Research article Special Issues

Convergence analysis of a second-order finite difference scheme on Shishkin-type meshes for a singularly perturbed Volterra integro-differential equation

  • Published: 08 December 2025
  • In this paper, a novel second-order numerical method on a Shishkin mesh is constructed to solve a singularly perturbed Volterra integro-differential equation. The proposed numerical scheme employs a second-order backward differentiation formula (BDF2) for discretizing the first-order derivative term, while utilizing the trapezoidal rule to approximate the integral term. Specifically, at the grid transition point, a first-order finite difference approximation is implemented to handle the first-order derivative computation. Subsequently, comprehensive truncation error estimations and rigorous convergence analyses are systematically conducted. Finally, two numerical examples are performed to verify the theoretical findings.

    Citation: Jiwen Chen, Li-Bin Liu, Guangqing Long, Zaitang Huang. Convergence analysis of a second-order finite difference scheme on Shishkin-type meshes for a singularly perturbed Volterra integro-differential equation[J]. Networks and Heterogeneous Media, 2025, 20(4): 1333-1345. doi: 10.3934/nhm.2025057

    Related Papers:

  • In this paper, a novel second-order numerical method on a Shishkin mesh is constructed to solve a singularly perturbed Volterra integro-differential equation. The proposed numerical scheme employs a second-order backward differentiation formula (BDF2) for discretizing the first-order derivative term, while utilizing the trapezoidal rule to approximate the integral term. Specifically, at the grid transition point, a first-order finite difference approximation is implemented to handle the first-order derivative computation. Subsequently, comprehensive truncation error estimations and rigorous convergence analyses are systematically conducted. Finally, two numerical examples are performed to verify the theoretical findings.



    加载中


    [1] B. C. Iragi, J. B. Munyakazi, A uniformly convergent numerical method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97 (2020), 759–771. https://doi.org/10.1080/00207160.2019.1585828 doi: 10.1080/00207160.2019.1585828
    [2] J. S. Angell, W. E. Olmstead, Singularly perturbed Volterra integral equations Ⅱ, SIAM J. Appl. Math., 47 (1987), 1150–1162. https://doi.org/10.1137/0147077 doi: 10.1137/0147077
    [3] F. C. Hoppensteadt, An algorithm for approximate solutions to weakly filtered synchronous control systems and nonlinear renewal processes, SIAM J. Appl. Math., 43 (1983), 834–843. https://doi.org/10.1137/0143054 doi: 10.1137/0143054
    [4] A. S. Lodge, J. B. McLeod, J. A. Nohel, A nonlinear singularly perturbed Volterra integrodifferential equation occurring in polymer rheology, Proc. R. Soc. Edinburgh Sect. A, 80 (1978), 99–137. https://doi.org/10.1017/S0308210500010167 doi: 10.1017/S0308210500010167
    [5] G. S. Jordan, A nonlinear singularly perturbed Volterra integrodifferential equation of nonconvolution type, Proc. R. Soc. Edinburgh Sect. A, 80 (1978), 235–247. https://doi.org/10.1017/S030821050001026X doi: 10.1017/S030821050001026X
    [6] S. Şevgin, Numerical solution of a singularly perturbed Volterra integro-differential equation, Adv. Differ. Equ., 2014 (2014), 171–196. https://doi.org/10.1186/1687-1847-2014-171 doi: 10.1186/1687-1847-2014-171
    [7] M. Kudu, I. Amirali, G. M. Amiraliyev, A finite-difference method for a singularly perturbed delay integro-differential equation, J. Comput. Appl. Math., 308 (2016), 379–390. https://doi.org/10.1016/j.cam.2016.06.018 doi: 10.1016/j.cam.2016.06.018
    [8] J. Huang, Z. Cen, A. Xu, L. B. Liu, A posteriori error estimation for a singularly perturbed Volterra integro-differential equation, Numer. Algorithms, 83 (2020), 549–563. https://doi.org/10.1007/s11075-019-00693-y doi: 10.1007/s11075-019-00693-y
    [9] Sumit, S. Kumar, J. Vigo-Aguiar, Analysis of a nonlinear singularly perturbed Volterra integro-differential equation, J. Comput. Appl. Math., 404 (2022), 113410. https://doi.org/10.1016/j.cam.2021.113410 doi: 10.1016/j.cam.2021.113410
    [10] A. Jaiswal, S. Kumar, S. Kumar, A priori and a posteriori error analysis for a system of singularly perturbed Volterra integro-differential equations, Comput. Appl. Math., 42 (2023), 278. https://doi.org/10.1007/s40314-023-02406-7 doi: 10.1007/s40314-023-02406-7
    [11] Ö. Yapman, G. M. Amiraliyev, A novel second-order fitted computational method for a singularly perturbed Volterra integro-differential equation, Int. J. Comput. Math., 97 (2020), 1293–1302. https://doi.org/10.1080/00207160.2019.1614565 doi: 10.1080/00207160.2019.1614565
    [12] Ö. Yapman, G. M. Amiraliyev, Convergence analysis of the homogeneous second order difference method for a singularly perturbed Volterra delay-integro-differential equation, Chaos Solitons Fractals, 150 (2021), 111100. https://doi.org/10.1016/j.chaos.2021.111100 doi: 10.1016/j.chaos.2021.111100
    [13] A. Panda, J. Mohapatra, I. Amirali, A second-order post-processing technique for singularly perturbed Volterra integro-differential equations, Mediterr. J. Math., 18 (2021), 231. https://doi.org/10.1007/s00009-021-01873-8 doi: 10.1007/s00009-021-01873-8
    [14] G. Long, L. B. Liu, Z. Huang, Richardson extrapolation method on an adaptive grid for singularly perturbed Volterra integro-differential equations, Numer. Funct. Anal. Optim., 42 (2021), 739–757. https://doi.org/10.1080/01630563.2021.1928698 doi: 10.1080/01630563.2021.1928698
    [15] S. Kumar, S. Kumar, Sumit, High-order convergent methods for singularly perturbed quasilinear problems with integral boundary conditions, Math. Methods Appl. Sci., 47 (2020), 11106–11119. https://doi.org/10.1002/mma.6854 doi: 10.1002/mma.6854
    [16] Y. Liao, X. Luo, Convergence of a discontinuous Galerkin method on Bakhvalov-type meshes for singularly perturbed Volterra integro-differential equations, East Asian J. Appl. Math., 15 (2025), 770–786. https://doi.org/10.4208/eajam.2024-075.140824 doi: 10.4208/eajam.2024-075.140824
    [17] H. L. Liao, Z. Zhang, Analysis of adaptive BDF2 scheme for diffusion equations, Math. Comput., 90 (2021), 1207–1226. https://doi.org/10.1090/mcom/3585 doi: 10.1090/mcom/3585
    [18] L. B. Liu, Y. Liao, G. Long, A novel parameter-uniform numerical method for a singularly perturbed Volterra integro-differential equation, Comput. Appl. Math., 42 (2023), 12. https://doi.org/10.1007/s40314-022-02142-4 doi: 10.1007/s40314-022-02142-4
    [19] Y. Liao, L. B. Liu, L. Ye, T. Liu, Uniform convergence analysis of the BDF2 scheme on Bakhvalov-type meshes for a singularly perturbed Volterra integro-differential equation, Appl. Math. Lett., 145 (2023), 108755. https://doi.org/10.1016/j.aml.2023.108755 doi: 10.1016/j.aml.2023.108755
    [20] J. Liu, Simple and efficient ALE methods with provable temporal accuracy up to fifth order for the Stokes equations on time varying domains, SIAM J. Numer. Anal., 51 (2023), 743–772. https://doi.org/10.1137/110825996 doi: 10.1137/110825996
    [21] C. Li, Q. Yi, A. Chen, Finite difference methods with non-uniform meshes for nonlinear fractional differential equations, J. Comput. Phys., 316 (2016), 614–631. https://doi.org/10.1016/j.jcp.2016.04.039 doi: 10.1016/j.jcp.2016.04.039
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(696) PDF downloads(46) Cited by(0)

Article outline

Figures and Tables

Figures(1)  /  Tables(2)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog