Citation: L’ubomír Baňas, Amy Novick-Cohen, Robert Nürnberg. The degenerate and non-degenerate deep quench obstacle problem: Anumerical comparison[J]. Networks and Heterogeneous Media, 2013, 8(1): 37-64. doi: 10.3934/nhm.2013.8.37
| [1] |
N. D. Alikakos, P. W. Bates and X. F. Chen, Convergence of the Cahn-Hilliard equation to the Hele-Shaw model, Arch. Rational Mech. Anal., 128 (1994), 165-205. doi: 10.1007/BF00375025
|
| [2] |
N. D. Alikakos, G. Fusco and G. Karali, Motion of bubbles towards the boundary for the Cahn-Hilliard equation, European J. Appl. Math., 15 (2004), 103-124. doi: 10.1017/S0956792503005242
|
| [3] |
C. H. Arns, M. A. Knackstedt, W. V. Pinczewski and K. R. Mecke, Euler-Poincaré characteristics of classes of disordered media, Phys. Rev. E, 63 (2001), 031112. doi: 10.1103/PhysRevE.63.031112
|
| [4] |
L'. Baňas and R. Nürnberg, Finite element approximation of a three dimensional phase field model for void electromigration, J. Sci. Comp., 37 (2008), 202-232. doi: 10.1007/s10915-008-9203-y
|
| [5] |
L'. Baňas and R. Nürnberg, A multigrid method for the Cahn-Hilliard equation with obstacle potential, Appl. Math. Comput., 213 (2009), 290-303. doi: 10.1016/j.amc.2009.03.036
|
| [6] |
L'. Baňas and R. Nürnberg, Phase field computations for surface diffusion and void electromigration in $\mathbbR^3$, Comput. Vis. Sci., 12 (2009), 319-327. doi: 10.1007/s00791-008-0114-0
|
| [7] |
J. W. Barrett and J. F. Blowey, An error bound for the finite element approximation of the Cahn-Hilliard equation with logarithmic free energy, Numer. Math., 72 (1995), 1-20. doi: 10.1007/s002110050157
|
| [8] |
J. W. Barrett, J. F. Blowey and H. Garcke, Finite element approximation of the Cahn-Hilliard equation with degenerate mobility, SIAM J. Numer. Anal., 37 (1999), 286-318. doi: 10.1137/S0036142997331669
|
| [9] |
J. W. Barrett, R. Nürnberg and V. Styles, Finite element approximation of a phase field model for void electromigration, SIAM J. Numer. Anal., 42 (2004), 738-772. doi: 10.1137/S0036142902413421
|
| [10] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part I: Mathematical analysis, European J. Appl. Math., 2 (1991), 233-280. doi: 10.1017/S095679250000053X
|
| [11] |
J. F. Blowey and C. M. Elliott, The Cahn-Hilliard gradient theory for phase separation with non-smooth free energy. Part II: Numerical analysis, European J. Appl. Math., 3 (1992), 147-179. doi: 10.1017/S0956792500000759
|
| [12] |
J. W. Cahn, On spinodal decomposition, Acta Metall., 9 (1961), 795-801. doi: 10.1016/0001-6160(61)90182-1
|
| [13] | J. W. Cahn, C. M. Elliott and A. Novick-Cohen, The Cahn-Hilliard equation with a concentration dependent mobility: Motion by minus the Laplacian of the mean curvature, European J. Appl. Math., 7 (1996), 287-301. |
| [14] | J. W. Cahn and J. E. Hilliard, Free energy of a non-uniform system. I. Interfacial free energy, J. Chem. Phys., 28 (1958), 258-267. |
| [15] | X. Chen, Global asymptotic limit of solutions of the Cahn-Hilliard equation, J. Differential Geom., 44 (1996), 262-311. |
| [16] |
S. Conti, B. Niethammer and F. Otto, Coarsening rates in off-critical mixtures, SIAM J. Math. Anal., 37 (2006), 1732-1741. doi: 10.1137/040620059
|
| [17] |
M. I. M. Copetti and C. M. Elliott, Numerical analysis of the Cahn-Hilliard equation with a logarithmic free energy, Numer. Math., 63 (1992), 39-65. doi: 10.1007/BF01385847
|
| [18] |
R. Dal Passo, L. Giacomelli and A. Novick-Cohen, Existence for an Allen-Cahn/Cahn-Hilliard system with degenerate mobility, Interfaces Free Bound., 1 (1999), 199-226. doi: 10.4171/IFB/9
|
| [19] |
C. M. Elliott and D. A. French, Numerical studies of the Cahn-Hilliard equation for phase separation, IMA J. Appl. Math., 38 (1987), 97-128. doi: 10.1093/imamat/38.2.97
|
| [20] |
C. M. Elliott and H. Garcke, On the Cahn-Hilliard equation with degenerate mobility, SIAM J. Math. Anal., 27 (1996), 404-423. doi: 10.1137/S0036141094267662
|
| [21] | IMA, Univ. of Minnesota, Preprint 887. |
| [22] |
C. M. Elliott and S. Zheng, On the Cahn-Hilliard equation, Arch. Rational Mech. Anal., 96 (1986), 339-357. doi: 10.1007/BF00251803
|
| [23] |
P. Fratzl and J. L. Lebowitz, Universality of scaled structure functions in quenched systems undergoing phase separation, Acta Metall., 37 (1989), 3245-3248. doi: 10.1016/0001-6160(89)90196-X
|
| [24] |
P. Fratzl, J. L. Lebowitz, O. Penrose and J. Amar, Scaling functions, self-similarity, and the morphology of phase-separating systems, Phys. Rev. B, 44 (1991), 4794-4811. doi: 10.1103/PhysRevB.44.4794
|
| [25] |
M. Gameiro, K. Mischaikow and T. Wanner, Evolution of pattern complexity in the Cahn-Hilliard theory of phase separation, Acta Mater., 53 (2005), 693-704. doi: 10.1016/j.actamat.2004.10.022
|
| [26] |
H. Garcke, B. Niethammer, M. Rumpf and U. Weikard, Transient coarsening behaviour in the Cahn-Hilliard model, Acta Mater., 51 (2003), 2823-2830. doi: 10.1016/S1359-6454(03)00087-9
|
| [27] | J. D. Gunton, M. San Miguel and P. S. Sahni, The dynamics of first-order phase transitions, in "Phase Transitions and Critical Phenomena," 8, Academic Press, London (1983), 267-482. |
| [28] |
R. Hilfer, Review on scale dependent characterization of the microstructure of porous media, Transp. Porous Media, 46 (2002), 373-390. doi: 10.1023/A:1015014302642
|
| [29] | in "Phase Transformations" (ed. H. I. Aaronson), American Society for Metals, Metals Park, Ohio, 497-560. |
| [30] |
D. J. Horntrop, Concentration effects in mesoscopic simulation of coarsening, Math. Comput. Simulation, 80 (2010), 1082-1088. doi: 10.1016/j.matcom.2009.10.002
|
| [31] |
J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith and C. M. Elliott, Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-II. Development of domain size and composition amplitude, Acta Metall. Mater., 43 (1995), 3403-3413. doi: 10.1016/0956-7151(95)00041-S
|
| [32] |
J. M. Hyde, M. K. Miller, M. G. Hetherington, A. Cerezo, G. D. W. Smith and C. M. Elliott, Spinodal decomposition in Fe-Cr alloys: Experimental study at the atomic level and comparison with computer models-III. Development of morphology, Acta Metall. Mater., 43 (1995), 3415-3426. doi: 10.1016/0956-7151(95)00042-T
|
| [33] |
T. Izumitani, M. Takenaka and T. Hashimoto, Slow spinodal decomposition in binary liquid mixtures of polymers. III. Scaling analyses of later-stage unmixing, J. Chem. Phys., 92 (1990), 3213-3221. doi: 10.1063/1.457871
|
| [34] | T. Kaczynski, K. Mischaikow and M. Mrozek, "Computational Homology," 157 of Applied Mathematical Sciences, Springer-Verlag, New York, 2004. |
| [35] | Available from http://chomp.rutgers.edu. |
| [36] |
R. V. Kohn and F. Otto, Upper bounds on coarsening rates, Comm. Math. Phys., 229 (2002), 375-395. doi: 10.1007/s00220-002-0693-4
|
| [37] | T. Y. Kong and A. Rosenfeld, Digital topology: Introduction and survey, Comput. Vision Graph. Image Process., 48 (1989), 357-393. |
| [38] | P. Leßle, M. Dong and S. Schmauder, Self-consistent matricity model to simulate the mechanical behaviour of interpenetrating microstructures, Comput. Mater. Sci., 15 (1999), 455-465. |
| [39] | P. Leßle, M. Dong, E. Soppa and S. Schmauder, Simulation of interpenetrating microstructures by self consistent matricity models, Scripta Mater., 38 (1998), 1327-1332. |
| [40] |
S. Maier-Paape and T. Wanner, Spinodal decomposition for the Cahn-Hilliard equation in higher dimensions: Nonlinear dynamics, Arch. Ration. Mech. Anal., 151 (2000), 187-219. doi: 10.1007/s002050050196
|
| [41] |
A. Novick-Cohen, Upper bounds for coarsening for the deep quench obstacle problem, J. Stat. Phys., 141 (2010), 142-157. doi: 10.1007/s10955-010-0040-7
|
| [42] | A. Novick-Cohen, "The Cahn-Hilliard Equation: From Backwards Diffusion to Surface Diffusion," Cambridge Univ. Press, Cambridge, 2013. (in preparation). |
| [43] |
A. Novick-Cohen and A. Shishkov, Upper bounds for coarsening for the degenerate Cahn-Hilliard equation, Discrete Contin. Dyn. Syst., 25 (2009), 251-272. doi: 10.3934/dcds.2009.25.251
|
| [44] |
Y. Oono and S. Puri, Study of phase-separation dynamics by use of cell dynamical systems. I. Modeling, Phys. Rev. A, 38 (1988), 434-453. doi: 10.1103/PhysRevA.38.434
|
| [45] |
R. L. Pego, Front migration in the nonlinear Cahn-Hilliard equation, Proc. Roy. Soc. London Ser. A, 422 (1989), 261-278. doi: 10.1098/rspa.1989.0027
|
| [46] |
E. Sander and T. Wanner, Unexpectedly linear behavior for the Cahn-Hilliard equation, SIAM J. Appl. Math., 60 (2000), 2182-2202. doi: 10.1137/S0036139999352225
|
| [47] | A. Schmidt and K. G. Siebert, "Design of Adaptive Finite Element Software: The Finite Element Toolbox ALBERTA," 42 of Lecture Notes in Computational Science and Engineering, Springer-Verlag, Berlin, 2005. |
| [48] |
P. Sternberg, The effect of a singular perturbation on nonconvex variational problems, Arch. Rational Mech. Anal., 101 (1988), 209-260. doi: 10.1007/BF00253122
|
| [49] | T. Sullivan and P. Palffy-Muhoray, The effects of pattern morphology on late time scaling in the Cahn-Hilliard model, Abstract, American Physical Society, APS March Meeting, (2007). |
| [50] |
R. Toral, A. Chakrabarti and J. D. Gunton, Large scale simulations of the two-dimensional Cahn-Hilliard model, Physica A, 213 (1995), 41-49. doi: 10.1016/0378-4371(94)00146-K
|
| [51] |
T. Ujihara and K. Osamura, Kinetic analysis of spinodal decomposition process in Fe-Cr alloys by small angle neutron scattering, Acta Mater., 48 (2000), 1629-1637. doi: 10.1016/S1359-6454(99)00441-3
|