurths, Analysing synchronization phenomena from bivariate data
by means of the Hilbert transform, Non-linear Analysis of Physiological Data, Springer Series
for Synergetics, Springer, (1998) , 91-100 .

F. Sapuppo, E. Umana, M. Frasca, M. La Rosa, D. Shannahoff-Khalsa, L. Fortuna and
M. Bucolo, Complex Spatio-Temporal Feature in MEG Data, Mathematical Biosciences and
Engineering, 3(4) (2006), 697-716.

C.J.Stam and B.W. Van Dijk, Synchronization likelihood: an unbiased measure of generalized
synchronization in multivariate data sets, Physica D, 163 (2002), 236-241 .

S. H. Strogatz, NONLINEAR DYNAMICS AND CHAOS. Perseus Book, Cambridge, Massachusetts.
Webster J.G. (1998), Medical Instrumentation, Wiley.
[http://www.phitools.com/index.html], [http://www.cortechsolutions.com/].
[http://www.sprweb.org/repository/index.html].

[http://neuroimage.usc.edu/brainstorm/].



276 BUCOLO, DI GRAZIA, FORTUNA, FRASCA AND SAPUPPO

Received on October 30, 2007. Accepted on February 3, 2008.

E-mail address: maide.bucolo@diees.unict.it
E-mail address: fdigra@diees.unict.it
E-mail address: 1fortuna@diees.unict.it
E-mail address: mfrasca@diees.unict.it
E-mail address: fsapuppo@diees.unict.it





