A mixed system modeling two-directional pedestrian flows

  • Received: 01 April 2014 Accepted: 29 June 2018 Published: 01 December 2014
  • MSC : Primary: 35L65, 35M30; Secondary: 90B20.

  • In this article, we present a simplified model to describe the dynamics of two groups of pedestrians moving in opposite directions in a corridor.The model consists of a $2\times 2$ system of conservation laws of mixed hyperbolic-elliptic type.We study the basic properties of the system to understand why and how bounded oscillations in numerical simulations arise.We show that Lax-Friedrichs scheme ensures the invariance of the domain and we investigate the existence of measure-valued solutionsas limit of a subsequence of approximate solutions.

    Citation: Paola Goatin, Matthias Mimault. A mixed system modeling two-directional pedestrian flows[J]. Mathematical Biosciences and Engineering, 2015, 12(2): 375-392. doi: 10.3934/mbe.2015.12.375

    Related Papers:

    [1] Florencia G. Palis, R. M. Lampayan, R.J. Flor, E. Sibayan . A multi-stakeholder partnership for the dissemination of alternate wetting and drying water-saving technology for rice farmers in the Philippines. AIMS Agriculture and Food, 2017, 2(3): 290-309. doi: 10.3934/agrfood.2017.3.290
    [2] Theodor Friedrich, Amir Kassam . Food security as a function of Sustainable Intensification of Crop Production. AIMS Agriculture and Food, 2016, 1(2): 227-238. doi: 10.3934/agrfood.2016.2.227
    [3] Boris Boincean, Amir Kassam, Gottlieb Basch, Don Reicosky, Emilio Gonzalez, Tony Reynolds, Marina Ilusca, Marin Cebotari, Grigore Rusnac, Vadim Cuzeac, Lidia Bulat, Dorian Pasat, Stanislav Stadnic, Sergiu Gavrilas, Ion Boaghii . Towards Conservation Agriculture systems in Moldova. AIMS Agriculture and Food, 2016, 1(4): 369-386. doi: 10.3934/agrfood.2016.4.369
    [4] Isaac Busayo Oluwatayo . Towards assuring food security in South Africa: Smallholder farmers as drivers. AIMS Agriculture and Food, 2019, 4(2): 485-500. doi: 10.3934/agrfood.2019.2.485
    [5] Fernando Arias, Maytee Zambrano, Kathia Broce, Carlos Medina, Hazel Pacheco, Yerenis Nunez . Hyperspectral imaging for rice cultivation: Applications, methods and challenges. AIMS Agriculture and Food, 2021, 6(1): 273-307. doi: 10.3934/agrfood.2021018
    [6] J.M.A. Duncan, J. Dash, E.L. Tompkins . Observing adaptive capacity in Indian rice production systems. AIMS Agriculture and Food, 2017, 2(2): 165-182. doi: 10.3934/agrfood.2017.2.165
    [7] Raulston Derrick Gillette, Norio Sakai, Godfrid Erasme Ibikoule . Role and impact of contract farming under various pricing standards: A case of Guyana's rice sector. AIMS Agriculture and Food, 2024, 9(1): 336-355. doi: 10.3934/agrfood.2024020
    [8] Karin Lindsjö, Agnes Anderssonc Djurfeldt, Aida Cuthbert Isinika, Elibariki Msuya . Youths' participation in agricultural intensification in Tanzania. AIMS Agriculture and Food, 2020, 5(4): 681-699. doi: 10.3934/agrfood.2020.4.681
    [9] Abbas Ali Chandio, Yuansheng Jiang, Abdul Rehman, Rahman Dunya . The linkage between fertilizer consumption and rice production: Empirical evidence from Pakistan. AIMS Agriculture and Food, 2018, 3(3): 295-305. doi: 10.3934/agrfood.2018.3.295
    [10] Deborah Nabuuma, Beatrice Ekesa, Mieke Faber, Xikombiso Mbhenyane . Food security and food sources linked to dietary diversity in rural smallholder farming households in central Uganda. AIMS Agriculture and Food, 2021, 6(2): 644-662. doi: 10.3934/agrfood.2021038
  • In this article, we present a simplified model to describe the dynamics of two groups of pedestrians moving in opposite directions in a corridor.The model consists of a $2\times 2$ system of conservation laws of mixed hyperbolic-elliptic type.We study the basic properties of the system to understand why and how bounded oscillations in numerical simulations arise.We show that Lax-Friedrichs scheme ensures the invariance of the domain and we investigate the existence of measure-valued solutionsas limit of a subsequence of approximate solutions.


    Currently it is the digital era where there is a steady flood of information. Such information inundation makes a variety of mass media more important, for example, newspapers, broadcast, social network system media, and public speaking. Before developing mass media, rumors propagated by word of mouth and played a crucial role in communication between people or groups. This process can be understood as a kind of homogenization of information system and social interaction [1]. With the emergence of multimedia and social media, rumors have spread faster and have wide transmissions [5]. However, some harmful and powerful rumor outbreaks arise from such wide transmission via these media [10,14,18]. Moreover, their influence causes multiple effects for a variety of situations rather than the mono effect for localized situations [12].

    As a benefit in return for the homogenization, personality is more heavily emphasized and the diversity of people has garnered much attention in our social community. In the microscopic viewpoint of rumor spreading, this variety of characteristics is important. Many researchers already have investigated that the degree of belief is important in rumor spreading [8,16]. From this perspective, we assume that there will be various groups that share the same trust rate. In this paper, we propose an SIR type rumor spreading model with given spreading rate distributions $\lambda_i$, $1\leq i\leq N$. Each spreading rate distribution $\lambda_i$ represents a different character of several classes of groups. With the distribution $\lambda_i$, we present a sufficient condition for the rumor outbreak. To obtain a rumor outbreak, we need a sufficiently large initial quantity that represents the momentum of rumor spreading. We also provide numerical simulations to verify our analysis with several combinations of different parameters. We notice that the authors in [19] studied an SIR type rumor spreading model with a reputation mechanism and considered a probability that represents the reputation of the opinion, where reputation is related to the trust rate. They used a single ignorant SIR model. On the other hand, we consider a model with several classes of ignorants and trust rate distributions $\lambda_i$, $1\leq i\leq N$.

    Next we provide a brief historical review of the rumor spreading model. Starting the pioneering studies by Daley and Kendall [3,4], a lot of researchers have studied rumor spreading and tried to build mathematical models [11,17]. Zanette [23,24] numerically obtained the existence of a critical threshold for a rumor spreading model regarding small-world networks. In [13], the authors derived the mean-field equation of complex heterogeneous networks. For other topological settings, see [7,15]. Most mathematical models for rumor spreading are based on the epidemic model. In [27], the authors considered an SIR type rumor spreading model with forgetting mechanism. See also [6,28] for other models with forgetting mechanisms. In [26], the authors added a hibernator variable to the SIR type rumor spreading model. Similarly, in [20,22], the authors adapted several new variables to construct a more realistic model for the rumor spreading phenomena. In [25], the authors employed the probability that ignorants directly become stiflers when they are aware of a rumor. We refer to papers [2,9,29] for other rumor spreading models.

    The paper is organized as follows. In Section 2, we present the trust distribution and its mechanism in the SIR type model. In Section 3, we derive a single equation for the rumor size $\phi$. In Section 4, we provide proof of the main theorem. In Section 5, we demonstrate our results by numerical simulations. Finally, we summarize our results in Section 6.

    Notation: Throughout the paper, we use the following simplified notation:

    $I(t) = (I_1(t), \ldots, I_N(t)), ~~~~ \mathring{I} = (\mathring{I}_{1}, \ldots, \mathring{I}_{N}), ~~~~\mathring{I}^n = (\mathring{I}_{1}^{n}, \ldots, \mathring{I}_{N}^{n}), ~~~~ n, N\in \mathbb{N}.$

    Let $V$ and $E$ be sets of vertices and edges, respectively. Representing the individuals and contacts as the vertices and edges, a social network leads to an undirected graph $G = (V, E)$. A general social network is close to a small-world network [21]. In [13], the authors derived the mean-field rate equation based on the Poisson distribution of small-world network. As in [13], we consider a rumor spreading model based on the SIR model of a homogeneous network.

    There are three groups of populations: ignorants (I), spreaders (S), and stiflers (R). At the first stage, ignorants contact a spreader, realize a rumor, and accept the hearsay. According to the acceptance with rate $\lambda $, some of them become spreaders and then spread the rumor to other ignorants. However, as spreaders lose interest in spreading the rumor, they become stiflers. Based on this mechanism, the SIR rumor spreading model [3,4] is given by

    $ ˙I=kλSI,˙S=kλSIkS(σ1S+σ2R),˙R=kσS(S+R),
    $

    where $k$ is the average degree of the network, $\lambda$ is the spreading rate of the system, $\sigma_1$ is the contact rate between spreaders, and $\sigma_2$ is the contact rate between spreaders and stiflers.

    As in [25], we assume that spreaders lose their interest in rumors with probability $\delta$ and become stiflers. Moreover, stiflers interact with spreaders to create other stiflers from other spreaders. Spreaders also have a negative effect on other spreaders because they consider the rumor to be outdated if the spreader meets with other spreaders frequently. For simplicity, we assume that the contact rates $\sigma_1$ and $\sigma_2$ are the same, say $\sigma = \sigma_1 = \sigma_2$. As mentioned before, we consider several groups of ignorants with different spreading rates $\lambda_i$, $i = 1, \ldots, N$, motivated by [8,16]. The mean-field equation is then given by

    $ ˙Ii=kλiSIi,    i=1,,N,˙S=Ni=1kλiSIikσS(S+R)δS,˙R=kσS(S+R)+δS,
    $
    (1)

    subject to initial data $~ I_i(0) = \mathring{I}_{i}, i = 1, \ldots, N, S(0) = \mathring{S}, R(0) = \mathring{R}$, where $I_i$ is the population density of the $i$th group of ignorants with spreading (trust) rate $\lambda_i$. $S$ and $R$ are the density of spreaders and stiflers, respectively. Moreover, $\sigma$ is the contact rate between spreaders and stiflers, and $\delta$ denotes the decay rate of spreaders to stiflers.

    Throughout this paper, we assume that

    (1) $k$, $\sigma$ and $\delta$ are fixed positive constants.

    (2) The spreading (trust) rate distribution $\lambda_i $ is nonnegative constant for each $1\leq i\leq N $.

    We will consider a family of initial data $\mathring{I}_{1}, \ldots, \mathring{I}_{N}$, $\mathring{S}$ and $\mathring{R}$ such that

    $\mathring{T} = \Big(\sum\limits_{j = 1}^N\mathring{I}_{j}\Big)+\mathring{S}+\mathring{R}$

    for a fixed total initial population $\mathring{T}$.

    Next, we define the rumor size, a momentum type quantity of the initial data and rumor outbreak.

    Definition 2.1. [19,25,26]For a solution $(I, S, R)$ to system (1), we define the rumor size $\phi$ of $(I, S, R)$:

    $ \phi(t) = \int_0^t S(\tau)d\tau. $

    Definition 2.2. Let $(I, S, R)$ be a solution to system (1) with initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R}$. We define initial reliability of ignorants $M_1(\mathring{I})$:

    $ M_1(\mathring{I}) = \sum\limits_{i = 1}^N\lambda_i \mathring{I}_i $

    and total population with initial $T(0) = \mathring{T}$:

    $T(t) = \Big(\sum\limits_{i = 1}^NI_{i}(t)\Big)+S(t)+R(t).$

    Definition 2.3. Let $(I, S, R)$ be solutions to system (1) subject to initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R} = 0$. If $\phi(t)$ in Definition 2.1 converges as $t\to \infty$, we define $\phi^\infty$ as the final size of the rumor:

    $\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t).$

    Definition 2.4. For a given initial data $\mathring{I}, \mathring{S}$ and $\mathring{R}$ of system (1) with $\mathring{S} = 0$ and $\mathring{R} = 0$, let $\mathring{I}^n$, $\mathring{S}^n$ and $\mathring{R}^n$ be sequences satisfying

    $\mathring{I}^{n}\to \mathring{I},~~~~ \mathring{S}^{n}\to0 ~~~~ \mbox{as} ~~~~ n\to\infty$

    and

    $ \mathring{S}^n > 0,~~~~ \mathring{R}^n = 0~~~~ \mbox{for}~~n\in \mathbb{N}.$

    We additionally assume that the total populations are the same:

    $\mathring{T} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}\Big)+\mathring{S}+\mathring{R} = \Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n+\mathring{R}^n = \mathring{T}^n.$

    We say that a rumor outbreak occurs if the following limit exists

    $\phi_e(\mathring{I}) = \lim\limits_{n\to \infty}\phi^\infty(\mathring{I}^n, \mathring{S}^n)$

    and $\phi_e(\mathring{I})$ is positive, where $\phi^\infty(\mathring{I}^n, \mathring{S}^n)$ is the final size of the rumor for the initial data $\mathring{I}^n$, $\mathring{S}^n$, $\mathring{R}^n$.

    Remark 1. (1) In [13,15,25], the authors define that the rumor outbreak occurs if

    $\lim\limits_{\mathring{R}\to 0}R(\infty) > 0.$

    This is essentially equivalent to Definition 2.4. We use $\phi(\infty)$ instead of $R(\infty)$, since $R(t) = R(\phi(t))$. See the result in Lemma 3.3.

    (2) The rumor spreading begins with one spreader. Therefore, $\mathring{S} = 1/N$, where $N$ is the total population number. Generally, $N$ is a large number and this implies that $\mathring{S}\thickapprox0$. However, if we assume that $\mathring{I} = \mathring{T}$ and $\mathring{S} = \mathring{R} = 0$, then the corresponding solution $(I(t), S(t), R(t))$ is the trivial stationary solution. Therefore, to get an intrinsic property of the system, we have to consider a limit of sequence with initial data $\mathring{S}^n\to 0$.

    The following is the main theorem of this paper.

    Theorem 2.5. Let $k$, $\sigma$, $\delta$ and $\mathring{T}$ be positive constants and $\mathring{R} = \mathring{R}^n = 0$. Let $\{(I^n(t), S^n(t), R^n(t))\}$ be a sequence of solutions to system (1) subject to initial data $\mathring{I}^n$, $\mathring{S}^n$ and $\mathring{R}^n = 0$, respectively.

    We assume that each $\mathring{S}^n$ is positive, $\mathring{I}^n\to \mathring{I}$ and $\mathring{S}^n\to 0$ for an N-dimensional vector $\mathring{I}$, and

    $\mathring{T} = \Big(\sum\limits_{k = 1}^N\mathring{I}_{k}^n\Big)+\mathring{S}^n = \sum\limits_{i = 1}^N\mathring{I}_i.$

    Then, there exists the following limit of steady states:

    $\phi_e = \phi_e(\mathring{I}) = \lim\limits_{\mathring{S}^n\to 0, \mathring{I}^n\to \mathring{I} }\phi^\infty(\mathring{I}^n, \mathring{S}^n), $

    where $\phi^\infty(\mathring{I}^n, \mathring{S}^n)$ is the final size of the rumor for the initial data $\mathring{I}^n$ and $\mathring{S}^n$ with $\mathring{R}^n = 0$.

    Furthermore, if $kM_1(\mathring{I})>\delta $, $\phi_e(\mathring{I})$ is positive and if $kM_1(\mathring{I})\leq\delta $, $\phi_e(\mathring{I})$ is zero.

    Remark 2. An equivalent condition of occurring a rumor outbreak is

    $kM_1(\mathring{I}) > \delta.$

    In this section, we derive a single equation for $\phi$ and consider the steady state analysis for the rumor spreading model (1) via a derived single equation of $\phi$ from the next argument.

    Lemma 3.1. Let $(I, S, R)$ be a solution to system (1) with an initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R}$. Then each $I_i(t)$ satisfies

    $ I_i(t) = \mathring{I}_ie^{- k \lambda_i \phi(t)}, ~~~~i = 1, \ldots, N, $ (2)

    where $\phi(t)$ is a function defined in Definition 2.1.

    Proof. From the first equation of system (1), we have

    $ \frac{d}{dt}\log I_i(t) = - k \lambda_i S(t), ~~~~ i = 1, \ldots, N. $

    Integrating the above relation gives

    $ \log I_i(t) = \log \mathring{I}_i -\int_0^t k \lambda_i S(\tau)d\tau, ~~~~ i = 1, \ldots, N.$

    For the population density of $S(t)$, we can obtain the following formula for $I_i$:

    $ I_i(t) = \mathring{I}_ie^{-\int_0^t k \lambda_i S(\tau)d\tau}, ~~~~ i = 1, \ldots, N.$

    Clearly, we have $\displaystyle \frac{d}{dt}\phi(t) = S(t)$, which implies that $\displaystyle \phi(t)-\phi(0) = \int_0^tS(\tau)d\tau$.

    Lemma 3.2. Let $(I, S, R)$ be a solution to system (1) with initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R}$. For the given initial data, the total population $T(t)$ of the solution to system (1) is conserved. Thus, we have

    $ T(t) = \mathring{T}, ~~~~for ~~~~any~~ t > 0.$ (3)

    Proof. Note that the summation of all equations in system (1) yields

    $\Big(\sum\limits_{i = 1}^N\dot{I_i}\Big)+\dot{S}+\dot{R} = 0.$

    Integrating the above equation leads to

    $T(t) = \Big(\sum\limits_{i = 1}^NI_i(t)\Big)+S(t)+R(t) = \Big(\sum\limits_{i = 1}^N\mathring{I}_i\Big)+\mathring{S}+\mathring{R} = \mathring{T}. $

    Remark 3. By the conservation property (3) in Lemma 3.2 and the formula in (2), we easily obtain the following formula for $S(t)$:

    $ S(t) = \mathring{T}-\sum\limits_{i = 1}^NI_i(t)-R(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t). $ (4)

    Lemma 3.3. Let $(I, S, R)$ be a solution to system (1) with initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R}$. Then $R(t)$ is a function depending on $\phi$:

    $ R(t) = R(\phi(t)) = \mathring{R}+ k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t) .$

    Proof. The third equation in system (1) gives us that

    $ R(t)-\mathring{R} = \int_0^t \dot{R}(\tau) d\tau = \int_0^t \Big[ k \sigma S(\tau)(S(\tau)+R(\tau))+\delta S(\tau)\Big]d\tau. $

    From (4) and the definition of $\phi$: $\displaystyle \phi(t) = \int_0^t S(\tau)d\tau$, we get

    $ R(t)˚R=kσt0S(τ)[S(τ)+R(τ)]dτ+δϕ(t)=kσt0S(τ)(˚TNi=1Ii(τ))dτ+δϕ(t)=kσt0ϕ(τ)(˚TNi=1˚Iiekλiϕ(τ))dτ+δϕ(t)=kσ˚Tt0ϕ(τ)dτλi0kσt0ϕ(τ)˚Iiekλiϕ(τ)dτλi=0kσt0ϕ(τ)˚Iiekλiϕ(τ)dτ+δϕ(t)=K1+K2+K3+K4.
    $

    We directly have $K_1$ and $K_4$ with

    $K_1 = k \sigma \mathring{T} \phi(t) ~~~~\mbox{and}~~~~ K_4 = \delta \phi(t).$

    For $K_2$, we use $\lambda_i\ne0$ for all $1\leq i\leq N$. By the change of variables and the fact that $\phi(0) = 0$, we obtain

    $ K_2 = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau\\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \int_{\phi(0)}^{\phi(t)} e^{- k \lambda_i \eta}d\eta \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{e^{- k \lambda_i \phi(0)}-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } \\ = -\sum\limits_{\lambda_i\ne 0 } k \sigma \frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i }. $

    Similarly, we have $K_3$ with

    $K_3 = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)e^{- k \lambda_i \phi(\tau)}d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \int_0^t \phi'(\tau)d\tau \\ = -\sum\limits_{\lambda_i = 0 } k \sigma (\phi(t)-\phi(0)) \\ = -\sum\limits_{\lambda_i = 0 } k \sigma \phi(t).$

    Therefore, the above elementary calculations yield

    $ R(t)-\mathring{R} = k \sigma \mathring{T} \phi(t) - k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } - k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) +\delta \phi(t).$

    The formula (4) of $S(t)$ implies that

    $ \frac{d\phi(t)}{dt} = S(t) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)}-R(t) .$

    By the result in Lemma 3.3, we derive a single decoupled equation for $\phi$ such that

    $ \frac{d\phi(t)}{dt} = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi(t)} -\mathring{R}- k \sigma \mathring{T} \phi(t) \\ + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi(t)}}{ k \lambda_i } + k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \phi(t) -\delta \phi(t). $

    For simplicity, we define

    $ F(ϕ)=F(ϕ,˚I,˚S,˚R,˚T):=˚TNi=1˚Iiekλiϕ˚Rkσ˚Tϕ+kσλi0˚Ii1ekλiϕkλi+kσλi=0˚Iiϕ(t)δϕ.
    $
    (5)

    Then, $\phi(t)$ is the solution to the following single equation subject to initial data $\phi(0) = 0$.

    $ \dot{\phi}(t) = F(\phi(t)). $ (6)

    In this section, we use the steady state analysis to obtain the threshold phenomena for asymptotic behavior of the solution to system (1). To obtain the asymptotic behavior of solutions to (6), we first consider a steady state $\phi$ to (6). In other words, the steady state $\phi$ satisfies

    $ F(\phi) = 0, $ (7)

    where $F(\phi) = F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T})$ is the function defined in (5). Therefore, $\phi$ is one of solutions to equation (7). Using a standard method from [19,25,26], we can obtain a sufficient condition for the existence of nontrivial zeros. We define $G$ and $H$ by

    $ G(\phi) = G(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i } $ (8)

    and

    $ H(\phi) = H(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \Big(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i \Big)\phi . $ (9)

    Then, we divide $F$ into two parts $G$ and $H$ with $F(\phi) = G(\phi)-H(\phi)$. Note that $F$ is the difference between the exponential part $G$ and the linear part $H$. Hence equation (7) is equivalent to the following:

    $ H(\phi) = G(\phi). $

    Lemma 4.1. Let $G(\cdot)$ be a function defined in (8) for a given initial data $\mathring{I}, \mathring{S}, \mathring{R}$ and $\mathring{T}$. If $\mathring{T} = \sum_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}$, the following properties hold:

    $G(0) = \mathring{S}, ~~~~and~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty, ~~~~if~~~ \mathring{R} = 0.$

    Proof. By the definition of $G$, we have $\displaystyle G(0) = \mathring{T}-\sum_{i = 1}^N \mathring{I}_i -\mathring{R} = \mathring{S}$. Relation (4) yields the first result in this lemma.

    For the next result, we take the limit such that

    $ \lim\limits_{\phi\to \infty}G(\phi) = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big)\\ = \lim\limits_{\phi\to \infty}\Big(\mathring{T}-\sum\limits_{\lambda_i\ne 0} \mathring{I}_ie^{- k \lambda_i \phi}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i\frac{1-e^{- k \lambda_i \phi}}{ k \lambda_i }\Big) \\ = \mathring{T}-\sum\limits_{\lambda_i = 0} \mathring{I}_i -\mathring{R} + k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i }. $

    Therefore, we have $\displaystyle \lim_{\phi\to \infty}G(\phi) = \mathring{S} + k \sigma \sum_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i }$. Notice that the second term on the right hand side of the above equation is finite.

    $\displaystyle k \sigma \sum\limits_{\lambda_i\ne 0}\frac{\mathring{I}_i}{ k \lambda_i } < \infty.$

    Therefore, we conclude that $\displaystyle \lim_{\phi\to \infty}G(\phi) <\infty$.

    Lemma 4.2. Assume that $k$ and $\sigma$ are positive constants, $\lambda_i\geq0$ and $\mathring{I}_i\geq0$ for all $i = 1, \ldots, N$. Let $G(\cdot)$ be the function defined in (8). If $M_1(\mathring{I})>0$, then the derivative $\displaystyle G'(\cdot)$ is positive and

    $ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} \Big( k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \mathring{I}_i e^{- k \lambda_i \phi}\Big) > 0. $

    Proof. Note that the derivative of $G$ is

    $ \frac{dG}{d\phi} = -\frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}. $

    We can calculate the first term in the above as

    $ \frac{d}{d\phi}\sum\limits_{i = 1}^N \mathring{I}_ie^{- k \lambda_i \phi} = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_ie^{- k \lambda_i \phi}\\ = \frac{d}{d\phi}\sum\limits_{\lambda_i\ne0} \mathring{I}_ie^{- k \lambda_i \phi} +\frac{d}{d\phi}\sum\limits_{\lambda_i = 0} \mathring{I}_i \\ = -\sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi}. $

    Thus, if at least one non-zero $\lambda_i\mathring{I}_i $ exists, we have

    $ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $

    Lemma 4.3. Let $k$ and $\sigma$ be positive constants and $\delta\geq0$. Let $H(\cdot)$ be the function defined in (9). If $\mathring{T} = \sum_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}$, and initial data $\mathring{I}_i$, $\mathring{S}$ and $\mathring{R}$ are nonnegative for all $i = 1, \ldots, N$, then $H(\cdot)$ is a linear function with nonnegative slope and $H(0) = 0$.

    Proof. Note that

    $\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i = \delta+ k \sigma \Big(\sum\limits_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}\Big)- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\\ = \delta+ k \sigma \Big(\sum\limits_{\lambda_i\ne 0}\mathring{I}_i+\mathring{S}+\mathring{R}\Big).$

    Therefore, $\delta+ k \sigma \mathring{T}- k \sigma \sum_{\lambda_i = 0}\mathring{I}_i$ is positive and this means that $\displaystyle \delta+ k \sigma \mathring{T} > k \sigma \sum_{\lambda_i = 0}\mathring{I}_i$. This implies that $H(\cdot)$ is monotone increasing with $H(0) = 0$.

    Proposition 1. Let $k$, $\sigma$ and $\delta$ be positive constants. Let $(I, S, R)$ be a solution to system (1) with initial data $\mathring{I}, \mathring{S}$ and $\mathring{R}$. We assume that $\mathring{S}$ is positive, $\mathring{I}\geq 0$, $\mathring{R} = 0$ and $\mathring{T} = \sum_{i = 1}^N\mathring{I}_i+\mathring{S}+\mathring{R}$.

    Then there is a final rumor size $\phi^\infty(\mathring{I}, \mathring{S})$ such that

    $\phi^\infty(\mathring{I}, \mathring{S}): = \lim\limits_{t\to\infty}\phi(t), $

    where $\phi(t)$ is the rumor size satisfying (6). Moreover, $\phi^\infty(\mathring{I}, \mathring{S})$ is the smallest positive zero of $F(\cdot)$ such that

    $F(\phi^\infty(\mathring{I}, \mathring{S})) = 0.$

    Proof. This follows from an elementary result of ordinary differential equations. Note that for given initial data $\mathring{S}>0$, $\mathring{I}\geq 0$ and $\mathring{R} = 0$, the corresponding equation $\dot{\phi} = F(\phi)$ is autonomous. Therefore, we can apply Lyapunov's stability theorem. From the properties of $G(\cdot)$ and $H(\cdot)$ in Lemmas 4.1 and 4.3, we have

    $F(0) = G(0)-H(0) = \mathring{S} > 0, $

    and

    $\lim\limits_{\phi\to \infty}F(\phi) = G(\phi)-H(\phi) = -\infty.$

    By the intermediate value theorem, there is at least one positive solution $\psi>0$ such that $0 = F(\psi) = F(\psi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T})$ for a given initial data $\mathring{I}$, $\mathring{S}$ and $\mathring{R}$. Let $\phi^\infty$ be the smallest element of the set of positive solutions $\{\psi>0:F(\psi) = 0\}$.

    For a fixed $\mathring{S}>0$, $F(0) = \mathring{S}>0$. This shows that $\phi(t)$ is increasing near $t = 0$ and $F(x)>0$ on $\{0<x<\phi^\infty\}$. Moreover, $F(x)$ is differentiable with respect to $x$, which implies that $\phi(t)\to \phi^\infty$ as $t\to \infty$ by an elementary result of ordinary differential equations.

    Proposition 2. Let $k$, $\sigma$ and $\delta$ be positive constants and $\lambda_i\geq0$ for all $i = 1, \ldots, N$. Suppose that $\mathring{I}_i\geq0$, $i = 1, \ldots, N$, $\mathring{R} = \mathring{S} = 0$ and $\mathring{T}$ is a fixed positive constant with $\mathring{T} = \sum_{i = 1}^N\mathring{I}_i$. If we assume that $M_1(\mathring{I})>0$, then the following statement holds.

    The equation $F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = 0$ has a positive solution $\phi>0$ if and only if $kM_1>\delta$. Moreover, if $kM_1\leq \delta$, then the equation has no positive zero and $\phi = 0$ is a solution to the equation.

    Proof. We have, by Lemma 4.1 and 4.3,

    $G(0) = \mathring{S} = 0, ~~~~ \lim\limits_{\phi\to \infty}G(\phi) < \infty$

    and

    $H(0) = 0, ~~~~ \lim\limits_{\phi\to \infty}H(\phi) = \infty.$

    It follows that $F(0) = 0$ and

    $\lim\limits_{\phi\to \infty}F(\phi) = -\infty.$ (10)

    Lemma 4.2 implies that the derivative of $G(\phi)$ is positive and

    $ \frac{dG}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi} > 0. $

    Moreover, if $\mathring{S} = 0$, then we have

    $\frac{dH}{d\phi}(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = \delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i .$

    Therefore,

    $ dFdϕ=dGdϕdHdϕ=λi0kλi˚Iiekλiϕ+kσλi0˚Iiekλiϕ(δ+kσ˚Tkσλi=0˚Ii).
    $
    (11)

    So,

    $ \frac{dF}{d\phi}(0) = \frac{dG}{d\phi}(0)-\frac{dH}{d\phi}(0) = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_i -\delta = kM_1-\delta. $

    This yields

    $ kM_1 > \delta \Rightarrow \frac{dF}{d\phi}(0) > 0, $ (12)

    and the continuity of $F$ implies that there is a positive real number $\phi_\epsilon>0$ such that

    $F(\phi_\epsilon) > 0.$

    Thus, the intermediate value theorem and (10) show that $F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = 0$ has a positive solution $\phi>0$.

    In order to complete the proof of this proposition, it suffices to verify that the equation has a unique solution $\phi = 0$ on $\{\phi\geq 0\}$ if $kM_1\leq \delta$.

    We now assume that $kM_1\leq \delta$. We rewrite (11) by

    $ \frac{dF}{d\phi} = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T} .$

    Since we assume that $\sum_{i = 1}^N k \lambda_i \mathring{I}_i = kM_1\leq \delta$ and $\mathring{T} = \sum_{i = 1}^N \mathring{I}_i$,

    $ \frac{dF}{d\phi} \leq \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i e^{- k \lambda_i \phi}-\sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i- k \sigma \sum\limits_{i = 1}^N \mathring{I}_i\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}_i(e^{- k \lambda_i \phi}-1) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}_i (e^{- k \lambda_i \phi}-1) .$

    This implies that

    $\frac{dF}{d\phi} < 0 ~~~~\mbox{ if}~~~~ \phi > 0, ~~~~\mbox{ and }~~~~ \frac{dF}{d\phi}\leq 0~~~~\mbox{ if} ~~~~ \phi = 0.$

    The fact in (10) with $F(0) = 0$ leads us to

    $F(\phi) < 0 ~~~~\mbox{for}~\phi > 0.$

    Therefore, we complete the proof.

    We are now ready to prove the main theorem.

    The proof of the main theorem. Let $\mathring{R}^n = \mathring{R} = 0$ and let $\mathring{I}^n$ and $\mathring{S}^n$ be sequences such that

    $\mathring{I}^n\to \mathring{I},~~~~ \mathring{S}^n\to 0.$ (13)

    We denote

    $F(\phi, \mathring{S}^n) = F(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})~~~~ \mbox{and}~~~~ F_\infty(\phi) = F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}).$

    First, assume that $kM_1(\mathring{I})>\delta$. By (12), we have

    $F_\infty(0) = 0 ~~~~\mbox{ and}~~~~ \frac{d}{d\phi}F_\infty(\phi)\bigg|_{\phi = 0} > 0.$

    Note that (11) implies that

    $ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_i\bigg)\\ = \sum\limits_{\lambda_i\ne0} k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{\lambda_i\ne 0}\mathring{I}^n_i e^{- k \lambda_i \phi}-\bigg(\delta+ k \sigma \mathring{T}- k \sigma \sum\limits_{\lambda_i = 0}\mathring{I}^n_ie^{ -k \lambda_i \phi }\bigg) \\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_ie^{- k \lambda_i \phi} + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \mathring{T}\\ = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big)+\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i \\ + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i e^{- k \lambda_i \phi}-\delta- k \sigma \Big(\Big(\sum\limits_{i = 1}^N\mathring{I}_{i}^n\Big)+\mathring{S}^n\Big) .$

    Therefore,

    $ \frac{\partial F}{\partial \phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = \sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\\- k \sigma \mathring{S}^n+ k M_1(\mathring{I}^n)-\delta. $

    By (13), there is $N_0\in \mathbb{N}$ such that if $n>N_0$, then

    $k M_1(\mathring{I}^n)-\delta > \frac{1}{2}(k M_1(\mathring{I})-\delta)$

    and

    $k \sigma \mathring{S}^n\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$

    Since $\mathring{I}_{i}^n$ is bounded, we can choose $\epsilon_\phi$ such that if $0\leq \phi \leq \epsilon_\phi$, then

    $\bigg|\sum\limits_{i = 1}^N k \lambda_i \mathring{I}^n_i\Big(e^{- k \lambda_i \phi}-1\Big) + k \sigma \sum\limits_{i = 1}^{N}\mathring{I}^n_i \Big(e^{- k \lambda_i \phi}-1\Big)\bigg|\leq \frac{1}{4}(k M_1(\mathring{I})-\delta).$

    Thus, there are constants $\epsilon_\phi>0, N_0\in\mathbb{N}$ such that if $0\leq\phi <\epsilon_\phi$ and $n> N_0$, then

    $ \frac{\partial F}{\partial\phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) > 0. $ (14)

    In order to prove convergence, we consider differentiable functions $I(s), S(s)$ and $R(s)$ with respect to $s\in\mathbb{R}$ such that

    $I(1/n) = \mathring{I}^n, ~~~~S(1/n) = \mathring{S}^n, ~~~~R(1/n) = \mathring{R}^n, ~~~~ n\in\mathbb{N}, $

    and

    $\mathring{T} = \Big(\sum\limits_{i = 1}^N I_i(s)\Big)+S(s)+R(s).$

    We denote $F_p(\phi, s) = F_p(\phi, I(s), S(s), R(s), \mathring{T})$. Since $\frac{\partial}{\partial\phi}F(\phi, s)\bigg|_{\phi = 0, s = 0}>0$, the implicit function theorem implies that $\phi(s)$ is differentiable near $s = 0$. Thus, $\phi^\infty(\mathring{I}^n, \mathring{S}^n) = \phi(1/n)$ converges.

    We now prove that $\phi_n^\infty\to \phi_e>0$. Assume not, that is $\phi_n^\infty\to 0$ as $n\to \infty$. Then there is a $N_1\in\mathbb{N}$ such that $n>N_1$ implies $\phi_n^\infty(\mathring{S}) <\epsilon_\phi$. We may take $N_1\in\mathbb{N}$ such that $N_1>N_0$.

    For $n>N_1$, we have $F(0, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = \mathring{S}^n>0$ and $F(\phi_n^\infty, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T}) = 0$. However, by (14), $\frac{\partial F}{\partial\phi}(\phi, \mathring{I}^n, \mathring{S}^n, \mathring{R}^n, \mathring{T})>0$. This is a contradiction. Thus we obtain the desired result.

    For the last part, we assume that $kM_1\leq \delta$. Then, $\phi = 0$ is the unique nonnegative solution to $F(\phi, \mathring{I}, \mathring{S}, \mathring{R}, \mathring{T}) = 0$. Moreover $\phi^\infty(\mathring{I}^n, \mathring{S}^n)>0$. Let $\{\phi_{n_n}\}$ be any convergent subsequence of $\{\phi^\infty(\mathring{I}^n, \mathring{S}^n)\}$.

    Let $\phi_{n_\infty} = \lim_{n\to \infty}\phi_{n_n}\geq0$. Since $F$ is a continuous function,

    $\lim\limits_{n\to \infty}F(\phi_{n_n}, \mathring{I}_{n_n}, \mathring{S}_{n_n}, \mathring{R}_{n_n}, \mathring{T}) = F(\phi_{n_\infty}, \mathring{I}, 0, 0, \mathring{T}).$

    Therefore, by Proposition 2, $\phi_{n_\infty} = 0$, i.e., $\lim_{n\to \infty}\phi_{n_n} = 0$. We proved that any convergent subsequence of $\{\phi^\infty(\mathring{I}^n, \mathring{S}^n)\}$ converges to zero. Thus, by an elementary theorem in analysis,

    $\lim\limits_{n\to \infty}\phi_{n} = 0.$

    In this section, we numerically provide the solutions to system (1) with respect to several $\delta$ and compare them with the analytical results in Section 4. The main result in this paper suggests that the condition for rumor outbreak is that $M_1(I_0)$ is less than $\delta/k$.

    For the numerical simulations, we used the fourth-order Runge-Kutta method with the following parameters:

    $ \lambda_1 = 1, ~~~~\lambda_2 = 2, ~~~~\lambda_3 = 3, ~~~~\sigma = 0.2, ~~~~ k = 10. $

    We take sufficiently large initial data $\mathring{I}_i$, $i = 1, 2$ and $3$, and sufficiently small $\mathring{S}$ such that

    $\mathring{I}_1 = \mathring{I}_2 = \mathring{I}_3 = 9999, ~~~~\mathring{S} = 3, ~~~~\mathring{R} = 0.$

    To see the threshold phenomena for $M_1(I_0)$ and $\delta/k$, we consider $\delta = 0.5\times 10^5, 1.5\times 10^5, 2.5\times 10^5, 3.5\times 10^5, 4.5\times 10^5~\mbox{and}~5.5\times 10^5$.

    Note that in Proposition 1, we rigorously obtained that the final size of the rumor $\phi^\infty = \lim_{t\to \infty}\phi(t)$ is the smallest positive zero of $F(\phi)$. In Figure 1, we plotted the rumor size $\phi(t)$ and $F(\phi)$ with respect to several $\delta>0$. Here, we can observe that the final size of the rumor $\phi^\infty$ is also the smallest positive zero of $F(\phi)$. Thus the numerical results are consistent with the analytical result.

    Figure 1.  Temporal evolution of $\phi(t)$ with respect to $\delta$ and the plot of $F(\phi)$.

    In Figure 2, we plotted the densities of the spreaders (S) and the stiflers (R) with respect to several $\delta>0$. Thus, we can see that the rumor size are proportional to $1/\delta$.

    Figure 2.  Temporal evolution of the densities $S(t)$ and $R(t)$ with respect to $\delta$.

    In Figure 3, we plotted $\phi^\infty$ with respect to $\delta>0$ to see the threshold phenomena for $M_1(I_0)$ and $\delta/k$. Note that $ \mathring{S}\simeq 0, M_1(\mathring{I}) = \lambda_1 \mathring{I}_1+\lambda_2 \mathring{I}_2+\lambda_2 \mathring{I}_2\simeq 6\times 10^4$.

    Figure 3.  The final size of the rumor $\phi^\infty$ with respect to $\delta$.

    From our analytic results, we can expect that the threshold occurs when $\delta = k M_1(\mathring{I})\simeq 6\times 10^5$. In Figure 3, $\phi^\infty$ decreases almost linearly in $\delta$, and the graph of $\phi^\infty(\delta)$ is very close to the line $\phi^\infty = 0$ as $\delta$ goes to $6\times 10^5$. Therefore, this numerical simulation coincides with our analytic result. By the way, a small error occurs between the analytical and the numerical results. We guess that this error may result from the nonzero assumption for $\mathring{S}>0$.

    In this paper, we consider the rumor spreading model with the trust rate distribution. The model consists of several ignorants with trust rates $\lambda_i$, $i = 1, \ldots, N$. We provide the threshold phenomenon for this model by using classical steady state analysis. Fortunately, we can obtain the corresponding equation of rumor size for this model with several types of ignorants. We also present a rigorous proof for the convergence result. As seen from the steady state analysis, we obtain that the threshold phenomena depends on the decay rate $\delta$ of spreaders to stiflers and the momentum type quantity $M_1$ defined in Definition 2.2:$\displaystyle M_1(\mathring{I}) = \sum_{i = 1}^N\lambda_i \mathring{I}_i$. We conclude that a necessary and sufficient condition for rumor outbreak is that the trust momentum $M_1(\mathring{I})$ is greater than some combination of parameters $\delta/k$.

    [1] SIAM J. Appl. Math., 46 (1986), 1000-1017.
    [2] European J. Appl. Math., 14 (2003), 587-612.
    [3] Netw. Heterog. Media, 6 (2011), 401-423.
    [4] Q. Appl. Math., XVIII (1960), 191-204.
    [5] Oxford Lecture Series in Mathematics and its Applications, 20, Oxford University Press, Oxford, 2000.
    [6] Technical report, ETH Zürich, 2006.
    [7] SIAM J. Numer. Anal., 30 (1993), 675-700.
    [8] Arch. Rational Mech. Anal., 88 (1985), 223-270.
    [9] in Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, (2000), 713-1020.
    [10] Appl. Math. Modelling, 13 (1989), 618-631,
    [11] Ph.D thesis, ETH Zürich dissertation Nr. 21025, 2013.
    [12] arXiv:1402.0909.
    [13] Z. Angew. Math. Phys., 46 (1995), 913-931.
    [14] Environment and Planning B, 28 (2001), 361-383.
    [15] in Nonlinear Evolution Equations That Change Type, IMA Vol. Math. Appl., 27, Springer, New York, 1990, 67-78.
    [16] SIAM J. Appl. Math., 48 (1988), 1009-1032.
    [17] Z. Angew. Math. Mech., 75 (1995), 571-581.
    [18] Confluentes Math., 3 (2011), 445-470.
    [19] Comm. Pure Appl. Math., 13 (1960), 217-237.
    [20] Trans. Amer. Math. Soc., 199 (1974), 89-112.
    [21] PLoS Comput. Biol., 8 (2012), e1002442.
    [22] J. Comput. Phys., 56 (1984), 363-409.
    [23] in Nonlinear analysis and mechanics: Heriot-Watt Symposium, Vol. IV, Res. Notes in Math., 39, Pitman, Boston, Mass.-London, 1979, 136-212.
    [24] Ph.D Thesis, University of Houston, Houston, 1992. 68 pp.
  • This article has been cited by:

    1. Carlos Ballester, Camilla Vote, John Hornbuckle, Thavone Inthavong, Vanndy Lim, Chantha Oeurng, Wendy Quayle, Vang Seng, Pheng Sengxua, Vorachith Sihathep, Veasna Touch, Philip Eberbach, Effects of Frequency of Irrigation on Dry-Season Furrow-Irrigated Maize and Peanut Production in the Rice-Growing Lowlands of the Lower Mekong Basin, 2019, 9, 2077-0472, 128, 10.3390/agriculture9060128
    2. Hao Yuan Chan, Sarina Abdul Halim-Lim, Tai Boon Tan, Nitty Hirawaty Kamarulzaman, Adi Ainurzaman Jamaludin, Wan Abd Al Qadr Imad Wan-Mohtar, Exploring the Drivers and the Interventions towards Sustainable Food Security in the Food Supply Chain, 2020, 12, 2071-1050, 7890, 10.3390/su12197890
    3. Abha Mishra, Jan Willem Ketelaar, Norman Uphoff, Max Whitten, Food security and climate-smart agriculture in the lower Mekong basin of Southeast Asia: evaluating impacts of system of rice intensification with special reference to rainfed agriculture, 2021, 1473-5903, 1, 10.1080/14735903.2020.1866852
    4. Thi Bui, Huu Tran, Hossein Azadi, Philippe Lebailly, Improving the Technical Efficiency of Sengcu Rice Producers through Better Financial Management and Sustainable Farming Practices in Mountainous Areas of Vietnam, 2018, 10, 2071-1050, 2279, 10.3390/su10072279
    5. Muhammad Shahbaz Farooq, Hira Fatima, Obaid Ur Rehman, Muhammad Yousuf, Rabia Kalsoom, Sajid Fiaz, Muhammad Ramzan Khan, Muhammad Uzair, Shuhao Huo, Major challenges in widespread adaptation of aerobic rice system and potential opportunities for future sustainability, 2023, 159, 02546299, 231, 10.1016/j.sajb.2023.06.017
    6. Yun-Ho Lee, Seong-Woo Cho, Tae-Young Hwang, On-Farm Assessment of the System of Rice Intensification (SRI) Under Rainfed Lowland Fields of Southern Cambodia, 2024, 36, 1225-8504, 63, 10.12719/KSIA.2024.36.1.63
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2882) PDF downloads(506) Cited by(8)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog