Review Special Issues

Constitutive modeling of heterogeneous materials by interpretable neural networks: A review

  • Published: 24 March 2025
  • Is it possible to interpret the modeling decisions made by a neural network trained to simulate the constitutive behavior of simple or complex materials? The problem of the interpretability of a neural network is a crucial aspect that has been studied since the first appearance of this type of modeling tool and it is certainly not specific to applications related to constitutive modeling of heterogeneous materials. All areas of application, such as computer vision, biomedicine, and speech, suffer from this fuzziness, and for this reason, neural networks are often referred to as "black-box models". The present work highlighted the efforts dedicated to this aspect in the constitutive modeling of the behavior of path independent materials, reviewing both more standard neural networks and those adopting, more or less strongly, the specific point of view of interpretability.

    Citation: Antonio Bilotta, Emilio Turco. Constitutive modeling of heterogeneous materials by interpretable neural networks: A review[J]. Networks and Heterogeneous Media, 2025, 20(1): 232-253. doi: 10.3934/nhm.2025012

    Related Papers:

  • Is it possible to interpret the modeling decisions made by a neural network trained to simulate the constitutive behavior of simple or complex materials? The problem of the interpretability of a neural network is a crucial aspect that has been studied since the first appearance of this type of modeling tool and it is certainly not specific to applications related to constitutive modeling of heterogeneous materials. All areas of application, such as computer vision, biomedicine, and speech, suffer from this fuzziness, and for this reason, neural networks are often referred to as "black-box models". The present work highlighted the efforts dedicated to this aspect in the constitutive modeling of the behavior of path independent materials, reviewing both more standard neural networks and those adopting, more or less strongly, the specific point of view of interpretability.



    加载中


    [1] J. Bonet, A. J. Gil, R. D. Wood, Nonlinear solid mechanics for finite element analysis: Statics. Cambridge University Press, 2016. https://doi.org/10.1017/CBO9781316336144
    [2] G. A. Holzapfel, Nonlinear Solid Mechanics, John Wiley & Sons Ltd, 2000.
    [3] J. K. Knowles, E. Sternberg, On the ellipticity of the equations of nonlinear elastostatics for a special material, J. Elasticity, 5 (1975), 341–361. https://doi.org/10.1007/BF00126996 doi: 10.1007/BF00126996
    [4] J. Bonet, A. J. Gil, R. Ortigosa, A computational framework for polyconvex large strain elasticity, Comput. Methods Appl. Mech. Engrg., 283 (2015), 1061–1094. https://doi.org/10.1016/j.cma.2014.10.002 doi: 10.1016/j.cma.2014.10.002
    [5] M. Itskov, Tensor algebra and tensor analysis for engineers, in Mathematical Engineering, Springer Cham, (2019). https://doi.org/10.1007/978-3-319-98806-1
    [6] F. dell'Isola, D. Steigmann, A. Della Corte, E. Barchiesi, M. Laudato, F. Di Cosmo, et al., Discrete and Continuum Models for Complex Metamaterials, Cambridge University Press, 2020. https://doi.org/10.1017/9781316104262
    [7] E. Turco, A. Misra, M. Pawlikowski, F. dell'Isola, F. Hild, Enhanced Piola-Hencky discrete models for pantographic sheets with pivots without deformation energy: Numerics and experiments, Int. J. Solids Struct., 147 (2018), 94–109. https://doi.org/10.1016/j.ijsolstr.2018.05.015 doi: 10.1016/j.ijsolstr.2018.05.015
    [8] E. Turco, Stepwise analysis of pantographic beams subjected to impulsive loads, Math. Mech. Solids, 26 (2021), 62–79. https://doi.org/10.1177/1081286520938841 doi: 10.1177/1081286520938841
    [9] F. dell'Isola, P. Seppecher, M. Spagnuolo, E. Barchiesi, F. Hild, T. Lekszycki, et al., Advances in pantographic structures: Design, manufacturing, models, experiments and image analyses, Continuum Mech. Thermodyn., 31 (2019), 1231–1282. https://doi.org/10.1007/s00161-019-00806-x doi: 10.1007/s00161-019-00806-x
    [10] F. dell'Isola, P. Seppecher, J. J. Alibert, T. Lekszycki, R. Grygoruk, M. Pawlikowski, et al., Pantographic metamaterials: An example of mathematically driven design and of its technological challenges, Continuum Mech. Thermodyn., 31 (2019), 851–884. https://doi.org/10.1007/s00161-018-0689-8 doi: 10.1007/s00161-018-0689-8
    [11] E. Turco, E. Barchiesi, A. Causin, F. dell'Isola, M. Solci, Kresling tube metamaterial exhibits extreme large-displacement buckling behavior, Mech. Res. Commun., 134 (2023), 1–7. https://doi.org/10.1016/j.mechrescom.2023.104202 doi: 10.1016/j.mechrescom.2023.104202
    [12] E. Turco, E. Barchiesi, A. Causin, F. dell'Isola, M. Solci, Harnessing unconventional buckling of tube origami metamaterials based on Kresling pattern, Int. J. Solids Struct., 300 (2024), 1–18. https://doi.org/10.1016/j.ijsolstr.2024.112925 doi: 10.1016/j.ijsolstr.2024.112925
    [13] G. Formica, F. Milicchio, W. Lacarbonara, Storage and damping optimization in hysteretic multilayer nanocomposites, Int. J. Multiscale Comput. Engrg., 18 (2020), 141–157. https://doi.org/10.1615/IntJMultCompEng.2020032669 doi: 10.1615/IntJMultCompEng.2020032669
    [14] W. Lacarbonara, S. K. Guruva, B. Carboni, B. Krause, A. Janke, G. Formica, et al., Unusual nonlinear switching in branched carbon nanotube nanocomposites, Sci. Rep., 13 (2023), 5185. https://doi.org/10.1038/s41598-023-32331-y doi: 10.1038/s41598-023-32331-y
    [15] M. Kadic, G. W. Milton, M. van Hecke, M. Wegener, 3D metamaterials, Nat. Rev. Phys., 1 (2019), 198–210. https://doi.org/10.1038/s42254-018-0018-y doi: 10.1038/s42254-018-0018-y
    [16] T. Kirchdoerfer, M. Ortiz, Data-driven computational mechanics, Comput. Methods Appl. Mech. Engrg., 304 (2016), 81–101. https://doi.org/10.1016/j.cma.2016.02.001 doi: 10.1016/j.cma.2016.02.001
    [17] I. Goodfellow, Y. Bengio, A. Courville, Deep Learning, MIT Press, 2016.
    [18] Y. LeCun, L. Bottou, Y. Bengio, P. Haffner, Gradient-based learning applied to document recognition, Proc. IEEE, 86 (1998), 2278–2324. https://doi.org/10.1109/5.726791 doi: 10.1109/5.726791
    [19] G. E. Hinton, S. Osindero, Y. Teh, A fast learning algorithm for deep belief nets. Neural Comput., 18 (2006), 1527–1554. https://doi.org/10.1162/neco.2006.18.7.1527 doi: 10.1162/neco.2006.18.7.1527
    [20] W. S. McCulloch, W. Pitts, A logical calculus of ideas immanent in nervous activity, Bull. Math. Biophys., 5 (1943), 115–133. https://doi.org/10.1007/BF02478259 doi: 10.1007/BF02478259
    [21] O. Russakovsky, J. Deng, H. Su, J. Krause, S. Satheesh, S. Ma, et al., Imagenet large scale visual recognition challenge, Int. J. Comput. Vision, 115 (2015), 211–252. https://doi.org/10.1007/s11263-015-0816-y doi: 10.1007/s11263-015-0816-y
    [22] K. Hornik, Approximation capabilities of multilayer feedforward networks, Neural Netw., 4 (1991), 251–257. https://doi.org/10.1016/0893-6080(91)90009-T doi: 10.1016/0893-6080(91)90009-T
    [23] W. Pedrycz, S. M. Chen, Deep Learning: Algorithms and Applications, Springer Cham, 2020. https://doi.org/10.1007/978-3-030-31760-7
    [24] A. Bilotta, M. Morassi, E. Turco, Damage identification for steel-concrete composite beams through convolutional neural networks, J. Vib. Control, 30 (2024), 876–889. https://doi.org/10.1177/10775463231152926 doi: 10.1177/10775463231152926
    [25] A. Bilotta, A. Causin, M. Solci, E. Turco, Automatic description of rubble masonry geometries by machine learning based approach, in Mathematical Modeling in Cultural Heritage, (G. Bretti, C. Cavaterra, M. Solci, M. Spagnuolo (eds)), Springer Singapore, 55 (2023), 51–67. https://doi.org/10.1007/978-981-99-3679-3_4
    [26] G. Kissas, S. Mishra, E. Chatzi, L. De Lorenzis, The language of hyperelastic materials, Comput. Methods Appl. Mech. Engrg., 428 (2024), 117053. https://doi.org/10.1016/j.cma.2024.117053 doi: 10.1016/j.cma.2024.117053
    [27] Q. Kang, K. Q. Li, J. L. Fu, Y. Liu, Hybrid lbm and machine learning algorithms for permeability prediction of porous media: A comparative study, Comput. Geotech., 168 (2024), 106163. https://doi.org/10.1016/j.compgeo.2024.106163 doi: 10.1016/j.compgeo.2024.106163
    [28] K. Q. Li, Z. Y. Yin, N. Zhang, Y. Liu, A data-driven method to model stress-strain behaviour of frozen soil considering uncertainty, Cold Reg. Sci. Technol., 213 (2023), 103906. https://doi.org/10.1016/j.coldregions.2023.103906 doi: 10.1016/j.coldregions.2023.103906
    [29] S. Im, J. Lee, M. Cho, Surrogate modeling of elasto-plastic problems via long short-term memory neural networks and proper orthogonal decomposition, Comput. Methods Appl. Mech. Engrg., 385 (2021), 114030. https://doi.org/10.1016/j.cma.2021.114030 doi: 10.1016/j.cma.2021.114030
    [30] K. Li, R. Horton, H. He, Application of machine learning algorithms to model soil thermal diffusivity, Int. Commun. Heat Mass Transfer, 149 (2023), 107092. https://doi.org/10.1016/j.icheatmasstransfer.2023.107092 doi: 10.1016/j.icheatmasstransfer.2023.107092
    [31] F. L. Fan, J. Xiong, M. Li, G. Wang, On interpretability of artificial neural networks: A survey, IEEE Trans. Radiat. Plasma Med. Sci., 5 (2021), 741–760. https://doi.org/10.1109/trpms.2021.3066428 doi: 10.1109/trpms.2021.3066428
    [32] M. H. Beale, M. T. Hagan, H. B. Demuth, Deep Learning toolbox user's guide, The MathWorks, Inc, 2021.
    [33] A. Paszke, S. Gross, F. Massa, A. Lerer, J. Bradbury, G. Chanan, et al., Pytorch: An imperative style, high-performance deep learning library, in Proceedings of the 33rd International Conference on Neural Information Processing Systems, Curran Associates Inc., Red Hook, NY, USA, 2019, 8026–8037.
    [34] J. Yvonnet, D. Gonzalez, Q. C. He, Numerically explicit potentials for the homogenization of nonlinear elastic heterogeneous materials, Comput. Methods Appl. Mech. Engrg., 198 (2009), 2723–2737. https://doi.org/10.1016/j.cma.2009.03.017 doi: 10.1016/j.cma.2009.03.017
    [35] M. A. Bessa, R. Bostanabad, Z. Liu, A. Hu, D. W. Apley, C. Brinson, et al., A framework for data-driven analysis of materials under uncertainty: Countering the curse of dimensionality, Comput. Methods Appl. Mech. Engrg., 320 (2017), 633–667. https://doi.org/10.1016/j.cma.2017.03.037 doi: 10.1016/j.cma.2017.03.037
    [36] R. Ibañez, D. Borzacchiello, J. V. Aguado, E. Abisset-Chavanne, E. Cueto, P. Ladeveze, et al., Data-driven non-linear elasticity: Constitutive manifold construction and problem discretization, Comput. Mech., 60 (2017), 813–826. https://doi.org/10.1007/s00466-017-1440-1 doi: 10.1007/s00466-017-1440-1
    [37] J. Ghaboussi, J. H. Garrett, X. Wu, Knowledge‐based modeling of material behavior with neural networks, J. Eng. Mech., 117 (1991), 132–153. https://doi.org/10.1061/(ASCE)0733-9399(1991)117:1(132) doi: 10.1061/(ASCE)0733-9399(1991)117:1(132)
    [38] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural Comput., 9 (1997), 1735–1780. https://doi.org/10.1162/neco.1997.9.8.1735 doi: 10.1162/neco.1997.9.8.1735
    [39] Y. M. A. Hashash, S. Jung, J. Ghaboussi, Numerical implementation of a neural network based material model in finite element analysis, Int. J. Numer. Meth. Engrg., 59 (2004), 989–1005. https://doi.org/10.1002/nme.905 doi: 10.1002/nme.905
    [40] J. Ghaboussi, D. E. Sidarta, New nested adaptive neural networks (nann) for constitutive modeling, Comput. Geotech., 22 (1998), 29–52. https://doi.org/10.1016/S0266-352X(97)00034-7 doi: 10.1016/S0266-352X(97)00034-7
    [41] Y. Shen, K. Chandrashekhara, W. F. Breig, L. R. Oliver, Neural network based constitutive model for rubber material, Rubber Chem. Technol., 77 (2004), 257–277. https://doi.org/10.5254/1.3547822 doi: 10.5254/1.3547822
    [42] K. Linka, M. Hillgärtner, K. P. Abdolazizi, R. C. Aydin, M. Itskov, C. J. Cyron, Constitutive artificial neural networks: A fast and general approach to predictive data-driven constitutive modeling by deep learning, J. Comput. Phys., 429 (2021), 110010. https://doi.org/10.1016/j.jcp.2020.110010 doi: 10.1016/j.jcp.2020.110010
    [43] B. A. Le, J. Yvonnet, Q. C. He, Computational homogenization of nonlinear elastic materials using neural networks, Int. J. Numer. Meth. Engrg., 104 (2015), 1061–1084. https://doi.org/10.1002/nme.4953 doi: 10.1002/nme.4953
    [44] S. Kim, H. Shin, Data-driven multiscale finite-element method using deep neural network combined with proper orthogonal decomposition, Engrg. Comput., 40 (2023), 661–675. https://doi.org/10.1007/s00366-023-01813-y doi: 10.1007/s00366-023-01813-y
    [45] S. Kim, H. Shin, Deep learning framework for multiscale finite element analysis based on data-driven mechanics and data augmentation, Comput. Methods Appl. Mech. Engrg., 414 (2023), 116131. https://doi.org/10.1016/j.cma.2023.116131 doi: 10.1016/j.cma.2023.116131
    [46] I. Chung, S. Im, M. Cho, A neural network constitutive model for hyperelasticity based on molecular dynamics simulations, Int. J. Numer. Meth. Engrg., 122 (2021), 5–24. https://doi.org/10.1002/nme.6459 doi: 10.1002/nme.6459
    [47] G. E. Karniadakis, I. G. Kevrekidis, L. Lu, P. Perdikaris, S. Wang, L. Yang, Physics-informed machine learning, Nat. Rev. Phys., 3 (2021), 422–440. https://doi.org/10.1038/s42254-021-00314-5 doi: 10.1038/s42254-021-00314-5
    [48] K. A. Kalina, L. Linden, J. Brummund, P. Metsc, M. Kästner, Automated constitutive modeling of isotropic hyperelasticity based on artificial neural networks, Comput. Mech., 69 (2022), 213–232. https://doi.org/10.1007/s00466-021-02090-6 doi: 10.1007/s00466-021-02090-6
    [49] K. A. Kalina, J. Brummund, W. Sun, M. Kästner, Neural networks meet anisotropic hyperelasticity: A framework based on generalized structure tensors and isotropic tensor functions, preprint, arXiv: 2410.03378, 2024. https://doi.org/10.48550/arXiv.2410.03378
    [50] F. Masi, I. Stefanou, P. Vannucci, V. Maffi-Berthier, Thermodynamics-based artificial neural networks for constitutive modeling, J. Mech. Phys. Solids, 147 (2021), 104277. https://doi.org/10.1016/j.jmps.2020.104277 doi: 10.1016/j.jmps.2020.104277
    [51] F. As'ad, P. Avery, C. Farhat, A mechanics-informed artificial neural network approach in data-driven constitutive modeling, Int. J. Numer. Meth. Engrg., 123 (2022), 2738–2759. https://doi.org/10.1002/nme.6957 doi: 10.1002/nme.6957
    [52] D. K. Klein, R. Ortigosa, J. Martínez-Frutos, O. Weeger, Finite electro-elasticity with physics-augmented neural networks, Comput. Methods Appl. Mech. Engrg., 400 (2022), 115501. https://doi.org/10.1016/j.cma.2022.115501 doi: 10.1016/j.cma.2022.115501
    [53] D. K. Klein, M. Fernández, R. J. Martin, P. Neff, O. Weeger, Polyconvex anisotropic hyperelasticity with neural networks, J. Mech. Phys. Solids, 159 (2022), 104703. https://doi.org/10.1016/j.jmps.2021.104703 doi: 10.1016/j.jmps.2021.104703
    [54] B. Amos, L. Xu, J. Zico Kolter, Input convex neural networks, Proc. Machine Learning Res., 70 (2017), 146–155. Available from: https://proceedings.mlr.press/v70/amos17b.html.
    [55] K. Xu, D. Z. Huang, E. Darve, Learning constitutive relations using symmetric positive definite neural networks, J. Comput. Phys., 428 (2021), 110072. https://doi.org/10.1016/j.jcp.2020.110072 doi: 10.1016/j.jcp.2020.110072
    [56] K. Linka, E. Kuhl, A new family of constitutive artificial neural networks towards automated model discovery, Comput. Methods Appl. Mech. Engrg., 403 (2023), 115731. https://doi.org/10.1016/j.cma.2022.115731 doi: 10.1016/j.cma.2022.115731
    [57] P. Thakolkaran, A. Joshi, Y. Zheng, M. Flaschel, L. De Lorenzis, S. Kumar, NN-EUCLID: Deep-learning hyperelasticity without stress data, J. Mech. Phys. Solids, 169 (2022), 105076. https://doi.org/10.1016/j.jmps.2022.105076 doi: 10.1016/j.jmps.2022.105076
    [58] M. Flaschel, S. Kumar, L. De Lorenzis, Unsupervised discovery of interpretable hyperelastic constitutive laws, Comput. Methods Appl. Mech. Engrg., 381 (2021), 113852. https://doi.org/10.1016/j.cma.2021.113852 doi: 10.1016/j.cma.2021.113852
    [59] M. Flaschel, H. Yu, N. Reiter, J. Hinrichsen, S. Budday, P. Steinmann, et al., Automated discovery of interpretable hyperelastic material models for human brain tissue with euclid, J. Mech. Phys. Solids, 180 (2023), 105404. https://doi.org/10.1016/j.jmps.2023.105404 doi: 10.1016/j.jmps.2023.105404
    [60] J. N. Fuhg, N. Bouklas, R. E. Jones, Learning hyperelastic anisotropy from data via a tensor basis neural network, J. Mech. Phys. Solids, 168 (2022), 105022. https://doi.org/10.1016/j.jmps.2022.105022 doi: 10.1016/j.jmps.2022.105022
    [61] J. Ling, R. Jones, J. Templeton, Machine learning strategies for systems with invariance properties, J. Comput. Phys., 318 (2016), 22–35. https://doi.org/10.1016/j.jcp.2016.05.003 doi: 10.1016/j.jcp.2016.05.003
    [62] J. N. Fuhg, A. Jadoon, O. Weeger, D. T. Seidl, R. E. Jones, Polyconvex neural network models of thermoelasticity, J. Mech. Phys. Solids, 192 (2024), 105837. https://doi.org/10.1016/j.jmps.2024.105837 doi: 10.1016/j.jmps.2024.105837
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1259) PDF downloads(42) Cited by(0)

Article outline

Figures and Tables

Figures(2)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog