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ABSTRACT. The deep quench obstacle problem

(DQ) % =V - M(u)Vw,
w~+e2Au+u € T (u),

for (z,t) € 2 x (0,T), models phase separation at low temperatures. In (DQ),
e > 0, 9r'(-) is the sub-differential of the indicator function Ij_; 1)(-), and
u(x, t) should satisfy v - Vu = 0 on the “free boundary” where u = +1. We
shall assume that v is sufficiently smooth to make these notions well-defined.
The problem (DQ) corresponds to the zero temperature “deep quench” limit of
the Cahn-Hilliard equation. We focus here on a degenerate variant of (DQ) in
which M (u) = 1—u?, as well as on a constant mobility non-degenerate variant
in which M(u) = 1. Although historically more emphasis has been placed
on models with non-degenerate mobilities, degenerate mobilities capture some
of the underlying physics more accurately. In the present paper, a careful
numerical study is undertaken, utilizing a variety of benchmarks as well as
new upper bounds for coarsening, in order to clarify evolutionary properties
and to explore the differences in the two variant models.

1. Background. While the deep quench obstacle free boundary problem (DQ) was
apparently first proposed by Oono and Puri [44] as a phenomenological model for
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phase separation, it can also be obtained from the Cahn—Hilliard equation [21, 20],

ug =V - M(u)Vw, (z,t) € Qp :=Q x (0,T),
(CH) w=2{In(l+u)—In(1-u)}—u—e’Au, (z,t)€Qr,
n-Vu=n-Mu)Vw=0, (z,t) € Qp x (0,7,

in the zero temperature or “deep quench” limit, ® — 0. In (CH), u € [—1, 1] denotes
the difference of two concentrations, ©® > 0 denotes a scaled absolute temperature,
the mobility M (u) is nonnegative, ¢ > 0 is a gradient energy coefficient, € is a
smooth bounded domain in R%, d = 1,2,3, n denotes the unit exterior normal to
Q, and 0 < T < oo is a given positive time. Typically one assumes for (CH) that
M(u) =1 or M(u) =1 —u?, and the resultant equations shall be referred to here,
respectively, as the non-degenerate and the degenerate Cahn—Hilliard equations.
The derivation of both variants of (CH) can be found in a series of papers by Cahn
and Hilliard [14, 12, 29]; see also [42]. For the sake of simplicity, most early studies
considered (CH) with constant mobility, often replacing the logarithmic term by a
polynomial approximation, see for example [22, 19, 21, 17, 7]. More recently, with
the growing interest in higher order degenerate parabolic equations such as the thin
film equation, numerous studies have also focused on the Cahn—Hilliard equation
as it appears in (CH), with degenerate mobility; see for example [20, 8].
In terms of existence, the following results may be stated for (DQ) [10, 20].

Theorem 1.1. Let € > 0, and let Q be a bounded domain in R, d =1, 2, 3, with
either 9Q € CHY or Q being convex. Let (-, -) denote the L*(Y) inner product,
and let (-, -) denote the H'(Q), (H*(Q)) duality pairing. Suppose moreover that
up € K == {n € HYQ) : |n| < 1}. Then there exists a pair {u, w}, such that
w e L2(0, T; HA(Q)) N H'(0, T (HN(Q))') N L=(0, T; K), w € L2(Qr), with w €
H} ({M(u) > 0}) fora.e. t €(0,T), and

(%, 77>+f{M(u)>o} Vw-M(u)Vndz =0, Vne HY(Q), ae. te(0,T),
e2(Vu,Vn — Vu) — (u,n —u) > (w,n —u), YnekK, ae te(0,T),
u(z, 0) =up, =€

(1)
Moreover, in the case of constant mobility, the solution {u,w} is unique if Ty €
(—1,1), where 7 := IS_ll\(n’ 1) for n € L1(9Q).

These results were first proven for M(u) = 1 by Blowey & Elliott [10], and
later for M(u) = 1 — u? by Elliott & Garcke [20]. They may be demonstrated
by considering appropriate limits of solutions to the degenerate and non-degenerate
(CH) equation, respectively, [10, 21, 20]. We remark that weaker formulations, such
as that considered in [8, 18], are conceivable. For later use we note that a solution
{u,w} to (1) satisfies

u(t) = o Vte(0,T).

If initial conditions are taken which correspond to a small perturbation of a con-
stant state ug, then the dynamics for the deep quench obstacle problem (DQ) and
for the Cahn—Hilliard equation (CH) are roughly similar, both for non-degenerate
and degenerate mobilities, if the initial conditions lie within the linearly unstable
regime (the “spinodal”). For (DQ), as long as ug € (—1, 1), the initial conditions lie
within the linearly unstable regime; for (CH) the condition is similar though some-
what more restrictive. The basic stages of evolution include an initial period of
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linear instability which marks the onset of phase separation (spinodal decompo-
sition or the linear regime), followed by an intermediate regime during which local
saturation to “near equilibrium” phases occurs throughout most of the domain,
and finally a coarsening regime during which the characteristic dimensions of the
support of the equilibrium phases grow. The initial conditions prescribed above are
physically reasonable and easily implemented, and the various qualitative stages in
the evolution of the dynamics have often been reported experimentally, see e.g. [51].

Clearly, although the dynamics for all these various models are quite similar in
some wide sense, the various models are not mathematically equivalent. Hence,
to facilitate comparison with experiment and to refine our understanding of the
underlying dynamic processes, it becomes desirable to characterize the differences.
The purpose of the present paper is to study the properties of these models and to
benchmark the differences. In mathematical terms, this entails analysis of various
rates, time scales, and length scales, utilizing a variety of tools and qualitative
descriptors to get a careful hold on the dynamics. We outline below some of these
tools and descriptors, and their realm of applicability.

The linear regime: Linear instability and saturation. If uj is taken to
lie within the linearly unstable regime and wg is prescribed as a perturbation of
a constant state, then the early dynamics is dominated by linear (exponential)
growth of the unstable modes, with a characteristic spatial scale corresponding to
the fastest growing mode, [12, 42]. How long does the linear regime last? Early
studies tended to emphasis the importance of the linear regime, because numerics
and experiment appeared to indicate the dominance of a characteristic length scale
which seemingly corresponded to the fastest growing mode of linear theory [27, 17].
How long does the fastest growing mode maintain its dominance? It has
often been noted that the characteristic length scale of the linear regime seems to
remains dominant well beyond the period of linear growth; this phenomenon had
been explained in the context of the Cahn-Hilliard equation with M (u) = 1 [40, 46],
but it has yet to be explored and explained within the context, for example, of (DQ)
or (CH) with M (u) = 1 —u?2. Thus, the duration of the period of linear growth and
the duration of the period of dominance of the system by the fastest growing mode
constitute important benchmarks. When does saturation occur? Clearly, by
the time saturation has occurred, the linear regime is indeed over. Analytically, we
may define saturation via

sty o= e Q:lute0 =1} o)

and so S(t) constitutes an additional important benchmark.

Scaling behavior. A way to benchmark dynamics is to try to isolate scaling
behaviors marked by characteristic rate constants and coefficients. In the present
context, the idea is to identify certain time dependent functionals which provide
some indication of the underlying length scales of the system, and to try to demon-
strate numerically, and possibly analytically, a t* growth for some o > 0. Conceiv-
ably, more general scaling behaviors may occur. The focus here can be on early
time behavior where the length scales are initially dictated by the underlying
instability, or it can be on late time behavior where the length scales reflect the
coarsening process. At least numerically, it should be possible to follow the evolu-
tion of various length scales from early times on through late times, in order to try
to capture various interim, transient and crossover behaviors, [26].
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While a wide variety of functionals could be considered in this context, a few,
which are described below, have come into common use, and thus may be considered
as benchmarks for the phase separation process.

The structure function. The structure function, or correlation length, is defined
here for k € R as

1
Sk, t) = Sa(k, t
* 0= e = 2 S0

where Sa(k, t) := [{u(x,t) — U} |*(k, t) for k € R?, with “*” denoting the discrete
Fourier transform. Most of the studies involving time dependence of the structure
function during phase separation have focused on (CH) with constant mobility, and
related constant mobility models, such as the phase field equations with constant
mobility, and as such are not directly relevant. Moreover, the majority of the predic-
tions and conjectures which have been proposed in regard to the structure function
have not been rigorously justified [23, 24, 33]. In theory, analysis of microstructure
could be undertaken based on consideration of higher order moments or correlations
as well [28].
The free energy of the system. For (DQ), the free energy

E(t) = ﬁ /9[52|Vu|2 +(1—u?)] de, 3)

acts as a Lyapunov functional for the system. Observing that

u?)Y?|Vu| dz = = (1 —u?)V2|Vu/| dz,
=l / € Jo\@uarurarea

and setting Lo := inf,ew Perq{u = +1} where W :={u € BV : u = +£1 ae.,u =
Uy }, it follows easily by adapting the arguments in [48] that

€

(1-— )1/2|Vu|da:> T Lo+ ole), (4)

|Q| 2\Q saturated 2|Q|

a7 Lo may be identified as the I-limit of E(t). In (4), & corresponds to
the free energy of a transition between u = +1 in a 1D system at equilibrium,
which has a transition width given by em [10]. If the system is well saturated, then
one may expect O\ Qguiuratea 10 be partitioned into L(t) length of strips, where
L(t) > Lo+ o(1), with width ex and with energy per unit length given by e = fe,
and hence E(t) ~ ﬁm \ Q aturated| & 3(1 — S(t)). In particular
G(t) = B(t) — 50— S(0) (5)

should constitute an additional benchmark for saturation.

From the discussion above, we see that at late times most of the energy of the
system is located in the interfacial regions of the system, and

where

€ em

1 Jo oy )

Thus in particular E(t), as well as E%E , should scale roughly as length~! and provide

an indication of the length scales of the system. The ratio of E~! to the dominant

length scale in the system depends on the precise definition which is adopted for

the dominant length scale and reflects also the geometric structure of the solution.
In [36], upper bounds on the length scale were obtained at sufficiently long

E(t) ~ (1 —u?)2|Vu| dz ~

times and for sufficiently small initial energies, based on [%]3%} |EllLs+o@, =
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1
[% fg E3To(7) dT} SM, which in terms of the scaling employed in our formulation
may be stated as:

Theorem 1.2. If E(0) is sufficiently small and t is sufficiently large, then there
exists a constant Cy, where oo = 0 for the constant mobility Cahn—Hilliard equation
with polynomial free energy and o = 1 for the degenerate mobility deep quench
obstacle problem, which is independent of the geometry of Q C R?, such that

1
1 (t\
|1 E|l s +e (o) > c. (g) .

Note that it is not surprising that the scaling predictions differ for the degenerate
and non-degenerate mobilities, since at late times the dynamics for (CH) with con-
stant mobility is approximated by the Mullins—Sekerka problem [45, 1, 15], whereas
the dynamics for (CH) with the degenerate mobility near the deep quench limit is
approximated by motion by surface diffusion [13]. The late time dynamics for (DQ)
with degenerate mobility have also been shown to be approximated by motion by
surface diffusion [13].

Kohn and Otto noted in [36] that at sufficiently late times boundary effects
dominate the dynamics, and the coarsening rate will fall far short of the predicted
upper bounds. They also pointed out that it is not realistic to obtain lower bounds
for coarsening, since there exist geometric configurations which do not coarsen;
nevertheless, it is reasonable to expect realizable predictions for coarsening rates
for initial data which is generic in some appropriate sense. For this reason, in our
numerical studies, we average our results over many independent simulations.
Various dual norms. Various norms, or semi-norms, such as

1
L(t) := sup{— u€de: [ £dx =0, ¢ periodic, supe|VE| < 1 },
13 |Q| Q Q T

can be defined which scale as length. Various other dual norms which scale as length
are clearly also possible to consider.

Upper bounds on the length scale based on S(0,¢;7,¢) = ||E“’L(“”1)||Lr(0)t)
have been obtained for various (CH) and (DQ) models, under suitable restrictions
on r, ¢ [36, 43]. For the deep quench obstacle problem, the results in [43, 41]
may be somewhat strengthened using scaling arguments (see Appendix) to yield
the following theorem. Let

- = 1

E:L:§a—#y
Theorem 1.3. Let a = 0 for the case of constant mobility and o = 1 for the case
of degenerate mobility, and set t* := sup{{0} U {t € (0,00)|E(t) > 1(1 — @*)}}.
Then for any @, r satisfying 0 < p <1, r <34+ a, pr > 1+a, (1 —@)r <2, there

exist constants Cy,, which are independent of the geometry of @ C RY but which may
depend on r, @, Up, such that for t > t*, for the case of nondegenerate mobility,

1 Et \ % L3 2\ 3t —1/r
S7H0,t;r, ) < E e «p)( _2)3[191—( (_O)E ) ’ } , (6)
2T, ELt
where 0 < o < 1, (1 —@)r < 2, r < 3, or > 1, and for the case of degenerate
mobility,

2 4-r

S7H0,t;7, ) < F%’f(ls@)(izg)i [192 3 ( L*(0)e t) 1

: (7)

}—m
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where 0 <o <1, (1 —p)r <2,r <4, pr>2, and ¥; = 9;(p,r) fori e {1, 2}.

By evaluating these upper bounds for large ¢ in the limit when ¢ — 1, r = 3+«
where @ = 0 in the nondegenerate case and @ = 1 in the degenerate case (see
Appendix), we get for the case of nondegenerate mobility that

1 -3 25 t13
3] 2l o
tJo (1-a2)s Le
and for the case of degenerate mobility
1t -3 2% rtqi
b me] s 4] 0
t Jo (1 —1ug) Le?

with a similar approximate bound being implied for E~1(¢). Experimentally, while
the ¢'/3 growth law has frequently been reported especially at late times [24, 33],
various other growth laws have also been noted [33, 31, 30]. In particular, the
predictions for the special case in which @y is close to —1 or 1 are known to be
particularly deviant and delicate [24, 49]. In deriving (6)—(9), the scalings £ —

E/E, L — L/L, t — t/T were used, where = EQZQ/E for the case of constant

mobility and T = 2T / (2@2) for the case of degenerate mobility. These scalings
can also be employed in examining the results of other benchmarks.

Topological descriptors. We refer here to certain topological descriptors of
the dynamics which may be evaluated using the tools of computational algebraic
topology. The descriptors which we shall be considering here are the zeroth and
first Betti numbers. The zeroth Betti number, [y, is an integer indicating the
number of connected components in the system, and the first Betti number, 31, is
an integer that counts the number of tunnels (in 3D) or loops (in 2D). They may be
evaluated by postprocessing numerical computations using public domain software
called CHomP [34, 35].

As in [25], we set

XTt):={z e Q:u(x,t) >}, X (t):={re€Q:u(z,t) <} (10)

It is then possible to define Bin¢ 0(X T (£)) to be the number of internal connected
components of Xt (¢), and Byay,0(X 1 (¢)) to be the number of components of X ()
which touch the boundary. Note that Bineo(XT(t)) = B1(X(¢)), and that
(12/Bo(X*(t)))/? define length scales for the system. Moreover, Bpay.0(X () =
Bo(XT(t)) — B1(X (t)) corresponds to the Euler characteristic, which has been
calculated using techniques from digital topology [37]. Note than when uy = 0,
B1(XT(t)) = B1(X () for an ensemble average, and hence in this case the Euler
characteristic is given by Buay,0(X 1 () = Bo(X T (t)) — f1(XT(t)). There exist ad-
ditional topological quantifiers, such as the matricity and the Minkowski functions,
which have been employed elsewhere [38, 39, 3, 28].

The approach followed in this paper, i.e. employing CHomP to compute the Betti
numbers of the sets X ¥ (t), was previously implemented in [25] in the context of the
constant mobility Cahn—Hilliard equation with a polynomial free energy. From their
calculations for (CH), it was possible to quantify boundary effects as a function of
time and to give some indication of Ty and € dependence. In particular, it was seen
in [25] that early on in the evolution, Bint,o(X*(t)) ~ Bpay.o(XT(t)) and during the
later stages of the evolution, it appears that Bineo(XT(t)) < Boay0(XT(t)), and
Bo(X*(t)) could be used to show that a smooth transition from spinodal decomposi-
tion to nucleation and growth occurs as the “mean mass” ug is varied. The dominant
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phase becomes a single connected component as the mean mass, g, is raised, and
in parallel 3;(X*(t)) increases and then subsides. As ¢ increases, there is enhanced
monotonicity (decay) seen in Bo(XT(t)), B1(X*(t)). In comparing stochastic and
deterministic variants of the Cahn—Hilliard equation, more monotonicity is seen
in the stochastic variants, with experiment [32] seeming to support the enhanced
monotonicity.

We will employ a fully practical finite element approximation of (1), using linear
finite elements in space and a backward Euler discretization in time. The inter-
pretation of the numerical results focuses on the analysis and comparison of the
dynamics, based on the various benchmarks described above.

The plan of the paper is as follows. Section 2 contains a description of the
algorithm used in the computations, as well as an explanation of some of the specific
considerations which guided us in undertaking the simulations. Some qualitative
results are also given. In Section 3, results of the numerical simulations are presented
for the Betti numbers, for E~1(t), for the saturation S(¢) and G(t), and for the
structure function. Section 4 summarizes the results of the numerics and provides
some suggestions for further analysis and experiment. An Appendix follows, which
contains a derivation of the upper bounds (6)—(8).

2. Numerical simulations. In our numerical simulations in this paper, we shall
implement the following finite element approximation of (1), which was previously
employed in [6] and is based on the approximation introduced in [8].

2.1. The finite element approximation. Let {7"};,¢ be a family of partitions
of © into disjoint open simplices o with h, := diam(c) and h := max,cgn he, SO
that Q = U, c7»7. Associated with 7" is the finite element space

Sh.— {x€C(Q):x|s islinear V o € 'Th} - Hl(Q)
We introduce also
K'={xeS":|x|<1inQ}cKk={ne H(Q): |y <1}.

Let J be the set of nodes of 7" and {p;};es the coordinates of these nodes. Let
{x;}jes be the standard basis functions for S"; that is x; € S" and x;(p;) = i;
for all 4,5 € J. We introduce 7" : C(Q) — S”, the interpolation operator, such

that (7"'n)(p;) = n(p;) for all j € J. A discrete semi-inner product on C(f2) is then
defined by

(m,m2)" = /Q 7" (1 () o () da .

Let 0 =ty < t1 < ... < tn—1 < txy = T be a partition of [0,T] into possibly
variable time steps 7, := t, —t,_1, n =1 — N. We set 7 := max,,—1 N T, and
consider the problem:

Forn > 1, find {U",W"} € K" x S" such that

(Un _ Unfl

Tn

h
A) @M@ Y =0, vxesh (i
e2(VUM, Vx —U") > (W™ +U" 1 x —U™", v x e K", (11b)

where U® € K" is an approzimation of ug € K.
We will always use U° = 7/ug for ug € C(Q).
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For the nondegenerate mobility M (u) = 1, convergence for (11a,b) was shown in
[11] in space dimensions d = 1,2, 3, and error bounds were derived. For the degener-
ate mobility M (u) = 1 —u?, the numerical analysis for (DQ) is less straightforward.
We recall that convergence for (11a,b) was shown in [8] in one space dimension,
d = 1, using a weaker solution concept than that used in (1). In particular, the
limiting solution there need not satisfy u € L2(0,T; H?(2)). An alternative numer-
ical approximation for (DQ) was introduced in [9, 4], for which convergence to a
solution satisfying (1) can be shown for d = 1,2,3. This method regularizes the
degenerate mobility on the discrete level, in order to yield a discrete entropy bound.
This makes this alternative algorithm less practical, and so we prefer to use (11a,b).
Here we point out that the discrete free boundary of (11a,b) can advance at most
one mesh point per time step. Hence in practice we will always choose the time
step size 7 sufficiently small, in order to avoid pathological cases such as the ones
described in [8, p. 312].

In order to increase the efficiency of the implemented algorithm, we will use
adaptive finite elements throughout. Here we make use of the finite element toolbox
Alberta [47], and employ the mesh refinement strategy described in [9]. In partic-
ular, the interfacial regions will be resolved with at least 8 mesh points across the
interface. Solving (11a,b) requires solving a nonlinear system of algebraic equations
involving a variational inequality at each time step. Recently a robust multigrid
solver for the solution of (11a) has been proposed in [5], and we employed this solver
throughout our simulations.

2.2. General considerations. In the section which follows, we present results
from various numerical experiments investigating the qualitative and quantitative
behavior of solutions to (DQ) with degenerate and non-degenerate mobility, focusing
primarily on the effects of varying ¢ and the mean mass, @y. Some points to note
in regard to these calculations:

i) Since for Q = (0, H)?, (DQ) may be rescaled by setting

r—ax/l,t =t/I? e—¢e/l, H— H/I, (12)

for any [ > 0, this rescaling can be used to model larger systems by considering
smaller values of €. This rescaling has been utilized in Section 3.2 to verify the
numerical algorithm by comparing the numerical results for different values of e.
In the calculations, unless otherwise stated, the system size was taken as (0, 1)2
by setting H = 1 for any &, and the end time, T, was taken as T = £2T*, where
T* = 160. The scaling (12) with [ = * then implies that the results are equivalent
to taking (1) with © = (0, (¢*)7!)?, & = 1, with rescaled time ¢ € (0, T*/(e*)?).

ii) In each numerical experiment, we chose random initial data uy with mean
Uy = Ug, where Uy € (—1,1) is a fixed given parameter. More specifically, after
defining the random value uy(p;) = o + 0U;(—1,1) at all mesh nodes {p;} e,
where U;(—1,1) are independent random variables with uniform distribution from
the interval (—1,1) and € denotes the amplitude of the random perturbation, we
then set ug = g + (Up — 50). While we shall check the effects of varying 6, we have
set 8 = 0.05 if not otherwise indicated.

iii) For the sake of comparison and simplicity, the time scale corresponding to
€ =1 has been indicated in all of the figures so that the dimensionless final time is
160, unless otherwise specified. To gain some intuition into this final time, note that

in the context of (DQ), the (linear) growth rate of the fastest growing mode k rqsiest
M (o)
4¢2

is prescribed by o fastest := U(Efastest) = , see Section 3.4. In particular when
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F1GURE 1. Contour plots of u(¢) at times ¢t = 80, 160, 1600 for
M(u) = 1. Here wp = 0.

FIGURE 2. Contour plots of u(t) at times ¢t = 80, 160, 1600 for
M (u) =1 —u?. Here Ty = 0.

ug = 0, M () = 1 for both constant and degenerate mobilities, and hence in both
CASES O fastest = % when ug = 0 and € = 1. If we may roughly approximate the end
of the linear regime t;;neqr When @y = 0 by setting

||u($, tlinear)| |OO ~ 1 ~ oea-fastest tlinear’

it then follows that tjneqr = —41n(0.05) & 11.9828, when 6 = 0.05, ¢ = 1, wp = 0.
Thus in the context of this choice of parameters, tfinq ~ 13.6361 tiincar-

In all of the following plots, in order to reduce the effect of noise, we report on the
averaged quantities over a certain number of N independent simulations, usually
N = 50. Similar procedures have been adopted numerous times in the past, see
e.g. [50], to attain some degree of genericity in the numerical results [36, 40, 46];
our results will nevertheless be influenced by boundary effects which can only be
reduced by considering larger systems, or mimicked to some degree by considering
smaller values of €.

3. Results.

3.1. Qualitative results. The qualitative evolution from random initial data can
clearly be seen in Figures 1 and 2. As mentioned in the introduction, phase sep-
aration starts with spinodal decomposition, followed by a saturation phase, and
finally by a coarsening phase. Figure 1 portrays the evolution from random initial
data for constant mobility M (u) = 1, while the evolution from the same random
initial data for the degenerate case M (u) = 1 — u? is shown in Figure 2. In both
cases we set Ty = 0. One can clearly see that the constant mobility case M (u) =1
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leads to larger connected components, while the degenerate case retains many more
fine details. This is clearly due in part to the effective decrease in the degenerate
mobility as saturation is approached.

We performed several experiments where we observed the evolution of the free
energy, F(t), and the saturation, S(t), defined respectively in (3) and (2), as well
as the Betti numbers. Note that at fixed times ¢, E(t), S(t), as well as G(t) which
was defined in (5), are invariant under the rescaling (12). Later, the evolution of
additional quantities such as S(k, t) will be observed. We varied the gradient energy
coefficient ¢ as well as the mean initial mass, Ty € (—1,1). To eliminate possible
effects of numerical errors on the results, we computed the saturation approximately
as:

{x e Q:||U™(x)| — 1] < tols}]

1€ ’

with tolg = 1078, See Figure 3 where plots of E~!(t) and S(t) for e = g1—, 53—, 6=
and %y = 0 are portrayed. Note that here we take ¢~! to be multiples of 7, so that
the number of mesh points in our discretization from §2.1 across the asymptotic
transition layer width of € m can be easily estimated. The evolution of both E~(t)
and S(t) can be seen to be marked by three regimes: an initial period with little
change in E~1(t) and S(t), a transitional period during which the saturation in-
creases steeply, as does the length scale to a lesser degree, and an extended period
of continued coarsening and saturation. During the initial and transitional periods,
the behavior is relatively similar for the constant and degenerate mobilities, whereas
during the third period the growth in E~1(¢) and S(t) is considerably slower for the
degenerate mobility. Both E~1(¢) and S(t) can be seen to exhibit scale invariance.
Comments regarding the Betti numbers will be given in the next section.

S(ty) =

3.2. Calculation of the Betti numbers. In this section we use the subroutines
of CHomP [34, 35] to calculate the Betti numbers, Sy and (1, which measure re-
spectively, the number of connected components and the number of tunnels or links.
We shall denote by 83 (8i) the number of connected components (tunnels) of the
set X*(t) defined in (10). Furthermore, we shall denote the number of internal
components (i.e. the components that do not touch the boundary) of X*(¢) by
ﬁiw and the number of components of X*(¢) touching the boundary by B;;iy,O'

These quantities are evaluated based on CHomP calculations of 63[ and ﬁf[, by
making use of the relationships noted earlier which imply that ﬁiw = Bf and
Brayo = By = Pinvo = A5 — BT

The evolution of the various Betti numbers for @y = 0 for ¢ = # is displayed
in Figure 4. Not surprisingly, the evolution of the Betti numbers for the sets X
and X~ is almost identical when wy = 0. Again, for the constant and degenerate
mobilities, the behavior is similar during the initial and transitional periods, with
slower growth (less decrease in the Betti numbers) during the third regime when
the mobility is degenerate. The transition between the first and second regimes
is seen to be smooth in the context of the evolution of the Betti numbers, with
nonmonotonicity setting in for both mobilities before what appears to be the end of
the first regime in the context of the evolution of E~1(¢) and S(¢). Indeed, there is
an actual increase in the number of connected components and tunnels, for a short
period of time for both mobilities.

In Figure 5, for the case of constant mobility, the various Betti numbers have

1 1

been portrayed for both ¢ = 7= and € = 55— with H = 1, H = 0.5, respectively,
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FIGURE 3. E~1(t) (left) and S(t) (right) as functions of time, for
e ={e1, 2,63} = {5 33> T6= }» o = 0 with degenerate mobility
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FIGURE 4. By (1), B7 (1), Binso(t), Bpayo(t) as functions of time,
_ 1 =
for5—64—ﬂ,u0—0.

with 2 and ¢ rescaled in accordance with (12). The time scale in both these plots
refers to the time scale for ¢ = 1. The results for both values of the £ parameter can
be seen to be very similar in both figures. The results are in agreement with the
scaling law (12). The minor differences can be attributed to the finite size of the
system and the influence of the boundaries, as well as to sensitivity of the integer
valued calculations. In [25] enhanced decay was seen with increasing e, but a scaled
comparison was not specifically undertaken there.
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FIGURE 6. 3f (t) (left) and B} (right), for ¢ = and constant mobility.
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The evolution of the Betti numbers was evaluated in simulations with @y =
{0,0.1,0.2,0.5,0.7, 0.9} for € = 6%#. To facilitate comparison, Figures 6, 7 contain
2D plots of the Betti numbers for the various values of 7y. Looking at Figures 6 and
7, we can see that 37 (t) seems for the most part to exhibit monotone decrease with
time. For the constant mobility case, this decrease appears to be more pronounced
as U increases. For the degenerate mobility case, this tendency occurs for 0 < @y <
0.2, and then reverses direction temporarily, apparently due to reduced mobility
effects. During the initial stages, the evolution of 3; (t) appears quite similar for
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FIGURE 7. 87 (t) (left) and 37 (right), for € = 5=, and degenerate mobility.

the constant and degenerate mobilities and the various initial masses, ugy, but as
saturation is approached, the differences become more pronounced.

In [25] nonmonotonicity of 34 (t) was reported, and that tendency can be seen
here also, in Figures 6 and 7. The nonmonotonicity apparently reflects a reorganiza-
tional stage of sorts, while monotonicity only was reported in [25] when space-time
noise was added to the model. For the case of constant mobility, the nonmonotonic-
ity is enhanced with increasing g, but at later times the effect is inverted. At long
times, it is reasonable to expect there to be less loops when the mass fraction of the
minor phase is small. For the degenerate mobility case, similar nonmonotonicity
tendencies can be seen when g is not too large, with secondary effects occurring
when Ty is larger due perhaps to reduced mobility effects. Again, during the initial
stages, the evolution of 3} (t) seems for the most part to be quite similar for both
mobilities and for the different masses, with differences becoming more pronounced
afterwards. We point out that any secondary transition phenomena cannot be linked
with a possible transition from spinodal decomposition to nucleation behavior, since
in the context of the deep quench obstacle problem, the “homogeneous free energy”
é(u) = 1 — u? is uniformly concave, and hence the “binodal” and the “spinodal”
coalesce and no metastable behavior is predicted [42].

In order to gain some intuition into boundary effects, ﬁ;;w /B¢ has been plotted
+

as a function of time in Figure 13, below. Initially 3;;, is considerably larger

than [352%0 ( itzt,O /85 > %) reflecting linear regime dynamics, and then there is an
interim during which ﬂitzt,o =] ﬁlj:iy,o ( ;t70/ﬁar A %) During these early stages, the
evolution is quite similar for both mobilities and for the various initial masses, ug,
except for %y ~ 0.9 in the degenerate case. Afterwards, B;;m < [3;1%0 (ﬂ;t70/ﬂ6r <
%), indicating a dominance of boundary components. This regime takes longer
to be realized in the degenerate context, and at similar times B;;Lt,o /B¢ can be
seen to be smaller in the constant mobility case. The predominance of boundary
components at late times can be explained in terms of lower dimensionality, which
makes coarsening more difficult near the boundary. This phenomenon has been
discussed by Alikakos et al. [2] within the Cahn-Hilliard framework in terms of
the migration of minor phase “bubbles” toward the boundary of the domain. Such
arguments seem to pertain better to the more diffusive constant mobility setting.
In the degenerate setting, the internal components persist longer, due apparently
to reduced communication between the components and less rapid motion towards
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FIGURE 8. E~!(t) as a function of time, with constant mobility
(left) and degenerate mobility (right), for ¢ = == and @y =

64w
{0,0.1,0.2,0.5,0.7,0.9}.

the boundary because of reduced mobility effects. In the constant mobility case,
there is monotone decrease of ﬂitzt,o / ﬂar with %y. In the degenerate mobility case,
there is again monotone decrease of ﬁitzt,O / B(J{ with wy for 0 < @y < 0.2; however

for 0.5 <y < 0.9, B, /B¢ is seen to increase with .

3.3. E7, S(t), and G(t). For ¢ = 64% and up = {0,0.1,0.2,0.5,0.7,0.9}, the
evolution of E~! is portrayed in Figure 8, and the evolution of S(t) is given in
Figure 9. Monotone increase in E~1(t) with % can be seen in Figure 8 for both
constant and degenerate mobility. The plots of E~1(t) as a function of time can be
seen to contain a short flat initial segment, whose length decreases with @y when
the mobility is constant and whose length increases with %y when the mobility is
degenerate, followed by a short period with sharp increase, with continued increase
there afterward. In Figure 9, monotone increase in S(t) with @y can be seen for
the case of constant mobility, with some variation when @y ~ 0.2. For the case of
degenerate mobility, S(t) can be seen in Figure 9 to increase with increasing @, until
up =~ 0.2, and then to decrease as Uy further increases. The plots of S(t) can all be
seen to contain an initial segment where the value of S(t) is negligible, followed by
a short period with sharp increase, with continued increase afterwards. Again, the
length of the initial segment can be seen to decrease with uy when the mobility is
constant, and increase with @y when the mobility is degenerate. Some transition of
sorts in both E~1(¢) and S(t) can be seen to occur when 0.2 < Ty < 0.5.

It follows from (3) that E(0) = 3(1—1u3)+O(6?) when u(z,0) = ug+0U(-1, 1),
and hence E~!(0) depends strongly on %p. To minimize this effect we have plot-
ted the evolution of E~1(t)/E~'(0) as a function of time for ¢ = - and Ty =
{0,0.1,0.2,0.5,0.7,0.9} in Figure 10. Rescaled in this fashion, a transition of sorts
can still be seen to occur when 0.2 < @y < 0.9. For the run with @y = 0.9, there
is an initial rapid decrease of the initial energy, which is why E~1(~ 0)/E~1(0) in
this case is not close to 1. When plotting the graphs for the rescaled time ¢ = ¢/Z
discussed in the Introduction (and the Appendix), a self-similarity of sorts seems
to be apparent for 0 < 7wy < 0.7.

The evolution of G(t) = E(t) — $(1 — S(t)) for wy = {0,0.1,0.2,0.5,0.7, 0.9} and
£ = 55 is displayed in Figure 11. Note that G(0) = E(0) — (1 — 5(0)) ~ —3u,
as can be seen in Figure 11. Since G(t) depends linearly on E(t) and S(t), and
E(t) and S(t) both contain linear segments, clearly G(t) should also contain a
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FIGURE 9. S(t) as a function of time, with constant mobility (left)
and degenerate mobility (right), for ¢ = 64% and uwy =
{0,0.1,0.2,0.5,0.7,0.9}.
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FIGURE 10. E~Y(t)/E~1(0) as a function of time for W, =
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and degenerate mobility (right).
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and degenerate mobility (right).
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g | constant | degenerate
0 23.5 24.3
0.1 23.4 24.6
0.2 23.1 25.2
0.5 19.6 30.2
0.7 16.2 39.1
0.9 10.3 74.6

TABLE 1. Crossover times teross for G(t) = E(t) — (1 — S(t)).

0 0.1 0.2 03 04 05 06 07 08 0.9
const —— deg -
a(l —u3)b a(l —ud)ba

FIGURE 12. Crossover time t.,,ss versus ug for constant and de-
generate mobility fitted by a(1—73)% and a(1—73)%, respectively.
Here a =24, b. = % and by = —0.707 = —9273.

linear segment, as can also be seen. A unique minimum can be seen in these plots.
We have identified the times ¢ at which %[E(t) —1(1=5(t)] = 0 as “crossover
times”, and listed these times in Table 1. From Table 1 it can be clearly seen
that the crossover times occur consistently later for the case of degenerate mobility
compared to the case of constant mobility, with monotone decrease (increase) in the
crossover times with increasing @y for the case of constant (degenerate) mobility,
with enhanced dependence on @y for Wy > 0.2 in both cases. In Figure 12, the
crossover times tq.ss are compared with the best fitted plots of a(1 — w3)®. Here
1

we note that for the exponents b we obtain b = 5 in the constant mobility case,

and b = —0.707 ~ —272 in the degenerate mobility case. The precise dynamic
interpretation of t..,ss 18 not completely obvious; however before t.poss, —%E >
%%S’ and energy decrease dominates saturation, and after t.yoss, %%S > —%E
and saturation slowly continues with less actual energy decrease. In Fig. 13, the
ratio Bi—;t,o /B¢ is portrayed for various values of Wy and crossover times have been
indicated. At late times Bz'tn,o/ B4 < 1 and the boundary components ﬁl;tiy,o are

predominant in 35 . All of these plots, except for Wy = 0.9 in the degenerate case,
can be seen to contain an interim regime during which monotonicity is reversed,
and crossover can be seen during this regime.

3.4. The linear regime and dependence on the amplitude of the initial
perturbation. In order to understand the effect of the amplitude of the initial
perturbation on our solutions, we compare results for § = 5 x 1072, 5 x 1073,
5x 107°, & = 1/64n, Uy = 0 for E(t)~! and S(¢) in Figure 14. Since the influence
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FIGURE 13. The evolution of B;Lt,O/BS_ as a function of time, for

Uy = {uy, k =1,...,6} = {0,0.1,0.2,0.5,0.7,0.9} and ¢ = &1,

with constant mobility (left) and degenerate mobility (right) with
crossover time teposs-
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FIGURE 14. Time evolution of E(t)~! (left) and S(t) (right), for
o =0and f = {91,92,93} = {5 X 10_2,5 X 10_3,5 X 10_5}.

of the initial amplitude can perhaps be expected to be most substantial during the
initial stages of evolution, let us consider solutions of the form
_ Ao(?)

u(z,t) = 5 + Z Apn (t) cos(mmzy) cos(nmza),

m,n=1

which satisfy the boundary conditions as we have chosen H = 1. For the initial
conditions described in Section 2.2, within the framework of linear theory, we set

o0
u(z,t) ~ Uy + 6 Z anme’ ™" cos(mmzy) cos(nmra), (13)
m,n=1
where |anm| < 1 and oppm = M (To)(1 — e*(m® + n?)7?)((m? + n?)7%) < orastest =
Aﬂ(aug“), with o fastest being attained when |kfastest|? = (m? 4+ n?)n? = (2e%)7L.

Hence, modulo the obvious limitations of linear theory, for 0 < uy < 1 saturation

cannot occur prior to time t = tjneqr at which 1 = wg + 96%’5“"@”. For solutions
of the form (13), 4me, its spatial period, acts as a length scale during the linear
regime. More generally, if the solution is not constrained to be of the precise form
(13), then 27/ |Efa5test| =237e provides an indication of the dominant length scales
in the system.
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0 tiinear | tlinear (constant) | tineqr (degenerate)
5x 1072 12 18.2 19.4
5x 1073 | 21.2 28.5 29.6
5%x 1075 | 39.6 51.8 53.2

TABLE 2. Estimated time #;neqr based on the length of flat seg-
ments of S(t).

Thus

462 1-— Ug
tiinear = 1 ( ) 14
l M) "\ 0 (14)
constitutes a (naive) linear estimate for the end of the linear regime and the
initiation of saturation. It follows from (14) that for three different values, 6,
i € {1, 2, 3}, of the initial amplitude, the associated times ¢}, ..., i € {1, 2, 3},
should satisfy

In(62) — In(6 t2 —tl

_ Il( 2) Il( 1) _ éznear l21nea7“. (15)
1n(93) — 1171(6‘2) t -t

linear linear

From the definition of S(¢), clearly prior to initiation of saturation, S(¢) should be
negligible, as we saw in Section 3.3. From the definition of E(t), it follows from (13)
and linear theory, that E(t) (and E~1(t)) should appear to be fairly flat and roughly
equal to its initial value Ejpeqr(t) = %(1 —u3) + O(0?), for 0 < t < tiinear, if not
for an indeed somewhat more extended interval [46, 40]. See for example Figure 14,
where the linear portion of E~1(t) can be seen to end at t ~ 20 even though
tiinear = 12for Ty =0,0 =5x1072, ¢ = 64##. Equation (15) can be roughly verified
based on the lengths of the flat segments of S(t) (finear = min{t| S(t) > tols}) in
Figure 14, which we have recorded in Table 2. While the theoretical value of A
is 0.5, the computed values can be seen from Table 2 to correspond to A ~ 0.44
(constant mobility) and A = 0.43 (degenerate mobility).

For the case of constant mobility, for the deep quench obstacle problem, there
should be no nonlinear effects prior to the onset of saturation, which should occur
after tjinear, so the fastest growing mode should initially be well approximated by
|Efastest| = (v/2¢)~!. This would imply 2% 7c as a length scale estimate during the
linear regime.

As mentioned earlier, %ﬁ should scale with the dominant length scale of the
system. If more specific assumptions are made on the structure of the solution,
such as that the system is divided into identical square periodic units where u = £1
which contain an embedded circular region where ©v = F1, then when wy = 0,
\E/L;W % provides an estimate for the dominant (spatial period) length scale of the
system. Based on either of these criteria, during the first stages of evolution when
E~1(t) is roughly flat, the length scale of the system can be seen from Figure 14 to
be in rough agreement with the length scale predictions of linear theory.

The dominant length scale in the system can be roughly estimated by (B{f )_%,

1

(ﬁ;t,o)iia and 4([3;:1%0)*%, see Figure 15. The depicted results for (ﬂ;tﬂo)*% are
in good qualitative agreement with F~! as a length scale indicator, see Figure 3
(left). Based on ( ;zt,O)i% , the dominant length scale can be seen to increase rapidly
during an initial transient period, which lasts roughly until about time ¢ ~ %tlinear-

Afterwards, there is a period during which the length scale of the system does not
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time with degenerate and constant mobility for wg =0, € =
change drastically, as can be seen in the relative steadiness of the various Betti
numbers, see Figure 15. Note that during this period, the dominant length scale as
evaluated based on (ﬂ;;t)o)’% ~ 0.17 and (B(J{)’% ~ 0.12 (see Figure 4) can be seen
to be considerably more than the length scale implied by linear theory. This may
reflect both the relatively small size of the systems studied, as well as the structure
and relatively high degree of connectivity of the solution components as can be seen
for example in Figure 1.

For the case of degenerate mobility, nonlinear slowing should affect the evolution,
so it would be reasonable to expect the onset of saturation to occur after ¢ cqr, as
reflected in the lengthened linear segments in E~1(¢) and S(¢), as noted earlier in
Section 3.3. Based on an examination of the Betti numbers, we can see qualitatively
similar evolutions of the length scales during the early stages as in the constant
mobility case; i.e. an initial period with rapid decrease in 3§ and B;;Lt,o until a
relatively constant level is reached for ﬂar and B;;m, with the dominant length
scale in the system based on the Betti numbers being again significantly larger than
the length scale predicted by the fastest growing mode. See Figure 2.

3.5. Power laws. As discussed in the introduction, various considerations have led
power law behavior to be expected of the form at? 4 ¢ for the dominant length scale,
and in particular we are interested in the exponent b. Plotting graphs of E~1(t)
in the log-log scale confirms that the evolution takes on the form of a power law
after some time, see Figure 16. Looking at Figure 19, below, three regimes could
be identified: a) a short period of initial evolution, with roughly the same exponent
for both mobilities b) followed by an evolution with exponent > 1/3 for constant
mobility and < 1/4 for degenerate mobility ¢) then apparently the predicted evolu-
tion with 1/3, 1/4 growth. The constant mobility seems to be growing faster than
the 1/3 upper bound, which potentially could be attributed to boundary effects.
The degenerate mobility is approaching the 1/4 growth rate. The differences are
less apparent if pictures are plotted in normal scale (non-log).

In Figure 17 we plot the quantity S(,t;r, ) from [36, 41] and the Appendix, for
p=1

St t;r,1) == (t — E)_l/T”E(t)”LT([f,t])a
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FIGURE 16. Log-scale plot of E~1(t) for wy = {uy, k =

1,2.3,4,5) — {0,0.2,0.5,0.7,0.9} (6 = {60, 01,62} = {5x 10-2, 5 x
10~ 5, 6=>5x10" 3}), constant mobility (left) and degenerate mo-
bility (right).
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FIGURE 17. 1/S(f,t;7,1) and (t — £)'/"for constant (left) and de-
generate (right) mobility for £ = 0, t*.

for t <t < T with g = 0. We set rr = 1/3 for the constant mobility and r = 1/4
for the degenerate mobility. The time £ corresponds to the times 0 and ¢*, where ¢*
is the time such that E(t*) = $(1 —u3); for the constant mobility ¢* ~ 80 and for
the degenerate mobility t* ~ 485.

If we choose to try to compare our results with the scaled upper bounds for
coarsening given in (6)—(8), the results appear to be relatively more successful, at
least for 0 < Wy < 0.7. See Figure 18, where we plot E~!(¢) and the predicted upper
bounds on a log timescale. The case uy = 0.9 corresponds to the “small volume
fraction limit” ¢ := (1 — Wp)/2 < 1, where logarithmic corrections to the scaling
may be needed [16]. We remark that the analysis in [16] does not apply directly to
the deep quench context, particularly in the case of degenerate mobility.

In Figure 19, (single run) log-scale plots of E(t)~! and E(t) — 0.5(1 — S(t)) are
displayed, reflecting a similar long time interval. We can see that at these late
times, the scaling laws are by now holding fairly well for E~1(¢) and the system is
pretty well saturated. We also include plots of u at late times. It seems to take
slightly longer for the scaling laws to take effect when %y is larger. Such a tendency
was also reported in [26] where a numerical study of E~! for the Cahn—Hilliard
equation with constant mobility was performed which focused on the nucleation
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FIGURE 18. Log-scale plots of E~ and fi(t) = 2(2t)'/3/(1—w3)*/3
versus time for constant mobility (left), and E~1! and gi(t) =

2(2t)1/4/(1 — w2) versus time degenerate mobility (right) for @y =
{ﬂl,ﬂg,ﬂg,ﬂzl,ﬂg,} = {0, 0.2,0.5,0.7, 09}
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FIGURE 19. Long time log-scale plot of E~1(¢) (left) and G(t) =
E(t) —0.5(1 — S(t)) (right) over the time interval [0, 1600] for con-
stant and degenerate mobilities, with Ty = 0 (single run). The
bottom row shows the computed solution u at time ¢ = 1600 for
constant (left) and degenerate (right) mobilities.

regime, but here it is only a small effect. We present the results from a run with
o = 0.9 in Figure 20, where we show plots of E(t)~! for a single run over a long
time interval. As before, we also visualize u at late times. It could be seen that
in the case of degenerate mobility a steady state has been reached from around

half-way through the simulation, while in the constant mobility case the coarsening
was still continuing at time ¢ = 1600.
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FIGURE 20. Long time plot of E~1(t) over the time interval
[0,1600] for constant (left) and degenerate (right) mobilities, with
up = 0.9 (single run). The bottom row shows u at time ¢t = 1600
for constant (left) and degenerate (right) mobilities.

3.6. The structure function. In this section we would like to test the hypothesis
in [24] that for phase separation models such as Cahn—Hilliard, at sufficiently large
times, the circularly averaged structure function can be expressed as

S(k,t) ~ S(K(t),t)F(k/K(t)) = K~2(t)F(k/K(t)),

where K(t) is the value of k at which S(k,t) attains its maximum and F(-), F()
are scale invariant functions. Thus it seems of interest to calculate K?(t)S(k,t)
as a function of k/K(t), in order to verify the degree to which the scale invariant
hypothesis is fulfilled.

In the computational experiments, it was observed that the dominant frequency
K (t) plays a role in the scaling. Moreover, K ~1(¢) provides an additional measure of
the typical length scales of the system, and hence one would expect that 2m K ~1(t) ~
I(t), where [(t) corresponds to the typical length scale of the system as discussed
earlier.

However, since we are using discrete FFT, K (¢) only attains discrete values and
is discontinuous in time. Therefore the graphs will not be properly “centered” if one
uses K ~1(t) in evaluating K2(¢)S(k,t). To circumvent this difficulty, we assumed
that S(K(t),t) o< K~2(t), and accordingly computed S(k,t)[R(t)]~2 as a function
of kR(t) where R(t) := (S(K(t),t))" /2.

In Figures 21-23, we have displayed the scaled structure function, S(k, t)[R(t)] 72,
as a function of kR(t), for ug = 0,0.5,0.9. We observe that the scaling is not attained
at t = 40.8. The scaling invariance seems to be better for the case of constant
mobility when Ty = 0 and 0.9, and better for the case of degenerate mobility when
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FIGURE 21. S(k,t)[R(t)]72 vs. kR(t) for t = 40,80, 120, 160, and
up = 0, with constant (left) and degenerate mobility (right).
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FIGURE 22. S(k,t)[R(t)]~2 vs. kR(t) for ¢ = 40,80, 120, 160, and
up = 0.5, with constant (left) and degenerate mobility (right).
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FIGURE 23. S(k,t)[R(t)]~2 vs. kR(t) for ¢ = 40, 80,120, 160, and
up = 0.9, with constant (left) and degenerate mobility (right).

iy = 0.5. A long time computation for a single realization of the initial condition
seemed to indicate that at longer times, the scaling is approximately attained for
both constant and degenerate mobilities.
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4. Summary and conclusions. A series of numerical computations were under-
taken for the deep quench obstacle problem for both constant and degenerate mo-
bilities for a variety of mean masses. In the computations the initial conditions
were taken as a perturbation of the mean mass. Because for the deep quench ob-
stacle problem there is no binodal and all of the masses —1 < Wy < 1 studied
were “subspinodal”, in other words linearly unstable, phase separation was seen to
ensue. Roughly speaking, the phase separation was seen to proceed via an initial
stage prior to saturation marked by linear growth, a transitional period, and finally
a coarsening period. By postprocessing the results of the computations based on
a number of benchmarks, we were able to gain new insight into the details of the
transitional period and to verify new scaled upper coarsening bounds.

During the initial period, the evolution was similar for the constant and the de-
generate mobilities and for all the various mean masses studied, and the plots of
E(t), S(t), and G(t) appeared to be roughly flat. While the duration of the linear
regime appeared to be longer than indicated by linear theory, as has been predicted
previously in the context of the Cahn—Hilliard equation with constant mobility, the
relative length of the linear regimes could be seen to be roughly proportional to
the various linear growth rates based on the amplitudes of the initial perturba-
tions. During the beginning of the linear regime, the Betti numbers exhibited rapid
decrease before reaching a roughly constant level.

The exact onset of the transitional period seemed to depend somewhat on the
benchmark considered. Before rapid growth in E(t), S(t), and G(t) occurred, al-
ready a change in monotonicity of the Betti numbers could be seen, indicating a
short period of increase in the number of connected components. Sometime dur-
ing this period of inverted monotonicity, a period of rapid growth in E~!(¢) and
S(t) was seen to occur. Over the entire period of the evolution, G(t) was seen
to have a unique minimum which occurred during the period of rapid growth of
E~=1(t) and S(t). The time at which this minimum was attained could thus be
identified as a well-defined “crossover” time. These crossover times could be seen
to depend on the type of mobility and were roughly linearly proportional to the
mean mass. Sometime a bit after the crossover time, by inspecting the evolution
of the Betti numbers, a dominance of the boundary components takes over. These
details should help to unravel the mathematics of the dynamics of the transitional
“reorganizational” phase.

Afterwards during coarsening, the results appeared to be in good accord with
the predicted upper bounds based on rescaling the energy and time with mean
mass dependent scalings, with the bounds appearing to hold even before the coars-
ening regime takes effect. Finally, the structure function exhibited approximate
self-similar scaling in a number of long runs.

We point out that to the best of our knowledge, the functional G(t) which we have
defined constitutes a new benchmark which has yet to be implemented numerically
or studied analytically for the deep quench obstacle problem or for similar Cahn—
Hilliard type settings. We find it fascinating that we have identified a functional
which seems to robustly exhibit a unique minimizer. Further investigation of the
evolution of G(¢) and its interrelationship with the other benchmarks seems clearly
called for. Other possible areas of future research include extending the presented
study to three space dimensions, as well as using more sophisticated tools from
computational algebraic topology.
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5. Appendix. The bounds (6)—(8), which are in the spirit of [36, 43], can be
derived from Lemmas 1-4 and Corollary 1 in [41] by rescaling E(t), L(t), and ¢, and
by deriving a simple inequality.

More specifically, setting E(f) = L E(t)[s._, 7, L) = LL()|peyyp T = t/1
n [41, Lemma 1], where L and 7 denote scaling constants to be determined and

T _ 1-w
E ==,

Lemma 5.1. If |u| < 1, then 1 < 23/2[3( ) + (12182?“52') % (D)]Y2 + E(i) for
t>0.

Defining #* := sup{{0} U {f € (0,00)|E(f) > 1}} and noting that E; < 0, we
obtain as in [41, Corollary 1],

Corollary 1. If |a| < 1, then neglecting boundary terms for the sake of simplicity,
. = p T .. = =7 2 e 7
(NZ)ENE 1 z]:t < 1, and (1) E < 1 and EL > 24L(1— E)? if t > 1. Thus
E({)L({) > B() > B(f*) for t > &, where B(f) = m and B(*) = 0 if
t* > 0.

By Cauchy—Schwarz, |_§12\ Jo(1 —u?) dz < (1 —@?). Hence by (3), IQ\ Jo(1

u?) dz < (1 —w?) min{1, E(t)}. Proceeding now as in the proof of [41, Lemmas 2,
3],

Lemma 5.2. Suppose that |a| < 1. Then |Li|? < —E; for (DQ) with nondegenerate
— 72 ~ ~ o~

mobility and t := 5% , and |L;]* < —min{l, E}E; for (DQ) with degenerate

277

2E”

mobility and T :=

From Corollary 2, Lemma 2 and [41, Lemma 4], it follows in terms of the original
variables for ¢ > t* where t* := sup{{0} U {t € (0,00)|E(t) > 3(1 —u*)}}, that for
the case of nondegenerate mobility,

where 0 < o < 1, (1 —p)r < 2,7 < 3, or > 1, and for the case of degenerate
mobility,

}71/7“7 (16)

T2, 1 4 2 4= _q/p
S710, 57, ) gE—“’f(l‘“")(zE_f)“ [192 - (7Lﬂ)f ) ! } T an
2T, 2(EL)2t
where 0 < o <1, (1 —p)r < 2,7 < 4, or > 2, and 9¥; = 9;(p,r) for i € {1, 2},
see [41, 43]. Note that (16)—(17) correspond to (6)—(7). As explained in [41, 43],
somewhat similar bounds maybe be prescribed for times 0 < ¢t < t*, but they are
not so relevant to the present context where E(0) ~ 3(1 —u?).

The bounds (16)—(17) may now be evaluated when L = E = £(1—u7). Although
(16)—(17) provide upper bounds for all times ¢ > t*, at large times the form of the
upper bounds simplifies somewhat. By considering the estimates for large ¢, and
evaluating these upper bounds for large ¢ in the limit when ¢ — 1, r — 3+« where
a = 0 in the nondegenerate case and o = 1 in the degenerate case, and noting
that in this parameter limit ¢; — 1 for ¢ € {1, 2} (see [41]), the approximate upper
bounds prescribed in (8)—(9) now follow.
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The rescalings have been chosen to make the statement of the results as simple
as possible, and in this sense our approach is somewhat similar to the approach
adopted by Conti et al. [16].
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