Research article Special Issues

Solutions of a class of higher order variable coefficient homogeneous differential equations

  • Published: 27 February 2025
  • Recently, the variable coefficient homogeneous differential equations (VCHDE) have been widely applied to real-world problems, such as wave propagation and material science. However the exploration and research on higher-order VCHDE is relatively lagging. Given this, this work focuses on the solutions of fourth-order and nth-order VCHDE with polynomial coefficients. By means of the sufficient conditions for the existence of solutions to differential equations, a connection is established between the rank of the variable coefficient matrix and the existence of polynomial particular solutions. The main results show that: (1) the necessary and sufficient conditions for the existence of polynomial particular solutions of fourth-order VCHDE are derived; (2) the necessary and sufficient conditions for the existence of only one polynomial particular solution, or the existence of two, three, or four linearly independent polynomial particular solutions of fourth-order VCHDE are proved; (3) the necessary and sufficient conditions for the existence of only one polynomial particular solution, or the existence of two, three, or four linearly independent polynomial particular solutions of nth-order VCHDE are proved. These results not only extend the class of solvable differential equations, but also provide a new way of thinking about the existence of solutions to VCHDE.

    Citation: Peng E, Tingting Xu, Linhua Deng, Yulin Shan, Miao Wan, Weihong Zhou. Solutions of a class of higher order variable coefficient homogeneous differential equations[J]. Networks and Heterogeneous Media, 2025, 20(1): 213-231. doi: 10.3934/nhm.2025011

    Related Papers:

  • Recently, the variable coefficient homogeneous differential equations (VCHDE) have been widely applied to real-world problems, such as wave propagation and material science. However the exploration and research on higher-order VCHDE is relatively lagging. Given this, this work focuses on the solutions of fourth-order and nth-order VCHDE with polynomial coefficients. By means of the sufficient conditions for the existence of solutions to differential equations, a connection is established between the rank of the variable coefficient matrix and the existence of polynomial particular solutions. The main results show that: (1) the necessary and sufficient conditions for the existence of polynomial particular solutions of fourth-order VCHDE are derived; (2) the necessary and sufficient conditions for the existence of only one polynomial particular solution, or the existence of two, three, or four linearly independent polynomial particular solutions of fourth-order VCHDE are proved; (3) the necessary and sufficient conditions for the existence of only one polynomial particular solution, or the existence of two, three, or four linearly independent polynomial particular solutions of nth-order VCHDE are proved. These results not only extend the class of solvable differential equations, but also provide a new way of thinking about the existence of solutions to VCHDE.



    加载中


    [1] P. Y. Wang, F. Feng, Design of high-resolution imaging optical system based on differential equation method, Laser J., 41 (2020), 184–187. https://doi.org/10.14016/j.cnki.jgzz.2020.06.184 doi: 10.14016/j.cnki.jgzz.2020.06.184
    [2] J. Zhao, R. Y. Ma, Existence and uniqueness of solutions for a class of fourth-order differential equation boundary value problems, Pure Math. Appl. Math., 37 (2021), 81–90. https://doi.org/10.3969/j.issn.1008-5513.2021.01.008 doi: 10.3969/j.issn.1008-5513.2021.01.008
    [3] F. R. Zhang, L. L. Wu, J. Yang, W. R. Lv, Onentire solutions of certain type of nonlinear differential equations, AIMS Math., 5 (2020), 6124–6134. https://doi.org/10.3934/math.2020393 doi: 10.3934/math.2020393
    [4] J. Yang, G. P. Chen, Existence of solutions for impulsive hybrid boundary value problems to fractional differential systems, AIMS Math., 6 (2021), 8895–8911 https://doi.org/10.3934/math.2021516 doi: 10.3934/math.2021516
    [5] R. Alyusof, M. B. Jeelani, Some families of differential equations associated with the Gould-Hopper-Frobenius-Genocchi polynomials, AIMS Math., 7 (2021), 4851–4860. https://doi.org/10.3934/math.2022270 doi: 10.3934/math.2022270
    [6] Y. B. Tian, S. Chen, Prime decomposition of quadratic matrix polynomials, AIMS Math., 6 (2021), 9911–9918. https://doi.org/10.3934/math.2021576 doi: 10.3934/math.2021576
    [7] P. Hasil, M. Vesel´, Conditionally oscillatory linear differential equations with coeffcients containing powers of natural logarithm, AIMS Math., 7 (2022), 10681–10699. https://doi.org/10.3934/math.2022596 doi: 10.3934/math.2022596
    [8] O. Bazighifan, Nonlinear differential equations of fourth-order: Qualitative properties of the solutions, AIMS Math., 5 (2020), 6436–6447. https://doi.org/10.3934/math.2020414 doi: 10.3934/math.2020414
    [9] P. S. Zheng, J. Luo, S. C. Li, X. X. Dong, Elastic transformation method for solving ordinary differential equations with variable coeffcients, AIMS Math., 7 (2021), 1307–1320. https://doi.org/10.3934/math.2022077 doi: 10.3934/math.2022077
    [10] J. P. O. Soto, J. E. C. Lope, M. P. F. Ona, Uniformly analytic solutions to a class of singular partial differential equations, AIMS Math., 7 (2022), 10400–10421. https://doi.org/10.3934/math.2022580 doi: 10.3934/math.2022580
    [11] L. Fan, S. C. Li, D. F. Shao, X. Q. Fu, P. Liu, Q. M. Gui, Elastic transformation method for solving the initial value problem of variable coeffcient nonlinear ordinary differential equations, AIMS Math., 7 (2022), 11972–11991. https://doi.org/ 10.3934/math.2022667 doi: 10.3934/math.2022667
    [12] M. M. Fan, J. W. Sun, Positive solutions for the periodic-parabolic problem with large diffusion, AIMS Math., 19 (2024), 1116–1132. https://doi.org/ 10.3934/nhm.2024049 doi: 10.3934/nhm.2024049
    [13] K. Q. Zhang, Existence and uniqueness of positive solution of a nonlinear differential equation with higher order Erdelyi-Kober operators, AIMS Math., 9 (2024), 1358–1372. https://doi.org/ 10.3934/math.2024067 doi: 10.3934/math.2024067
    [14] A. B. Albidah, I. M. Alsulami, E. R. El-Zahar, A. Ebaid, Advances in mathematical analysis for solving inhomogeneous scalar differential equation, AIMS Math., 9 (2024), 23331–23343. https://doi.org/ 10.3934/math.20241134 doi: 10.3934/math.20241134
    [15] M. Al-Mazmumy, M. A. Alyami, M. Alsulami, A. S. Alsulami, S. S. Redhwan, An adomian decomposition method with some orthogonal polynomials to solve nonhomogeneous fractional differential equations (FDEs), AIMS Math., 9 (2024), 30548–30571. https://doi.org/ 10.3934/math.20241475 doi: 10.3934/math.20241475
    [16] B. Bendouma, F. Z. Ladrani, K. Bouhali, A. Hammoudi, L. Alkhalifa, Solution-tube and existence results for fourth-order differential equations system, AIMS Math., 9 (2024), 32831–32848. https://doi.org/ 10.3934/math.20241571 doi: 10.3934/math.20241571
    [17] Z. M. Wang, Z. Liu, Z. K. Han, X. Y. Guo, Q. B. Wang, The inverse uncertainty distribution of the solutions to a class of higher-order uncertain differential equations, AIMS Math., 9 (2024), 33023–33061. https://doi.org/ 10.3934/math.20241579 doi: 10.3934/math.20241579
    [18] M. AlKandari, Nonlinear differential equations with neutral term: Asymptotic behavior of solutions, AIMS Math., 19 (2024), 1116–1132. https://doi.org/ 10.3934/nhm.2024049 doi: 10.3934/nhm.2024049
    [19] J. Turo, Study of first order stochastic partial differential equations using integral contractors, Appl. Anal., 70 (2000), 281–291. https://doi.org/10.1080/00036819808840691 doi: 10.1080/00036819808840691
    [20] Q. F. Zhang, L. L. Liu, C. J. Zhang, Compact scheme for fractional diffusion-wave equation with spatial variable coefficient and delays, Appl. Anal., 101 (2020), 1911–1932. https://doi.org/10.1080/00036811.2020.1789600 doi: 10.1080/00036811.2020.1789600
    [21] J. Borrego-Morell, A. S. Ranga, Orthogonal polynomials on the unit circle satisfying a second-order differential equation with varying polynomial coefficients, Integr. Transforms Spec. Funct., 28 (2016), 39–55. https://doi.org/10.1080/10652469.2016.1249866 doi: 10.1080/10652469.2016.1249866
    [22] R. D. Akhmetkaliyeva, L. E. Persson, K. N. Ospanov, P. Wall, Some new results concerning a class of third-order differential equations, Appl. Anal., 94 (2014), 419–434. https://doi.org/10.1080/00036811.2014.898375 doi: 10.1080/00036811.2014.898375
    [23] S. Padhi, S. Pati, Multiple periodic solutions for system of first-order differential equation, Appl. Anal., 88 (2009), 1005–1014. https://doi.org/10.1080/00036810903114775 doi: 10.1080/00036810903114775
    [24] A. S. Mohamed, Existence and uniqueness of the solution, separation for certain second order elliptic differential equation, Appl. Anal., 76 (2000), 179–184. https://doi.org/10.1080/00036810008840875 doi: 10.1080/00036810008840875
    [25] A. Q. M. Khaliq, E. H. Twizell, A family of second order methods for variable coefficient fourth order parabolic partial differential equations, Int. J. Comput. Math., 23 (1987), 63–76. https://doi.org/10.1080/00207168708803608 doi: 10.1080/00207168708803608
    [26] A. Mohammed, A. Zeleke, Extending the constant coefficient solution technique to variable coefficient ordinary differential equations, PRIMUS, 25 (2015), 485–494. https://doi.org/10.1080/10511970.2015.1025160 doi: 10.1080/10511970.2015.1025160
    [27] M. A. M. Lynch, H. Y. Gao, Setting up second-order variable coefficient differential equation problems with known general solution, Int. J. Math. Educ. Sci. Technol., 31 (2000), 727–732. https://doi.org/10.1080/002073900434396 doi: 10.1080/002073900434396
    [28] R. Camporesi, Linear ordinary differential equations with constant coefficients. Revisiting the impulsive response method using factorization, Int. J. Math. Educ. Sci. Technol., 42 (2011), 497–514. https://doi.org/10.1080/0020739X.2010.543162 doi: 10.1080/0020739X.2010.543162
    [29] Q. J. Jia, A solution of higher-order variable coefficient non-homogeneous linear differential equation, Pure Math. Appl. Math., 30 (2014), 234–239. https://doi.org/10.3969/j.issn.1005-8036.2012.02.007 doi: 10.3969/j.issn.1005-8036.2012.02.007
    [30] Y. Z. Hu, S. M. Li, Y. Luo, A study on the solution method of second-order polynomial coefficient linear differential equations, Univ. Math., 31 (2015), 27–33. https://doi.org/10.3969/j.issn.1672-1454.2015.03.006 doi: 10.3969/j.issn.1672-1454.2015.03.006
    [31] S. M. Li, Y. Jiang, Solution method for third-order polynomial coefficient homogeneous linear differential equations, Univ. Math., 39 (2023), 69–75. https://doi.org/10.3969/j.issn.1672-1454.2023.01.003 doi: 10.3969/j.issn.1672-1454.2023.01.003
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1448) PDF downloads(67) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog