
Citation: Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 375-392. doi: 10.3934/mbe.2015.12.375
[1] | Florencia G. Palis, R. M. Lampayan, R.J. Flor, E. Sibayan . A multi-stakeholder partnership for the dissemination of alternate wetting and drying water-saving technology for rice farmers in the Philippines. AIMS Agriculture and Food, 2017, 2(3): 290-309. doi: 10.3934/agrfood.2017.3.290 |
[2] | Theodor Friedrich, Amir Kassam . Food security as a function of Sustainable Intensification of Crop Production. AIMS Agriculture and Food, 2016, 1(2): 227-238. doi: 10.3934/agrfood.2016.2.227 |
[3] | Boris Boincean, Amir Kassam, Gottlieb Basch, Don Reicosky, Emilio Gonzalez, Tony Reynolds, Marina Ilusca, Marin Cebotari, Grigore Rusnac, Vadim Cuzeac, Lidia Bulat, Dorian Pasat, Stanislav Stadnic, Sergiu Gavrilas, Ion Boaghii . Towards Conservation Agriculture systems in Moldova. AIMS Agriculture and Food, 2016, 1(4): 369-386. doi: 10.3934/agrfood.2016.4.369 |
[4] | Isaac Busayo Oluwatayo . Towards assuring food security in South Africa: Smallholder farmers as drivers. AIMS Agriculture and Food, 2019, 4(2): 485-500. doi: 10.3934/agrfood.2019.2.485 |
[5] | Fernando Arias, Maytee Zambrano, Kathia Broce, Carlos Medina, Hazel Pacheco, Yerenis Nunez . Hyperspectral imaging for rice cultivation: Applications, methods and challenges. AIMS Agriculture and Food, 2021, 6(1): 273-307. doi: 10.3934/agrfood.2021018 |
[6] | J.M.A. Duncan, J. Dash, E.L. Tompkins . Observing adaptive capacity in Indian rice production systems. AIMS Agriculture and Food, 2017, 2(2): 165-182. doi: 10.3934/agrfood.2017.2.165 |
[7] | Raulston Derrick Gillette, Norio Sakai, Godfrid Erasme Ibikoule . Role and impact of contract farming under various pricing standards: A case of Guyana's rice sector. AIMS Agriculture and Food, 2024, 9(1): 336-355. doi: 10.3934/agrfood.2024020 |
[8] | Karin Lindsjö, Agnes Anderssonc Djurfeldt, Aida Cuthbert Isinika, Elibariki Msuya . Youths' participation in agricultural intensification in Tanzania. AIMS Agriculture and Food, 2020, 5(4): 681-699. doi: 10.3934/agrfood.2020.4.681 |
[9] | Abbas Ali Chandio, Yuansheng Jiang, Abdul Rehman, Rahman Dunya . The linkage between fertilizer consumption and rice production: Empirical evidence from Pakistan. AIMS Agriculture and Food, 2018, 3(3): 295-305. doi: 10.3934/agrfood.2018.3.295 |
[10] | Deborah Nabuuma, Beatrice Ekesa, Mieke Faber, Xikombiso Mbhenyane . Food security and food sources linked to dietary diversity in rural smallholder farming households in central Uganda. AIMS Agriculture and Food, 2021, 6(2): 644-662. doi: 10.3934/agrfood.2021038 |
Currently it is the digital era where there is a steady flood of information. Such information inundation makes a variety of mass media more important, for example, newspapers, broadcast, social network system media, and public speaking. Before developing mass media, rumors propagated by word of mouth and played a crucial role in communication between people or groups. This process can be understood as a kind of homogenization of information system and social interaction [1]. With the emergence of multimedia and social media, rumors have spread faster and have wide transmissions [5]. However, some harmful and powerful rumor outbreaks arise from such wide transmission via these media [10,14,18]. Moreover, their influence causes multiple effects for a variety of situations rather than the mono effect for localized situations [12].
As a benefit in return for the homogenization, personality is more heavily emphasized and the diversity of people has garnered much attention in our social community. In the microscopic viewpoint of rumor spreading, this variety of characteristics is important. Many researchers already have investigated that the degree of belief is important in rumor spreading [8,16]. From this perspective, we assume that there will be various groups that share the same trust rate. In this paper, we propose an SIR type rumor spreading model with given spreading rate distributions
Next we provide a brief historical review of the rumor spreading model. Starting the pioneering studies by Daley and Kendall [3,4], a lot of researchers have studied rumor spreading and tried to build mathematical models [11,17]. Zanette [23,24] numerically obtained the existence of a critical threshold for a rumor spreading model regarding small-world networks. In [13], the authors derived the mean-field equation of complex heterogeneous networks. For other topological settings, see [7,15]. Most mathematical models for rumor spreading are based on the epidemic model. In [27], the authors considered an SIR type rumor spreading model with forgetting mechanism. See also [6,28] for other models with forgetting mechanisms. In [26], the authors added a hibernator variable to the SIR type rumor spreading model. Similarly, in [20,22], the authors adapted several new variables to construct a more realistic model for the rumor spreading phenomena. In [25], the authors employed the probability that ignorants directly become stiflers when they are aware of a rumor. We refer to papers [2,9,29] for other rumor spreading models.
The paper is organized as follows. In Section 2, we present the trust distribution and its mechanism in the SIR type model. In Section 3, we derive a single equation for the rumor size
Notation: Throughout the paper, we use the following simplified notation:
$I(t) = (I_1(t), \ldots, I_N(t)), ~~~~ \mathring{I} = (\mathring{I}_{1}, \ldots, \mathring{I}_{N}), ~~~~\mathring{I}^n = (\mathring{I}_{1}^{n}, \ldots, \mathring{I}_{N}^{n}), ~~~~ n, N\in \mathbb{N}.$ |
Let
There are three groups of populations: ignorants (I), spreaders (S), and stiflers (R). At the first stage, ignorants contact a spreader, realize a rumor, and accept the hearsay. According to the acceptance with rate
$
˙I=−kλSI,˙S=kλSI−kS(σ1S+σ2R),˙R=kσS(S+R),
$
|
where
As in [25], we assume that spreaders lose their interest in rumors with probability
$
˙Ii=−kλiSIi, i=1,…,N,˙S=N∑i=1kλiSIi−kσS(S+R)−δS,˙R=kσS(S+R)+δS,
$
|
(1) |
subject to initial data
Throughout this paper, we assume that
(1)
(2) The spreading (trust) rate distribution
We will consider a family of initial data
$\mathring{T} = \Big(\sum\limits_{j = 1}^N\mathring{I}_{j}\Big)+\mathring{S}+\mathring{R}$ |
for a fixed total initial population
Next, we define the rumor size, a momentum type quantity of the initial data and rumor outbreak.
Definition 2.1. [19,25,26]For a solution
$ \phi(t) = \int_0^t S(\tau)d\tau. $ |
Definition 2.2. Let
$ M_1(\mathring{I}) = \sum\limits_{i = 1}^N\lambda_i \mathring{I}_i $ |
and total population with initial
$T(t) = \Big(\sum\limits_{i = 1}^NI_{i}(t)\Big)+S(t)+R(t).$ |
Definition 2.3. Let
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t).$ |
Definition 2.4. For a given initial data
$\mathring{I}^{n}\to \mathring{I},~~~~ \mathring{S}^{n}\to0 ~~~~ \mbox{as} ~~~~ n\to\infty$ |
and
$ \mathring{S}^n > 0,~~~~ \mathring{R}^n = 0~~~~ \mbox{for}~~n\in \mathbb{N}.$ |
We additionally assume that the total populations are the same:
$\mathring{T} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}\Big)+\mathring{S}+\mathring{R} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n+\mathring{R}^n = \mathring{T}^n.$ |
We say that a rumor outbreak occurs if the following limit exists
$\phi_e(\mathring{I}) = \lim\limits_{n\to \infty}\phi^\infty(\mathring{I}^n, \mathring{S}^n)$ |
and
Remark 1. (1) In [13,15,25], the authors define that the rumor outbreak occurs if
$\lim\limits_{\mathring{R}\to 0}R(\infty) > 0.$ |
This is essentially equivalent to Definition 2.4. We use
(2) The rumor spreading begins with one spreader. Therefore,
The following is the main theorem of this paper.
Theorem 2.5. Let
We assume that each
$\mathring{T} = \Big(\sum\limits_{k = 1}^N\mathring{I}_{k}^n\Big)+\mathring{S}^n = \sum\limits_{i = 1}^N\mathring{I}_i.$ |
Then, there exists the following limit of steady states:
$\phi_e = \phi_e(\mathring{I}) = \lim\limits_{\mathring{S}^n\to 0, \mathring{I}^n\to \mathring{I} }\phi^\infty(\mathring{I}^n, \mathring{S}^n), $ |
where
Furthermore, if
Remark 2. An equivalent condition of occurring a rumor outbreak is
$kM_1(\mathring{I}) > \delta.$ |
In this section, we derive a single equation for
Lemma 3.1. Let
$ I_i(t) = \mathring{I}_ie^{- k \lambda_i \phi(t)}, ~~~~i = 1, \ldots, N, $ | (2) |
where
Proof. From the first equation of system (1), we have
$ \frac{d}{dt}\log I_i(t) = - k \lambda_i S(t), ~~~~ i = 1, \ldots, N. $ |
Integrating the above relation gives
$ \log I_i(t) = \log \mathring{I}_i -\int_0^t k \lambda_i S(\tau)d\tau, ~~~~ i = 1, \ldots, N.$ |
For the population density of
$ I_i(t) = \mathring{I}_ie^{-\int_0^t k \lambda_i S(\tau)d\tau}, ~~~~ i = 1, \ldots, N.$ |
Clearly, we have
Lemma 3.2. Let
$ T(t) = \mathring{T}, ~~~~for ~~~~any~~ t > 0.$ | (3) |
Proof. Note that the summation of all equations in system (1) yields
$\Big(\sum\limits_{i = 1}^N\dot{I_i}\Big)+\dot{S}+\dot{R} = 0.$ |
Integrating the above equation leads to
$T(t) = \Big(\sum\limits_{i = 1}^NI_i(t)\Big)+S(t)+R(t) = \Big(\sum\limits_{i = 1}^N\mathring{I}_i\Big)+\mathring{S}+\mathring{R} = \mathring{T}. $ |
Remark 3. By the conservation property (3) in Lemma 3.2 and the formula in (2), we easily obtain the following formula for
$ S(t) = \mathring{T}-\sum\limits_{i = 1}^NI_i(t)-R(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t). $ | (4) |
Lemma 3.3. Let
$ R(t) = R(\phi(t)) = \mathring{R}+ k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t) .$ |
Proof. The third equation in system (1) gives us that
$ R(t)-\mathring{R} = \int_0^t \dot{R}(\tau) d\tau = \int_0^t \Big[ k \sigma S(\tau)(S(\tau)+R(\tau))+\delta S(\tau)\Big]d\tau. $ |
From (4) and the definition of
$
R(t)−˚R=kσ∫t0S(τ)[S(τ)+R(τ)]dτ+δϕ(t)=kσ∫t0S(τ)(˚T−N∑i=1Ii(τ))dτ+δϕ(t)=kσ∫t0ϕ′(τ)(˚T−N∑i=1˚Iie−kλiϕ(τ))dτ+δϕ(t)=kσ˚T∫t0ϕ′(τ)dτ−∑λi≠0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ−∑λi=0kσ∫t0ϕ′(τ)˚Iie−kλiϕ(τ)dτ+δϕ(t)=K1+K2+K3+K4.
$
|
We directly have
$K_1 = k \sigma \mathring{T} \phi(t) ~~~~\mbox{and}~~~~ K_4 = \delta \phi(t).$ |
For
$ K_2 = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau\\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_{\phi(0)}^{\phi(t)} e^{- k \lambda_i \eta}d\eta \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{e^{- k \lambda_i \phi(0)}-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i }. $ |
Similarly, we have
$K_3 = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma (\phi(t)-\phi(0)) \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \phi(t).$ |
Therefore, the above elementary calculations yield
$ R(t)-\mathring{R} = k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t).$ |
The formula (4) of
$ \frac{d\phi(t)}{dt} = S(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t) .$ |
By the result in Lemma 3.3, we derive a single decoupled equation for
$ \frac{d\phi(t)}{dt} = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)} -\mathring{R}- k \sigma \mathring{T} \phi(t) \\ + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } + k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) -\delta \phi(t). $ |
For simplicity, we define
$
F(ϕ)=F(ϕ,˚I,˚S,˚R,˚T):=˚T−N∑i=1˚Iie−kλiϕ−˚R−kσ˚Tϕ+kσ∑λi≠0˚Ii1−e−kλiϕkλi+kσ∑λi=0˚Iiϕ(t)−δϕ.
$
|
(5) |
Then,
$ \dot{\phi}(t) = F(\phi(t)). $ | (6) |
In this section, we use the steady state analysis to obtain the threshold phenomena for asymptotic behavior of the solution to system (1). To obtain the asymptotic behavior of solutions to (6), we first consider a steady state
$ F(\phi) = 0, $ | (7) |
where
$ G(\phi) = G(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i } $ | (8) |
and
$ H(\phi) = H(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \Big(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \Big)\phi . $ | (9) |
Then, we divide
$ H(\phi) = G(\phi). $ |
Lemma 4.1. Let
$G(0) = \mathring{S}, ~~~~and~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty, ~~~~if~~~ \mathring{R} = 0.$ |
Proof. By the definition of
For the next result, we take the limit such that
$ \lim\limits_{\phi\to \infty}G(\phi) = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big)\\ = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{\lambda_i\ne 0} \mathring{I}_ie^{- k \lambda_i \phi}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big) \\ = \mathring{T}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i }. $ |
Therefore, we have
$\displaystyle k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i } < \infty.$ |
Therefore, we conclude that
Lemma 4.2. Assume that
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} \Big( k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \mathring{I}_i e^{- k \lambda_i \phi}\Big) > 0. $ |
Proof. Note that the derivative of
$ \frac{dG}{d\phi} = -\frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}. $ |
We can calculate the first term in the above as
$ \frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_ie^{- k \lambda_i \phi}\\ = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_i \\ = -\sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi}. $ |
Thus, if at least one non-zero
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Lemma 4.3. Let
Proof. Note that
$\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i = \delta+ k \sigma \Big(\sum\limits_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}\Big)- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\\ = \delta+ k \sigma \Big(\sum\limits_{\lambda_i\ne 0}\mathring{I}_i+\mathring{S}+\mathring{R}\Big).$ |
Therefore,
Proposition 1. Let
Then there is a final rumor size
$\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t), $ |
where
$F(\phi^\infty(\mathring{I}, \mathring{S})) = 0.$ |
Proof. This follows from an elementary result of ordinary differential equations. Note that for given initial data
$F(0) = G(0)-H(0) = \mathring{S} > 0, $ |
and
$\lim\limits_{\phi\to \infty}F(\phi) = G(\phi)-H(\phi) = -\infty.$ |
By the intermediate value theorem, there is at least one positive solution
For a fixed
Proposition 2. Let
The equation
Proof. We have, by Lemma 4.1 and 4.3,
$G(0) = \mathring{S} = 0, ~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty$ |
and
$H(0) = 0, ~~~~ \lim\limits_{\phi\to \infty}H(\phi) = \infty.$ |
It follows that
$\lim\limits_{\phi\to \infty}F(\phi) = -\infty.$ | (10) |
Lemma 4.2 implies that the derivative of
$ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $ |
Moreover, if
$\frac{dH}{d\phi}(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i .$ |
Therefore,
$
dFdϕ=dGdϕ−dHdϕ=∑λi≠0kλi˚Iie−kλiϕ+kσ∑λi≠0˚Iie−kλiϕ−(δ+kσ˚T−kσ∑λi=0˚Ii).
$
|
(11) |
So,
$ \frac{dF}{d\phi}(0) = \frac{dG}{d\phi}(0)-\frac{dH}{d\phi}(0) = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i -\delta = kM_1-\delta. $ |
This yields
$ kM_1 > \delta \Rightarrow \frac{dF}{d\phi}(0) > 0, $ | (12) |
and the continuity of
$F(\phi_\epsilon) > 0.$ |
Thus, the intermediate value theorem and (10) show that
In order to complete the proof of this proposition, it suffices to verify that the equation has a unique solution
We now assume that
$ \frac{dF}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T} .$ |
Since we assume that
$ \frac{dF}{d\phi} \leq \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i- k \sigma \sum\limits_{i = 1}^N \mathring{I}_i\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i(e^{- k \lambda_i \phi}-1) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i (e^{- k \lambda_i \phi}-1) .$ |
This implies that
$\frac{dF}{d\phi} < 0 ~~~~\mbox{ if}~~~~ \phi > 0, ~~~~\mbox{ and }~~~~ \frac{dF}{d\phi}\leq 0~~~~\mbox{ if} ~~~~ \phi = 0.$ |
The fact in (10) with
$F(\phi) < 0 ~~~~\mbox{for}~\phi > 0.$ |
Therefore, we complete the proof.
We are now ready to prove the main theorem.
The proof of the main theorem. Let
$\mathring{I}^n\to \mathring{I},~~~~ \mathring{S}^n\to 0.$ | (13) |
We denote
$F(\phi, \mathring{S}^n) = F(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})~~~~ \mbox{and}~~~~ F_\infty(\phi) = F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}).$ |
First, assume that
$F_\infty(0) = 0 ~~~~\mbox{ and}~~~~ \frac{d}{d\phi}F_\infty(\phi)\bigg|_{\phi = 0} > 0.$ |
Note that (11) implies that
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T}\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big)+\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i \\ + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \Big(\Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n\Big) .$ |
Therefore,
$ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\\- k \sigma \mathring{S}^n+ k M_1(\mathring{I}^n)-\delta. $ |
By (13), there is
$k M_1(\mathring{I}^n)-\delta > \frac{1}{2}(k M_1(\mathring{I})-\delta)$ |
and
$k \sigma \mathring{S}^n\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Since
$\bigg|\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\bigg|\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$ |
Thus, there are constants
$ \frac{\partial F}{\partial\phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) > 0. $ | (14) |
In order to prove convergence, we consider differentiable functions
$I(1/n) = \mathring{I}^n, ~~~~S(1/n) = \mathring{S}^n, ~~~~R(1/n) = \mathring{R}^n, ~~~~ n\in\mathbb{N}, $ |
and
$\mathring{T} = \Big(\sum\limits_{i = 1}^N I_i(s)\Big)+S(s)+R(s).$ |
We denote
We now prove that
For
For the last part, we assume that
Let
$\lim\limits_{n\to \infty}F(\phi_{n_n}, \mathring{I}_{n_n}, \mathring{S}_{n_n}, \mathring{R}_{n_n}, \mathring{T}) = F(\phi_{n_\infty}, \mathring{I}, 0, 0, \mathring{T}).$ |
Therefore, by Proposition 2,
$\lim\limits_{n\to \infty}\phi_{n} = 0.$ |
In this section, we numerically provide the solutions to system (1) with respect to several
For the numerical simulations, we used the fourth-order Runge-Kutta method with the following parameters:
$ \lambda_1 = 1, ~~~~\lambda_2 = 2, ~~~~\lambda_3 = 3, ~~~~\sigma = 0.2, ~~~~ k = 10. $ |
We take sufficiently large initial data
$\mathring{I}_1 = \mathring{I}_2 = \mathring{I}_3 = 9999, ~~~~\mathring{S} = 3, ~~~~\mathring{R} = 0.$ |
To see the threshold phenomena for
Note that in Proposition 1, we rigorously obtained that the final size of the rumor
In Figure 2, we plotted the densities of the spreaders (S) and the stiflers (R) with respect to several
In Figure 3, we plotted
From our analytic results, we can expect that the threshold occurs when
In this paper, we consider the rumor spreading model with the trust rate distribution. The model consists of several ignorants with trust rates
[1] | SIAM J. Appl. Math., 46 (1986), 1000-1017. |
[2] | European J. Appl. Math., 14 (2003), 587-612. |
[3] | Netw. Heterog. Media, 6 (2011), 401-423. |
[4] | Q. Appl. Math., XVIII (1960), 191-204. |
[5] | Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000. |
[6] | Technical report, ETH Zürich, 2006. |
[7] | SIAM J. Numer. Anal., 30 (1993), 675-700. |
[8] | Arch. Rational Mech. Anal., 88 (1985), 223-270. |
[9] | in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020. |
[10] | Appl. Math. Modelling, 13 (1989), 618-631, |
[11] | Ph.D thesis, ETH Zürich dissertation Nr. 21025, 2013. |
[12] | arXiv:1402.0909. |
[13] | Z. Angew. Math. Phys., 46 (1995), 913-931. |
[14] | Environment and Planning B, 28 (2001), 361-383. |
[15] | in Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 67-78. |
[16] | SIAM J. Appl. Math., 48 (1988), 1009-1032. |
[17] | Z. Angew. Math. Mech., 75 (1995), 571-581. |
[18] | Confluentes Math., 3 (2011), 445-470. |
[19] | Comm. Pure Appl. Math., 13 (1960), 217-237. |
[20] | Trans. Amer. Math. Soc., 199 (1974), 89-112. |
[21] | PLoS Comput. Biol., 8 (2012), e1002442. |
[22] | J. Comput. Phys., 56 (1984), 363-409. |
[23] | in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212. |
[24] | Ph.D Thesis, University of Houston, Houston, 1992. 68 pp. |
1. | Carlos Ballester, Camilla Vote, John Hornbuckle, Thavone Inthavong, Vanndy Lim, Chantha Oeurng, Wendy Quayle, Vang Seng, Pheng Sengxua, Vorachith Sihathep, Veasna Touch, Philip Eberbach, Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin, 2019, 9, 2077-0472, 128, 10.3390/agriculture9060128 | |
2. | Hao Yuan Chan, Sarina Abdul Halim-Lim, Tai Boon Tan, Nitty Hirawaty Kamarulzaman, Adi Ainurzaman Jamaludin, Wan Abd Al Qadr Imad Wan-Mohtar, Exploring the Drivers and the Interventions towards Sustainable Food Security in the Food Supply Chain, 2020, 12, 2071-1050, 7890, 10.3390/su12197890 | |
3. | Abha Mishra, Jan Willem Ketelaar, Norman Uphoff, Max Whitten, Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: evaluating impacts of system of rice intensification with special reference to rainfed agriculture, 2021, 1473-5903, 1, 10.1080/14735903.2020.1866852 | |
4. | Thi Bui, Huu Tran, Hossein Azadi, Philippe Lebailly, Improving the Technical Efficiency of Sengcu Rice Producers through Better Financial Management and Sustainable Farming Practices in Mountainous Areas of Vietnam, 2018, 10, 2071-1050, 2279, 10.3390/su10072279 | |
5. | Muhammad Shahbaz Farooq, Hira Fatima, Obaid Ur Rehman, Muhammad Yousuf, Rabia Kalsoom, Sajid Fiaz, Muhammad Ramzan Khan, Muhammad Uzair, Shuhao Huo, Major challenges in widespread adaptation of aerobic rice system and potential opportunities for future sustainability, 2023, 159, 02546299, 231, 10.1016/j.sajb.2023.06.017 | |
6. | Yun-Ho Lee, Seong-Woo Cho, Tae-Young Hwang, On-Farm Assessment of the System of Rice Intensification (SRI) Under Rainfed Lowland Fields of Southern Cambodia, 2024, 36, 1225-8504, 63, 10.12719/KSIA.2024.36.1.63 |