Loading [MathJax]/jax/output/SVG/jax.js
Review

Features, roles and chiral analyses of proteinogenic amino acids

  • Amino acids (AAs) are important biomolecules responsible for plethora of functions in both prokaryotic and eukaryotic systems. There are 22 naturally occurring amino acids, among which 20 common amino acids appear in the genetic code and known as proteinogenic amino acids, which are the building blocks of proteins. Proteinogenic amino acids exist in two isomeric forms (except glycine) and the biological activity is often attributed to a specific stereoisomer. Most of the amino acids found in protein is predominantly L-AAs. A few D-amino acids can be found in bacterial cell wall, some marine invertebrates and higher organisms including frog, snail, spider, rat, chicken and human. Besides their role in protein synthesis, different proteinogenic amino acid stereoisomers have found to perform important biological roles either by functioning as precursors of a myriad of other bioactive molecules or by indicating several biological phenomena i.e. acting as markers for different physiological conditions. Given the biological importance of L- and D-amino acids (AAs), improved analytical methods for their resolution and accurate quantification remain of keen interest. Chiral analysis of amino acids in complex biological matrices poses numerous analytical challenges that are exacerbated by broad differences in polarity and ionization efficiencies of the proteinogenic amino acid stereoisomers. To date, various analytical methods are reported for chiral amino acid analysis including chromatographic, spectrometric, enzymatic, fluidic, electrophoretic and microbiological techniques. Advances in stationary phase, derivatization chemistry and instrumentation contributed to achieving baseline separation and accurate detection of trace levels of proteinogenic amino acids stereoisomers in different matrices. However, liquid and gas chromatography coupled to mass spectrometry based analytical methods remain the most popular platform in chiral amino acid analysis in terms of feasibility and performance. This review discusses different physicochemical and biological features and functions of proteinogenic amino acid stereoisomers and lists a variety of established chromatography and mass spectrometry based analytical methods for their analysis reported to date.

    Citation: Navid J. Ayon. Features, roles and chiral analyses of proteinogenic amino acids[J]. AIMS Molecular Science, 2020, 7(3): 229-268. doi: 10.3934/molsci.2020011

    Related Papers:

    [1] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . Gauss-diffusion processes for modeling the dynamics of a couple of interacting neurons. Mathematical Biosciences and Engineering, 2014, 11(2): 189-201. doi: 10.3934/mbe.2014.11.189
    [2] Aniello Buonocore, Luigia Caputo, Enrica Pirozzi, Maria Francesca Carfora . A simple algorithm to generate firing times for leaky integrate-and-fire neuronal model. Mathematical Biosciences and Engineering, 2014, 11(1): 1-10. doi: 10.3934/mbe.2014.11.1
    [3] Giuseppe D'Onofrio, Enrica Pirozzi . Successive spike times predicted by a stochastic neuronal model with a variable input signal. Mathematical Biosciences and Engineering, 2016, 13(3): 495-507. doi: 10.3934/mbe.2016003
    [4] Virginia Giorno, Amelia G. Nobile . Exact solutions and asymptotic behaviors for the reflected Wiener, Ornstein-Uhlenbeck and Feller diffusion processes. Mathematical Biosciences and Engineering, 2023, 20(8): 13602-13637. doi: 10.3934/mbe.2023607
    [5] Virginia Giorno, Serena Spina . On the return process with refractoriness for a non-homogeneous Ornstein-Uhlenbeck neuronal model. Mathematical Biosciences and Engineering, 2014, 11(2): 285-302. doi: 10.3934/mbe.2014.11.285
    [6] Shinsuke Koyama, Ryota Kobayashi . Fluctuation scaling in neural spike trains. Mathematical Biosciences and Engineering, 2016, 13(3): 537-550. doi: 10.3934/mbe.2016006
    [7] Giacomo Ascione, Enrica Pirozzi . On a stochastic neuronal model integrating correlated inputs. Mathematical Biosciences and Engineering, 2019, 16(5): 5206-5225. doi: 10.3934/mbe.2019260
    [8] Asma Alshehri, John Ford, Rachel Leander . The impact of maturation time distributions on the structure and growth of cellular populations. Mathematical Biosciences and Engineering, 2020, 17(2): 1855-1888. doi: 10.3934/mbe.2020098
    [9] Jakub Cupera . Diffusion approximation of neuronal models revisited. Mathematical Biosciences and Engineering, 2014, 11(1): 11-25. doi: 10.3934/mbe.2014.11.11
    [10] Massimiliano Tamborrino . Approximation of the first passage time density of a Wiener process to an exponentially decaying boundary by two-piecewise linear threshold. Application to neuronal spiking activity. Mathematical Biosciences and Engineering, 2016, 13(3): 613-629. doi: 10.3934/mbe.2016011
  • Amino acids (AAs) are important biomolecules responsible for plethora of functions in both prokaryotic and eukaryotic systems. There are 22 naturally occurring amino acids, among which 20 common amino acids appear in the genetic code and known as proteinogenic amino acids, which are the building blocks of proteins. Proteinogenic amino acids exist in two isomeric forms (except glycine) and the biological activity is often attributed to a specific stereoisomer. Most of the amino acids found in protein is predominantly L-AAs. A few D-amino acids can be found in bacterial cell wall, some marine invertebrates and higher organisms including frog, snail, spider, rat, chicken and human. Besides their role in protein synthesis, different proteinogenic amino acid stereoisomers have found to perform important biological roles either by functioning as precursors of a myriad of other bioactive molecules or by indicating several biological phenomena i.e. acting as markers for different physiological conditions. Given the biological importance of L- and D-amino acids (AAs), improved analytical methods for their resolution and accurate quantification remain of keen interest. Chiral analysis of amino acids in complex biological matrices poses numerous analytical challenges that are exacerbated by broad differences in polarity and ionization efficiencies of the proteinogenic amino acid stereoisomers. To date, various analytical methods are reported for chiral amino acid analysis including chromatographic, spectrometric, enzymatic, fluidic, electrophoretic and microbiological techniques. Advances in stationary phase, derivatization chemistry and instrumentation contributed to achieving baseline separation and accurate detection of trace levels of proteinogenic amino acids stereoisomers in different matrices. However, liquid and gas chromatography coupled to mass spectrometry based analytical methods remain the most popular platform in chiral amino acid analysis in terms of feasibility and performance. This review discusses different physicochemical and biological features and functions of proteinogenic amino acid stereoisomers and lists a variety of established chromatography and mass spectrometry based analytical methods for their analysis reported to date.


    In many situations arising from applications (i.e. neuroscience, finance, reliability, ...), the quantity of interest is the first time that a random quantity crosses a given fixed level. In a mathematical framework, this corresponds to the first passage time (FPTs) of a stochastic process through an eventually time dependent boundary. However, it can happen that the FPT distribution is known as well as the random process, while one is interested in determining the corresponding time dependent boundary. This is the so-called Inverse FPT problem. This problem has been investigated both from a theoretical [1,2] and an empirical point of view [3,4,5,6] in the one-dimensional case. In [1] the existence and uniqueness of the solution of the Inverse FPT is studied. In [2] the problem is interpreted in terms of an optimal stopping problem. A numerical algorithm has been proposed in [6] for the Wiener process. In [5] the Inverse FPT of an Ornstein Uhlenbeck (OU) process has been studied and it has been applied to a classification method with applications to neuroscience. The same framework is in [4], where possible thresholds corresponding to Gamma distributed FPTs for an OU process has been investigated with modelling purposes.

    Here, we resort again to the Inverse FPT method, we generalize the algorithms to a two-dimensional OU process and we study the possibility to have Inverse Gaussian (IG) or Gamma distributed FPTs. The choice of these two distributions grounds on their role in neurosciences [7,8,9,10,11,12,13] and reliability theory [14,15].

    In Section 2 we introduce the two dimensional Gauss-Markov process of interest, underlying some properties that we will use to deal with the Inverse FPT algorithm. In Section 3 we introduce the Inverse FPT method for a two dimensional process but we postpone to a future work the mathematical discussion about its convergence. In Section 4 we apply the algorithm to two choices of the FPT distribution, determining the thresholds corresponding to IG or Gamma FPTs probability density function (pdf). We underline the differences between the two models and we explain how heavy or light tails influence the boundary behavior. The last section discusses the obtained results in neuroscience contest. The two compartment model of Leaky Integrate and Fire type presented in [9] and studied in [16] describes the membrane potential evolution of a neuron as a two-dimensional OU process. Hence, in Section 5 we reinterpret the Inverse FPT results in this framework.

    Let us consider a stochastic process X={(X1(t),X2(t)),t0} that is solution of the following stochastic differential system

    {dX1(t)={αX1(t)+β[X2(t)X1(t)]}dtdX2(t)={αX2(t)+β[X1(t)X2(t)]+μ}dt+σdBt (2.1)

    with X(0)=0 and where B is a one-dimensional standard Brownian motion. Here, α>0, β, μ and σ>0 are constants.

    To solve the stochastic differential system (2.1), we rewrite it in matrix form

    dX(t)=[AX(t)+M(t)]dt+GdB(t), (2.2)

    where

    A=(αβββαβ)M(t)=M=(0μ) and G=(000σ).

    It is an autonomous linear stochastic differential equation, in particular it is a two-dimensional Ornstein Uhlenbeck process, special case of a Gauss-Markov diffusion process [17]. The solution of (2.2) is

    {X1(t)=μ2(1eαtα1e(α+2β)tα+2β)+σ2t0(eα(ts)e(α+2β)(ts))dB(s)X2(t)=μ2(1eαtα+1e(α+2β)tα+2β)+σ2t0(eα(ts)+e(α+2β)(ts))dB(s). (2.3)

    It is a Gaussian vector with mean

    m(t)=E(X(t))=[μ2(1eαtα1e(α+2β)tα+2β)μ2(1eαtα+1e(α+2β)tα+2β)] (2.4)

    and variance-covariance matrix Q(ts) where,

    Q(t)=[Q(11)Q(12)Q(12)Q(22)](t) (2.5)

    and

    Q(11)(t)=12(1α2α+β+1α+2βe2αt(1α2e2βta+β+e4βtα+2β))Q(12)(t)=121e2αtα1e2(α+2β)tα+2βQ(22)(t)=12(1α+2α+β+1α+2βe2αt(1α+2e2βtα+β+e4βtα+2β)).

    Trajectories of the process are plotted in Figure 1. The different behavior of the two components is evident: the noisy behavior is prevalent in X2, while the first component X1 is smoother. Indeed, as shown in (2.3), the multiplying function of the random term on the first component reduces the noise effect.

    Figure 1.  Three sample paths of the two components of the process X. The parameters of the two compartment model are α=0.33, β=0.2, μ=0 and σ=1.

    We consider the first passage time of the first component of the process (2.1)

    T=inf{t>0:X1(t)>S(t)} (2.6)

    where S(t) is a continuous function with S(0)X1(0)=0.

    Note that it is possible to rewrite (2.3) in iterative form. This version is useful for simulation purposes, in order to generate the trajectories in an exact way. Discretizing the time interval [0,T] with the partition π:0=t0<t1<<tN=T in N subintervals of constant length h=TN, we can express the position of the process at time tk+1 in terms of the position of the process at time tk

    X(tk+1)=12[eαh+e(α+2β)heαhe(α+2β)heαhe(α+2β)heαh+e(α+2β)h]X(tk)+μ2[1eαhα1e(α+2β)hα+2β1eαhα+1e(α+2β)hα+2β]+σ2Ik (2.7)

    where the term

    Ik=[tk+1tk(eα(tt+1s)e(α+2β)(tk+1s))dB(s)tk+1tk(eα(tt+1s)e(α+2β)(tk+1s))dB(s)], (2.8)

    known as innovation, is a Gaussian vector with zero mean and variance-covariance matrix Q(h).

    In the following we will also need the conditioned mean of the first component

    m(1)(t|(X1(θ),X2(θ)),θ)=E(X1(t)|X(θ)=(X1(θ),X2(θ)))=μ2(2βαeα(tθ)2βeα(tθ)+αe(α+2β)(tθ)α(α+2β))X1(θ)eα(tθ)2(1+e2β(tθ))X2(θ)eα(tθ)2(1e2β(tθ)) (2.9)

    and the conditioned variance of the first component

    Q(11)(t|(X1(θ),X2(θ)),θ)=Var(X1(t)|X(θ)=(X1(θ),X2(θ)))=σ2e2α(tθ)[2αe2β(tθ)(α+2β)αe4β(tθ)(α+β)+2β2e2α(tθ)α23αβ2β2]8α(α+β)(α+2β) (2.10)

    In some instances can be useful to transfer the time dependency from the boundary shape S(t) to an input M(t). Mathematically it is possible to relate these two situations with a simple space transformation. Indeed, the space transformation

    Y1(t)=X1(t)S(t)+Σ. (2.11)

    changes our process X given by (2.1), originated in X(0)=x0 in presence of a time dependent boundary S(t)

    {dX1(t)={αX1(t)+β[X2(t)X1(t)]}dtdX2(t)={αX2(t)+β[X1(t)X2(t)]+μ}dt+σdBtX(0)=x0S(t) (2.12)

    into a two dimensional process characterized by time dependent input M(t) and constant threshold Σ

    {dY1(t)={αY1(t)+β[X2(t)Y1(t)]+μ1(t)}dtdX2(t)={αX2(t)+β[Y1(t)X2(t)]+μ2(t)}dt+σdBtX(0)=x0S(0)+ΣΣ. (2.13)

    Here, the term

    M(t)=[μ1(t)μ2(t)]=[(α+β)(S(t)Σ)S(t)μ+β(S(t)Σ)] (2.14)

    can be interpreted as an external input acting with different weights on the two compartments. Note that in (2.14) S(t) should be interpreted as a function of time and not as a boundary of a FPT problem. Indeed, in this case the boundary of the model is constant.

    The stochastic process (2.1) can be used to describe a system whose behavior depends by two components that are strictly correlated by the parameter β. The second component is driven by a random Gaussian noise and its evolution is stopped when the first component reaches a given fixed level. This model, known as two compartment model, has many interesting applications, for example in neuroscience, reliability and finance.

    The inverse FPT problem consists in searching the unknown boundary S(t) given that the FPT density fT(t) is known. We work under the assumption that the boundary S(t) exists, it is unique and sufficiently regular.

    Let us consider a diffusion process X={(X1(t),X2(t)),t0}, solution of the stochastic differential equation (2.2). The proposed method is based on the numerical approximation of the following Volterra integral equation [16]

    1Erf(S(t)m(1)(t)2Q(11)(t))=t0fT(θ)EZ(θ)[1Erf(S(t)m(1)(t|(S(θ),X2(θ)),θ)2Q(11)(t|(S(θ),X2(θ)),θ))]dθ (3.1)

    where Z(t) is a random variable that represents the position of the second component X2 of the process when the first component X1 hits the boundary at time t, i.e.

    P(Z(t)<z)=P(X2(T)<z|T=t,X(t0)=y). (3.2)

    Let us fix a time interval [0,Θ] and a partition π:0=t0<t1<<tN=Θ in N subintervals of constant length h=ΘN. Using Euler formula for integrals [18], equation (3.1) can be approximated as

    1Erf(S(ti)m(1)(ti)2Q(11)(ti))=hij=1fT(tj)EZ(tj)[1Erf(S(ti)m(1)(ti|(S(tj),X2(tj)),tj)2Q(11)(ti|(S(tj),X2(tj)),tj))] (3.3)

    i=1N.

    Equation (3.3) represents a non linear system of N equations in N unknown S(t1),,S(tN) that can be solved by means of root finding iterative algorithms [19]. Its solution gives an approximation S(t) of the boundary S(t) in the partition points π. Note that in step i the only unknown quantity is S(ti) and it is estimated using the boundary approximations S(t1),,S(ti1), computed in the previous steps.

    The quantity

    θi,k=EZ(tk)[1Erf(S(ti)m(1)(ti|S(tk|(S(tk),X2(tk)),tk)2Q(11)(ti|(S(tk),X2(tk)),tk))] (3.4)

    is not easily handled because it depends on the unknown time dependent boundary. In general, the computation of θk,k is not trivial but, performing a suitable limit on the considered process we can show that θk,k=2 for each value of k. To compute (3.4) when ki, we use a Monte Carlo method: we simulate the process X until the first component exceeds the threshold and we save the corresponding value of Z. At step i, we need to compute θi,k for k=1,,i1. The presence of an expectation with respect to Z(tk) determines a difficulty for the estimation of (3.4) through Monte Carlo because we need the value of Z(tk)=X2(tk) at time T=tk. To circumvent this problem we introduce an approximate approach as follows. At step i we approximate the threshold with a piecewise linear curve with knots in the already computed boundary values. Hence, for τ[tj1,tj], j=1,,i1 we substitute the exact boundary with

    ˆS(τ)=S(tj)S(tj1)tjtj1τ+tjS(tj1)S(tj)tj1tjtj1 (3.5)

    and we simulate the process up to ti1 or until it reaches the threshold. To compute θi,k, k=1,,i1 we use only the trajectories that crossed the approximated boundary (3.5) in a neighbourhood of tk. Then, in correspondence to each of these sample paths we identify with {Zk,k=1M} the sequence of values of the second component of the process X (when the first component has exceeded the threshold). In this way, the Monte Carlo estimate for θi,j is

    ˜θi,j=1Mk=1Erf(S(ti)m(1)(ti|(S(tj),Zk),tj)2Q(11)(ti|(S(tj),Zk),tj))M.

    It is possible to prove that this further approximation does not seriously influence the reliability of the algorithm.

    In this Section we illustrate the use of the Inverse FPT method through two examples. The first situation concerns FPTs with Inverse Gaussian distribution. The second one deals with the Gamma distribution. Lastly, a comparison between boundaries and drift terms arising in the two examples is developed.

    The IG random variable T has pdf

    fT(t)=[λ2πt3]1/2exp[λ(tρ)22ρ2t],t0, (4.1)

    where ρ>0 is the mean and λ>0 is the shape parameter. Mean, variance and coefficient of variation are given by

    E(T)=ρVar(T)=ρ3λCV=CV(T)=Var(T)E(T)=ρλ. (4.2)

    Throughout all this paper, when not differently specified, we fix the values of the two compartment model as follows: α=0.33,β=0.2 and σ=1. We choose the shape of the IG distribution by fixing its mean E[T]=4 and different values of CV (see Figure 2, panel (a)). From (4.2) we see that changes of CV imply changes of the shape parameter λ. Moreover, as CV increases, the density becomes more peaked. The corresponding shapes of the time varying thresholds are illustrated in panels (b) where the shapes of the boundary present a maximum that tends to disappear as CV grows to higher values.

    Figure 2.  Probability densities (a) and evaluated boundaries (b) in the case of Inverse Gaussian-distributed FPTs with E(T)=4. Different lines correspond to different shapes of the Inverse Gaussian densities, CV=0.5 (red), CV=0.75 (magenta), CV=1 (black), CV=1.5 (blue), CV=2 (green). The parameters of the two compartment model are α=0.33, β=0.2, μ=0 and σ=1.

    When ρ is finite, the IG distribution has light tails but if ρ the IG becomes

    fT(t)=[λ2πt3]1/2exp[λ2t],t0, (4.3)

    and it catches the heavy tails feature of interest for the analysis of some data [7,8,12]. The density (4.3) is known to be the density of the FPT of a Brownian motion with zero drift and diffusion coefficient ν through a constant boundary b with the relation

    λ=b2ν2. (4.4)

    Since E(T)=, it makes no sense to compute the CV but, in order to compare light and heavy tails distributions, we use the same values of λ in Figure 2 and 3. In Figure 3, different shapes of the pdfs (panel (a)) and of the corresponding boundaries (panel (b)) are shown. The heavy tails of this distribution determine a new shape for the threshold that has a decreasing maximum as λ increases, followed by a minimum and by an increasing shape of the boundary. The maximum tends to disappear for large values of λ and the values of the boundary are essentially positive. The growth of the boundary, for larger values of t, stop to allow the crossing of the samples determining the tail of the distribution. Figure 3 refers to the time interval [0,20], corresponding to a low probabilistic mass. A check for longer intervals does not change the results from a qualitative viewpoint, while higher probability masses are reached (figure not shown).

    Figure 3.  Probability densities (a) and evaluated boundaries (b) in the case of Inverse Gaussian-distributed FPTs with heavy tails. Different lines correspond to different values of the parameter: λ=16 (red), λ=7.11 (magenta), λ=4 (black). The parameters of the two compartment model are α=0.33, β=0.2, μ=0 and σ=1. Probability mass = [0.37 0.55 0.65] for λ=[16 7.11 4].

    A random variable T is Gamma distributed if its pdf is

    fT(t)=γκΓ(κ)tκ1eγt,t0. (4.5)

    Here, γ>0 is the rate parameter and κ>0 is the shape parameter. Such a random variable is characterized by the following mean, variance and coefficient of variation

    E(T)=κγVar(T)=κγ2CV=CV(T)=1κ. (4.6)

    The shapes of Gamma pdf for different values of the parameters γ and κ can be seen in Figure 4, panel (a). The shapes of the Gamma pdf strongly change with the value of CV. We recall that CV=1 corresponds to the exponential distribution. Tails of the Gamma distribution are light, decaying to zero as an exponential. The corresponding shapes of the time varying thresholds are shown in panel (b) where the values of the two compartment model are: α=0.33, β=0.2 and σ=1. Here, as CV increases, the maximum of the boundary disappears and the threshold time varying threshold becomes flat or, eventually when CV=2, increasing. This is the main difference of the boundary behavior with respect to the IG case.

    Figure 4.  Probability densities (a) and evaluated boundaries (b) in the case of Gamma-distributed FPTs with E(T)=4. Different lines correspond to different shapes of the Gamma densities, CV=0.5 (red), CV=0.75 (magenta), CV=1 (black), CV=1.5 (blue), CV=2 (green). The parameters of the two compartment model are α=0.33, β=0.2, μ=0 and σ=1.

    Often, IG and Gamma distributions appear as output of models of the same phenomenon but, for different choices of diffusion parameters. Hence, it seems useful to compare these distributions in terms of corresponding boundaries, using the Inverse FPT method. Hence, in this subsection we compare the boundaries corresponding to IG and to Gamma distributions when mean and CV are the same.

    Figure 5 shows the time varying boundaries corresponding to the IG (dashed) and the Gamma-distributed (solid) interspike intervals (ISIs) with the same mean value and the same CV. In this example E[T]=10 while CV=[0.5,1,1.5]. Densities and corresponding boundaries become more and more different as we increase the CV value (cf. inbox of Figure 5). The different spreading of probability mass of the two classes of distributions is reflected in different shapes of the corresponding boundaries. Since the IG density has heavier tails, the probability mass should not be consumed for short times. For this reason the boundary increases allowing crossings for large times.

    Figure 5.  Comparison between the time varying boundaries corresponding to the Inverse Gaussian (dashed) and the Gamma-distributed (solid) FPTs with E(T)=10 and with varying CV, the probability densities are on the sub-plots. The parameters of the two compartment model are α=0.02, β=0.02, μ=0 and σ=0.4.

    To help a physical interpretation of the results in terms of input of a two compartment model, in Figure 6 we compare the behavior of the two components (2.14) of M(t), when the boundary is transformed into a constant through (2.11). We ask what would be the input to both compartments if the output distribution is fixed and threshold is constant. We illustrate the cases of FPT distributed as IG (a-b), IG with heavy tails (c-d) and Gamma (e-f), respectively. Reinterpreting the time dependent boundary in terms of a modification of the drift allows to interpret our results in terms of increasing or decreasing drift. We note that a positive drift on the first component is always necessary to obtain the prescribed FPT distribution. When CV1, FPTs distributed as Gamma or IG imply similar input. On the contrary, when tails of IG are heavy (panel (c)) or CV is large enough (panels (a) or (e)), the drift term of the first component strongly changes becoming decreasing. Interestingly the behavior of the second component μ2(t) (panels (b), (d) and (f)) is the opposite of that of μ1(t).

    Figure 6.  Comparison between the values of the two components of M(t) (2.14) when the boundary is constant Σ=4 in the case of FPT distributed as IG (a-b), IG with heavy tails (c-d) and Gamma (e-f), respectively. The parameters and the colors of the functions are the same of the examples of Figures 2, 3 and 4. The parameters of the two compartment model are α=0.33, β=0.2, μ=0 and σ=1.

    Lastly, we change the comparison criterion and we apply the Inverse FPT method varying the values of the parameter μ in (2.1). We fix the values of the model as follows: α=0.02, β=0.02 and σ=0.4. We consider examples of boundaries corresponding IG or Gamma spiking densities for CV=0.5 (Figure 7) or CV=1 (Figure 8).

    Figure 7.  Inverse-Gaussian (a) and Gamma (c) distributed FPTs with mean FPT equal to 10 and CV=0.5. Corresponding boundaries and mean value of the first component (b, d). Different lines correspond to different values of the mean input: μ=0 (black), μ=0.3 (blue), μ=0.6 (cyan). Thicker lines correspond to the time varying boundaries. The vertical dotted lines give the FPT distribution quantiles. The parameters of the two compartment model are α=0.02, β=0.02, σ=0.4, while μ varies as specified above.
    Figure 8.  Inverse-Gaussian (a) and Gamma (c) distributed FPTs with mean FPT equal to 10 and CV=1. Corresponding boundaries and mean value of the first component (b, d). Different lines correspond to different values of the mean input: μ=0 (black), μ=0.3 (blue), μ=0.6 (cyan). Thicker lines correspond to the time varying boundaries. The vertical dotted lines give the FPT distribution quantiles. The parameters of the two compartment model are α=0.02, β=0.02, σ=0.4, while μ varies as specified above.

    In the figures, we also compare the boundaries (thicker line) with the mean of the first component E[X1(t)]. We note that boundary always intersects the function E[X1(t)]. Interestingly, if we fix the firing FPT and its CV, the intersection value is the same for different values of the parameter μ. This fact can be easily understood by noting that a change in μ determines the same shift both on the mean value of X1(t) and on the boundary. However, this value changes considering different CVs.

    We give here an example of application of the Inverse FPT method to neuroscience.

    Simplest neuronal models resort to one-dimensional processes to describe the membrane potential evolution. This choice implies a strong simplification of the neuronal structure that is identified by a single point. More complex models introduce bivariate stochastic processes to discriminate the membrane potential dynamics in the dendritic or in the trigger zone [9]. Neurophysiological reasons suggest the existence of an interaction between the membrane potential dynamics in the two zones and, when the first component (the trigger one) attains a boundary value, the neuron releases a spike. A reasonable simplification allows to add a noisy term only to the dendritic component. The reset after the spike can include both the components or only the trigger zone. Here, we will consider only the case of total resetting of both components to a resting value that we fix, for simplicity, equal to zero.

    In this framework, the stochastic process (2.1) describes the depolarization of the trigger zone and the dendritic one, respectively [9]. The model assumes that external inputs, with intensity μ and variability σ, influence the second compartment and a weight β takes into account the interconnection between the parts of the neuron. Moreover, the constant α>0 accounts for the spontaneous membrane potential decay (cf. Figure 9). Then, the FPT T mimics the ISI of the neuron and the boundary S(t) corresponds to the spiking threshold for the neuron.

    Figure 9.  Schematic representation of the two-compartment model.

    Often, IG and Gamma distribution fit neuronal data and FPT may help to interpret the presence of these distributions. Here, we reinterpret Figures 2-8 in the neuronal model framework. Hence, constants α and β will be measured in  ms1, while μ will be measured in mV ms1 and σ in  mV ms1/2.

    Figures 2, 3, 4 and 5 reinterpret the heaviness of the tail of the ISI distributions in terms of the threshold shapes. As we increase the CV value, IG and Gamma densities and the corresponding boundaries become more and more different. This means that CV plays an important role in the formulation of the model. Moreover, in the case of the Gamma ISI distribution, the slope of the threshold becomes increasing when CV is large enough. A similar increasing behavior of the boundary could be obtained with IG distributed ISIs with heavy tails (cf. Figure 3).

    In Figures 7 and 8 we investigate not only the behavior of the time varying firing threshold but also the dynamics of the underlying two compartment neuronal model. The mean membrane potentials and the corresponding boundaries are plotted for different values of the mean input μ and for different values of CV. For low input μ, the curves exhibit a maximum after which the firing threshold starts to decrease. As the input μ increases, the firing threshold from concave and decreasing become convex and increasing. Indeed, a big input μ facilitates the spiking. Therefore, to obtain the assigned distribution, the threshold must move away, becoming increasing.

    Lastly in Figure 10 we study the role of the parameter β in the model, applying the Inverse FPT method to IG (panel (a)) and Gamma (panel (b)) FPT distribution and varying the values of the parameter β. As β decreases, the boundary becomes almost constant and equal to zero. This is consistent with the fact that, for β=0, the two components of the process gets independent and X1 is deterministic and equal to zero, since X(0)=0. Then, in order to have a crossing and to get a prescribed distribution, the threshold should approach zero.

    Figure 10.  Boundaries corresponding to Inverse Gaussian (a) and Gamma (b) distributed FPTs with E(T)=10 and CV=1. Different lines correspond to different values of β: β=0.01 (green), β=0.02 (red), β=0.1 (magenta), β=0.5 (blue).The parameters of the two compartment model are α=0.02, μ=0, σ=0.4, while β varies as specified above.

    The extension of the Inverse FPT method to two-dimensional OU diffusion processes allows to study the shape of the boundaries for a given FPT pdf. We applied the algorithm to FPT distributed as an Inverse Gaussian and as a Gamma random variable. Differences in the boundary shape corresponding to FPTs with heavy or light tails enlighten different features of the corresponding two compartment model.

    Lastly, we reinterpret the obtained results in a neuroscience framework. The shape of the boundaries corresponding to different firing distributions may enlighten features of the model eventually recognizing instances of scarce physiological significance such as diverging thresholds.

    The authors are grateful to Professor L. Sacerdote and Professor L. Kostal for their interesting and useful comments and suggestions. This work is partially supported by INDAM-GNCS.

    The authors declare there is no conflict of interest.



    Conflict of interest



    The author declares no conflict of interest in this manuscript.

    [1] Alberts B, Johnson A, Lewis J, et al. (2002)  Molecular Biology of the Cell New York: Garland Science.
    [2] Boyle J (2005) Lehninger principles of biochemistry (4th ed.): Nelson, D., and Cox, M. Biochem Mol Biol Educ 33: 74-75. doi: 10.1002/bmb.2005.494033010419
    [3] Gutiérrez-Preciado A, Romero H, Peimbert M (2010) An Evolutionary Perspective on Amino Acids. Nature Education 3.
    [4] Ambrogelly A, Palioura S, Söll D (2007) Natural expansion of the genetic code. Nat Chem Biol 3: 29-35. doi: 10.1038/nchembio847
    [5] Johansson L, Gafvelin G, Arnér ESJ (2005) Selenocysteine in proteins—properties and biotechnological use. Biochim Biophys Acta 1726: 1-13. doi: 10.1016/j.bbagen.2005.05.010
    [6] Rother M, Krzycki JA (2010) Selenocysteine, Pyrrolysine, and the Unique Energy Metabolism of Methanogenic Archaea. Archaea 2010: 453642. doi: 10.1155/2010/453642
    [7] Frenkel-Pinter M, Haynes JW, C M, et al. (2019) Selective incorporation of proteinaceous over nonproteinaceous cationic amino acids in model prebiotic oligomerization reactions. Proc Natl Acad Sci 116: 16338. doi: 10.1073/pnas.1904849116
    [8] Wu G (2009) Amino acids: metabolism, functions, and nutrition. Amino Acids 37: 1-17. doi: 10.1007/s00726-009-0269-0
    [9] Ulbricht J (2018) Insights into Polymer Biodegradation - Investigations on oxidative, hydrolytic and enzymatic Pathways.
    [10] Kaspar H, Dettmer K, Gronwald W, et al. (2008) Automated GC–MS analysis of free amino acids in biological fluids. J Chromatogr B 870: 222-232. doi: 10.1016/j.jchromb.2008.06.018
    [11] Armstrong DW (1984) Chiral Stationary Phases for High Performance Liquid Chromatographic Separation of Enantiomers: A Mini-Review. J Liq Chromatogr 7: 353-376. doi: 10.1080/01483918408073942
    [12] Prinsen H, Schiebergen-Bronkhorst BGM, Roeleveld MW, et al. (2016) Rapid quantification of underivatized amino acids in plasma by hydrophilic interaction liquid chromatography (HILIC) coupled with tandem mass-spectrometry. J Inherit Metab Dis 39: 651-660. doi: 10.1007/s10545-016-9935-z
    [13] Marcone GL, Rosini E, Crespi E, et al. (2020) D-amino acids in foods. Appl Microbiol Biotechnol 104: 555-574. doi: 10.1007/s00253-019-10264-9
    [14] Koga R, Yoshida H, Nohta H, et al. (2019) Multi-Dimensional HPLC Analysis of Metabolic Related Chiral Amino Acids -Method Development and Biological/Clinical Applications. Chromatogr 40: 1-8. doi: 10.15583/jpchrom.2019.002
    [15] Domínguez-Vega E, Crego AL, Lomsadze K, et al. (2011) Enantiomeric separation of FMOC-amino acids by nano-LC and CEC using a new chiral stationary phase, cellulose tris(3-chloro-4-methylphenylcarbamate). Electrophor 32: 2700-2707. doi: 10.1002/elps.201000701
    [16] Asbury GR, Hill HH (2000) Separation of amino acids by ion mobility spectrometry. J Chromatogr A 902: 433-437. doi: 10.1016/S0021-9673(00)00799-8
    [17] Nemkov T, D'Alessandro A, Hansen KC (2015) Three-minute method for amino acid analysis by UHPLC and high-resolution quadrupole orbitrap mass spectrometry. Amino acids 47: 2345-2357. doi: 10.1007/s00726-015-2019-9
    [18] Song Y, Xu C, Kuroki H, et al. (2018) Recent trends in analytical methods for the determination of amino acids in biological samples. J Pharm Biomed Anal 147: 35-49. doi: 10.1016/j.jpba.2017.08.050
    [19] Pisarewicz K, Mora D, Pflueger FC, et al. (2005) Polypeptide Chains Containing d-γ-Hydroxyvaline. J Am Chem Soc 127: 6207-6215. doi: 10.1021/ja050088m
    [20] Vollmer W, Blanot D, De Pedro MA (2008) Peptidoglycan structure and architecture. FEMS Microbiol Rev 32: 149-167. doi: 10.1111/j.1574-6976.2007.00094.x
    [21] Golovanov AP, Hautbergue GM, Wilson SA, et al. (2004) A Simple Method for Improving Protein Solubility and Long-Term Stability. J Am Chem Soc 126: 8933-8939. doi: 10.1021/ja049297h
    [22] Kato M, Yamazaki T, Kato H, et al. (2017) Effects of the pH and Concentration on the Stability of Standard Solutions of Proteinogenic Amino Acid Mixtures. Anal Sci 33: 1241-1245. doi: 10.2116/analsci.33.1241
    [23] Rowe L, Peller J, Mammoser C, et al. (2019) Stability of non-proteinogenic amino acids to UV and gamma irradiation. Int J Astrobiol 18: 426-435. doi: 10.1017/S1473550418000381
    [24] Cataldo F, Iglesias-Groth S, Angelini G, et al. (2013) Stability toward High Energy Radiation of Non-Proteinogenic Amino Acids: Implications for the Origins of Life. Life (Basel) 3: 449-473.
    [25] Kendall C, McKenzie BF (1929) dl-Alanine. Organic Synthesis 9.
    [26] Litwack G (2018) Chapter 4 - Proteins. Human Biochemistry Boston: Academic Press, 63-94.
    [27] Meister A (1965)  Biochemistry of the Amino Acids Academic Press.
    [28] Wendisch VF (2007)  Amino Acid Biosynthesis – Pathways, Regulation and Metabolic Engineering Springer Berlin Heidelberg. doi: 10.1007/978-3-540-48596-4
    [29] Shapiro BM, Stadtman ER (1970) The Regulation of Glutamine Synthesis in Microorganisms. Annu Rev Microbiol 24: 501-524. doi: 10.1146/annurev.mi.24.100170.002441
    [30] Ljungdahl PO, Daignan-Fornier B (2012) Regulation of Amino Acid, Nucleotide, and Phosphate Metabolism in Saccharomyces cerevisiaeGenetics 190: 885. doi: 10.1534/genetics.111.133306
    [31] Gutteridge A, Thornton JM (2005) Understanding nature's catalytic toolkit. Trends Biochem Sci 30: 622-629. doi: 10.1016/j.tibs.2005.09.006
    [32] Fichtner M, Voigt K, Schuster S (2017) The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids. Biochim Biophys Acta 1861: 3258-3269. doi: 10.1016/j.bbagen.2016.08.008
    [33] Shelp BJ, Bown AW, McLean MD (1999) Metabolism and functions of gamma-aminobutyric acid. Trends Plant Sci 4: 446-452. doi: 10.1016/S1360-1385(99)01486-7
    [34] Tejero J, Biswas A, Wang Z-Q, et al. (2008) Stabilization and characterization of a heme-oxy reaction intermediate in inducible nitric-oxide synthase. J Biol Chem 283: 33498-33507. doi: 10.1074/jbc.M806122200
    [35] Bradley Levine A, Levine AB, Punihaole D, et al. (2012) Characterization of the Role of Nitric Oxide and Its Clinical Applications. Cardiology 122: 55-68. doi: 10.1159/000338150
    [36] Suárez-Marina I, Abul-Haija YM, Turk-MacLeod R, et al. (2019) Integrated synthesis of nucleotide and nucleosides influenced by amino acids. Commun Chem 2: 28. doi: 10.1038/s42004-019-0130-7
    [37] Shemin D, Rittenberg D (1946) The biological utilization of glycine for the synthesis of the protoporphyrin of hemoglobin. J Biol Chem 166: 621-625.
    [38] Fahn S, Jankovic J, Hallett M (2011) Chapter 20 - Myoclonus: Phenomenology, etiology, physiology, and treatment. Principles and Practice of Movement Disorders Edinburgh: W.B. Saunders, 447-464. doi: 10.1016/B978-1-4377-2369-4.00020-2
    [39] Whillier S, Garcia B, Chapman BE, et al. (2011) Glutamine and alpha-ketoglutarate as glutamate sources for glutathione synthesis in human erythrocytes. Febs J 278: 3152-3163. doi: 10.1111/j.1742-4658.2011.08241.x
    [40] Brady S, Siegel G, Albers RW, et al. (2012)  Basic Neurochemistry: Principles of Molecular, Cellular, and Medical Neurobiology Elsevier Science.
    [41] Ducker GS, Rabinowitz JD (2017) One-Carbon Metabolism in Health and Disease. Cell Metab 25: 27-42. doi: 10.1016/j.cmet.2016.08.009
    [42] Bardal SK, Waechter JE, Martin DS (2011) Chapter 20 - Neoplasia. Applied Pharmacology Philadelphia: Content Repository Only, 305-324. doi: 10.1016/B978-1-4377-0310-8.00020-8
    [43] Barocelli E, Ballabeni V (2003) Histamine in the control of gastric acid secretion: a topic review. Pharmacol Res 47: 299-304. doi: 10.1016/S1043-6618(03)00009-4
    [44] Ashina K, Tsubosaka Y, Nakamura T, et al. (2015) Histamine Induces Vascular Hyperpermeability by Increasing Blood Flow and Endothelial Barrier Disruption In Vivo. PLoS One 10: e0132367-e0132367. doi: 10.1371/journal.pone.0132367
    [45] White MV (1990) The role of histamine in allergic diseases. J Allergy Clin Immunol 86: 599-605. doi: 10.1016/S0091-6749(05)80223-4
    [46] Zeisel SH, Blusztajn JK (1994) Choline and human nutrition. Annu Rev Nutr 14: 269-296. doi: 10.1146/annurev.nu.14.070194.001413
    [47] Wu G, Bazer FW, Burghardt RC, et al. (2011) Proline and hydroxyproline metabolism: implications for animal and human nutrition. Amino acids 40: 1053-1063. doi: 10.1007/s00726-010-0715-z
    [48] Puglisi-Allegra S, Ventura R (2012) Prefrontal/accumbal catecholamine system processes high motivational salience. Front Behav Neurosci 6: 31. doi: 10.3389/fnbeh.2012.00031
    [49] Axelsson J (1971) Catecholamine Functions. Annu Rev Physiol 33: 1-30. doi: 10.1146/annurev.ph.33.030171.000245
    [50] Irsfeld M, Spadafore M, Prüß BM (2013) β-phenylethylamine, a small molecule with a large impact. Webmedcentral 4: 4409.
    [51] Solecka D (1997) Role of phenylpropanoid compounds in plant responses to different stress factors. Acta Physiol Plant 19: 257-268. doi: 10.1007/s11738-997-0001-1
    [52] Pawelek JM, Körner AM (1982) The Biosynthesis of Mammalian Melanin: The regulation of pigment formation, the key to disorders such as albinism and piebaldism, may also offer some clues for the treatment of melanoma. Am Sci 70: 136-145.
    [53] Savelieva KV, Zhao S, Pogorelov VM, et al. (2008) Genetic Disruption of Both Tryptophan Hydroxylase Genes Dramatically Reduces Serotonin and Affects Behavior in Models Sensitive to Antidepressants. PLoS One 3: e3301. doi: 10.1371/journal.pone.0003301
    [54] Dhawan PS, Goodman BP (2014) Chapter 15 - Neurologic Manifestations of Nutritional Disorders. Aminoff's Neurology and General Medicine Boston: Academic Press, 273-290. doi: 10.1016/B978-0-12-407710-2.00015-1
    [55] Newsholme EA, Blomstrand E (1996) The plasma level of some amino acids and physical and mental fatigue. Experientia 52: 413-415. doi: 10.1007/BF01919308
    [56] Voet D, Voet JG (1990) Biochemistry: Wiley.
    [57] Maeda J, Higashiyama M, Imaizumi A, et al. (2010) Possibility of multivariate function composed of plasma amino acid profiles as a novel screening index for non-small cell lung cancer: a case control study. BMC Cancer 10: 690. doi: 10.1186/1471-2407-10-690
    [58] Kakazu E, Kanno N, Ueno Y, et al. (2007) Extracellular branched-chain amino acids, especially valine, regulate maturation and function of monocyte-derived dendritic cells. J Immunol 179: 7137-7146. doi: 10.4049/jimmunol.179.10.7137
    [59] Jagenburg OR (1965) Disturbances of amino acid metabolism in neurologic disorders. Acta Neurol Scand 41: 339-356. doi: 10.1111/j.1600-0404.1965.tb01896.x
    [60] Griffin JWD, Bradshaw PC (2017) Amino Acid Catabolism in Alzheimer's Disease Brain: Friend or Foe? Oxid Med Cell Longevity 2017: 5472792.
    [61] Sarchielli P, Greco L, Floridi A, et al. (2003) Excitatory Amino Acids and Multiple Sclerosis: Evidence From Cerebrospinal Fluid. Arch Neurol 60: 1082-1088. doi: 10.1001/archneur.60.8.1082
    [62] Figura M, Kuśmierska K, Bucior E, et al. (2018) Serum amino acid profile in patients with Parkinson's disease. PLoS One 13: e0191670. doi: 10.1371/journal.pone.0191670
    [63] Piraud M, Ruet S, Boyer S, et al. (2011) Amino acid profiling for the diagnosis of inborn errors of metabolism. Methods Mol Biol 708: 25-53. doi: 10.1007/978-1-61737-985-7_2
    [64] Hildebrandt Tatjana M, Nunes Nesi A, Araújo Wagner L, et al. (2015) Amino Acid Catabolism in Plants. Mol Plant 8: 1563-1579. doi: 10.1016/j.molp.2015.09.005
    [65] Pratelli R, Pilot G (2014) Regulation of amino acid metabolic enzymes and transporters in plants. J Exp Bot 65: 5535-5556. doi: 10.1093/jxb/eru320
    [66] Forsum O, Svennerstam H, Ganeteg U, et al. (2008) Capacities and constraints of amino acid utilization in Arabidopsis. New Phytol 179: 1058-1069.
    [67] Chen IC, Thiruvengadam V, Lin WD, et al. (2010) Lysine racemase: a novel non-antibiotic selectable marker for plant transformation. Plant Mol Biol 72: 153-169. doi: 10.1007/s11103-009-9558-y
    [68] Massey KA, Blakeslee CH, Pitkow HS (1998) A review of physiological and metabolic effects of essential amino acids. Amino Acids 14: 271-300. doi: 10.1007/BF01318848
    [69] Kimura T, Hamase K, Miyoshi Y, et al. (2016) Chiral amino acid metabolomics for novel biomarker screening in the prognosis of chronic kidney disease. Sci Rep 6: 26137. doi: 10.1038/srep26137
    [70] Klupczynska A, Dereziński P, Dyszkiewicz W, et al. (2016) Evaluation of serum amino acid profiles' utility in non-small cell lung cancer detection in Polish population. Lung Cancer 100: 71-76. doi: 10.1016/j.lungcan.2016.04.008
    [71] Virmani K, Widhalm K (1993) Histidinemia: a biochemical variant or a disease? J Am Coll Nutr 12: 115-124. doi: 10.1080/07315724.1993.10718291
    [72] Maltais-Payette I, Boulet M-M, Prehn C, et al. (2018) Circulating glutamate concentration as a biomarker of visceral obesity and associated metabolic alterations. Nutr Metab 15: 78. doi: 10.1186/s12986-018-0316-5
    [73] De Luca V, Viggiano E, Messina G, et al. (2008) Peripheral amino Acid levels in schizophrenia and antipsychotic treatment. Psychiatry Invest 5: 203-208. doi: 10.4306/pi.2008.5.4.203
    [74] Sebastio G, Sperandeo MP, Panico M, et al. (1995) The molecular basis of homocystinuria due to cystathionine beta-synthase deficiency in Italian families, and report of four novel mutations. Am J Hum Genet 56: 1324-1333.
    [75] Guttler F, Guldberg P (1994) Mutations in the phenylalanine hydroxylase gene: genetic determinants for the phenotypic variability of hyperphenylalaninemia. Acta Paediatr Suppl 407: 49-56. doi: 10.1111/j.1651-2227.1994.tb13451.x
    [76] Mamer OA, Reimer ML (1992) On the mechanisms of the formation of L-alloisoleucine and the 2-hydroxy-3-methylvaleric acid stereoisomers from L-isoleucine in maple syrup urine disease patients and in normal humans. J Biol Chem 267: 22141-22147.
    [77] Smith AM, King JJ, West PR, et al. (2019) Amino Acid Dysregulation Metabotypes: Potential Biomarkers for Diagnosis and Individualized Treatment for Subtypes of Autism Spectrum Disorder. Biol Psychiatry 85: 345-354. doi: 10.1016/j.biopsych.2018.08.016
    [78] Alborghetti MR, Correa MEP, Whangbo J, et al. (2019) Clinical Metabolomics Identifies Blood Serum Branched Chain Amino Acids as Potential Predictive Biomarkers for Chronic Graft vs. Host Disease. Front Oncol 9: 141. doi: 10.3389/fonc.2019.00141
    [79] Liao X, Liu B, Qu H, et al. (2019) A High Level of Circulating Valine Is a Biomarker for Type 2 Diabetes and Associated with the Hypoglycemic Effect of Sitagliptin. Mediators Inflammation 2019: 8247019. doi: 10.1155/2019/8247019
    [80] Baranyi A, Amouzadeh-Ghadikolai O, von Lewinski D, et al. (2016) Branched-Chain Amino Acids as New Biomarkers of Major Depression - A Novel Neurobiology of Mood Disorder. PLoS One 11: e0160542. doi: 10.1371/journal.pone.0160542
    [81] Li N-j, Liu W-t, Li W, et al. (2010) Plasma metabolic profiling of Alzheimer's disease by liquid chromatography/mass spectrometry. Clin Biochem 43: 992-997. doi: 10.1016/j.clinbiochem.2010.04.072
    [82] Corso G, Cristofano A, Sapere N, et al. (2017) Serum Amino Acid Profiles in Normal Subjects and in Patients with or at Risk of Alzheimer Dementia. Dement Geriatr Cogn Dis Extra 7: 143-159. doi: 10.1159/000466688
    [83] Hou Y, Yin Y, Wu G (2015) Dietary essentiality of “nutritionally non-essential amino acids” for animals and humans. Exp Biol Med (Maywood, NJ) 240: 997-1007. doi: 10.1177/1535370215587913
    [84] Choi B-H, Coloff JL (2019) The Diverse Functions of Non-Essential Amino Acids in Cancer. Cancers 11: 675. doi: 10.3390/cancers11050675
    [85] Hishikawa K, Nakaki T, Suzuki H, et al. (1992) L-arginine as an antihypertensive agent. J Cardiovasc Pharmacol 20: S196-197. doi: 10.1097/00005344-199204002-00055
    [86] Bellinghieri G, Santoro D, Mallamace A, et al. (2006) L-arginine: a new opportunity in the management of clinical derangements in dialysis patients. J Ren Nutr 16: 245-247. doi: 10.1053/j.jrn.2006.04.004
    [87] Coburn LA, Gong X, Singh K, et al. (2012) L-arginine supplementation improves responses to injury and inflammation in dextran sulfate sodium colitis. PLoS One 7: e33546-e33546. doi: 10.1371/journal.pone.0033546
    [88] Visser JJ, Hoekman K (1994) Arginine supplementation in the prevention and treatment of osteoporosis. Med Hypotheses 43: 339-342. doi: 10.1016/0306-9877(94)90113-9
    [89] Hurt RT, Ebbert JO, Schroeder DR, et al. (2014) L-arginine for the treatment of centrally obese subjects: a pilot study. J Diet Suppl 11: 40-52. doi: 10.3109/19390211.2013.859216
    [90] Wang J, Chen L, Li P, et al. (2008) Gene expression is altered in piglet small intestine by weaning and dietary glutamine supplementation. J Nutr 138: 1025-1032. doi: 10.1093/jn/138.6.1025
    [91] Ren W, Liu S, Chen S, et al. (2013) Dietary L-glutamine supplementation increases Pasteurella multocida burden and the expression of its major virulence factors in mice. Amino Acids 45: 947-955. doi: 10.1007/s00726-013-1551-8
    [92] Wang H, Zhang C, Wu G, et al. (2015) Glutamine enhances tight junction protein expression and modulates corticotropin-releasing factor signaling in the jejunum of weanling piglets. J Nutr 145: 25-31. doi: 10.3945/jn.114.202515
    [93] Wang W, Dai Z, Wu Z, et al. (2014) Glycine is a nutritionally essential amino acid for maximal growth of milk-fed young pigs. Amino Acids 46: 2037-2045. doi: 10.1007/s00726-014-1758-3
    [94] Cai Q, Takemura G, Ashraf M (1995) Antioxidative properties of histidine and its effect on myocardial injury during ischemia/reperfusion in isolated rat heart. J Cardiovasc Pharmacol 25: 147-155. doi: 10.1097/00005344-199501000-00023
    [95] Griffith RS, Walsh DE, Myrmel KH, et al. (1987) Success of L-lysine therapy in frequently recurrent herpes simplex infection. Treatment and prophylaxis. Dermatologica 175: 183-190. doi: 10.1159/000248823
    [96] Wright EF (1994) Clinical effectiveness of lysine in treating recurrent aphthous ulcers and herpes labialis. Gen Dent 42: 40-42.
    [97] Krymchantowski AV, Peixoto P, Higashi R, et al. (2005) Lysine clonixinate vs naproxen sodium for the acute treatment of migraine: a double-blind, randomized, crossover study. MedGenMed 7: 69.
    [98] Mato JM, Martínez-Chantar ML, Lu SC (2013) S-adenosylmethionine metabolism and liver disease. Ann Hepatol 12: 183-189. doi: 10.1016/S1665-2681(19)31355-9
    [99] Patrick L (2003) Toxic metals and antioxidants: Part II. The role of antioxidants in arsenic and cadmium toxicity. Altern Med Rev 8: 106-128.
    [100] Benavides MA, Bosland MC, da Silva CP, et al. (2014) L-Methionine inhibits growth of human pancreatic cancer cells. Anti-Cancer Drugs 25: 200-203. doi: 10.1097/CAD.0000000000000038
    [101] Cavuoto P, Fenech MF (2012) A review of methionine dependency and the role of methionine restriction in cancer growth control and life-span extension. Cancer Treat Rev 38: 726-736. doi: 10.1016/j.ctrv.2012.01.004
    [102] Cipollone D, Carsetti R, Tagliani A, et al. (2009) Folic acid and methionine in the prevention of teratogen-induced congenital defects in mice. Cardiovasc Pathol 18: 100-109. doi: 10.1016/j.carpath.2008.02.007
    [103] Swanson RA, Shiraishi K, Morton MT, et al. (1990) Methionine sulfoximine reduces cortical infarct size in rats after middle cerebral artery occlusion. Stroke 21: 322-327. doi: 10.1161/01.STR.21.2.322
    [104] Wang L, Qu W, Lieberman BP, et al. (2011) Synthesis, uptake mechanism characterization and biological evaluation of (18)F labeled fluoroalkyl phenylalanine analogs as potential PET imaging agents. Nucl Med Biol 38: 53-62. doi: 10.1016/j.nucmedbio.2010.07.005
    [105] Hanaoka H, Ohshima Y, Suzuki Y, et al. (2015) Development of a Widely Usable Amino Acid Tracer: (7)(6)Br-alpha-Methyl-Phenylalanine for Tumor PET Imaging. J Nucl Med 56: 791-797. doi: 10.2967/jnumed.114.152215
    [106] Ren W, Zou L, Ruan Z, et al. (2013) Dietary L-proline supplementation confers immunostimulatory effects on inactivated Pasteurella multocida vaccine immunized mice. Amino Acids 45: 555-561. doi: 10.1007/s00726-013-1490-4
    [107] Heresco-Levy U, Vass A, Bloch B, et al. (2009) Pilot controlled trial of d-serine for the treatment of post-traumatic stress disorder. Int J Neuropsychopharmacol 12: 1275-1282. doi: 10.1017/S1461145709000339
    [108] MacKay M-AB, Paylor JW, Wong JTF, et al. (2018) Multidimensional Connectomics and Treatment-Resistant Schizophrenia: Linking Phenotypic Circuits to Targeted Therapeutics. Front Psychiatry 9: 537. doi: 10.3389/fpsyt.2018.00537
    [109] Growdon JH, Nader TM, Schoenfeld J, et al. (1991) L-threonine in the treatment of spasticity. Clin Neuropharmacol 14: 403-412. doi: 10.1097/00002826-199110000-00003
    [110] Hauser SL, Doolittle TH, Lopez-Bresnahan M, et al. (1992) An antispasticity effect of threonine in multiple sclerosis. Arch Neurol 49: 923-926. doi: 10.1001/archneur.1992.00530330045014
    [111] Jenkins TA, Nguyen JCD, Polglaze KE, et al. (2016) Influence of Tryptophan and Serotonin on Mood and Cognition with a Possible Role of the Gut-Brain Axis. Nutrients 8: 56. doi: 10.3390/nu8010056
    [112] Richard DM, Dawes MA, Mathias CW, et al. (2009) L-Tryptophan: Basic Metabolic Functions, Behavioral Research and Therapeutic Indications. Int J Tryptophan Res 2: 45-60. doi: 10.4137/IJTR.S2129
    [113] Leja-Szpak A, Jaworek J, Nawrot-Porabka K, et al. (2004) Modulation of pancreatic enzyme secretion by melatonin and its precursor; L-tryptophan. Role of CCK and afferent nerves. J Physiol Pharmacol 55: 33-46.
    [114] Fernstrom JD (2005) Branched-Chain Amino Acids and Brain Function. J Nutr 135: 1539S-1546S. doi: 10.1093/jn/135.6.1539S
    [115] Holeček M (2018) Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements. Nutr Metab 15: 33. doi: 10.1186/s12986-018-0271-1
    [116] Norton LE, Layman DK (2006) Leucine regulates translation initiation of protein synthesis in skeletal muscle after exercise. J Nutr 136: 533s-537s. doi: 10.1093/jn/136.2.533S
    [117] Karau A, Grayson I (2014) Amino acids in human and animal nutrition. Adv Biochem Eng Biotechnol 143: 189-228.
    [118] Garattini S (2000) Glutamic Acid, Twenty Years Later. J Nutr 130: 901S-909S. doi: 10.1093/jn/130.4.901S
    [119] Stegink LD (1987) The aspartame story: a model for the clinical testing of a food additive. Am J Clin Nutr 46: 204-215. doi: 10.1093/ajcn/46.1.204
    [120] Ashmead HDW (1986) Foliar feeding of plants with amino acid chelates: Noyes Publications.
    [121] Leuchtenberger W, Huthmacher K, Drauz K (2005) Biotechnological production of amino acids and derivatives: current status and prospects. Appl Microbiol Biotechnol 69: 1-8. doi: 10.1007/s00253-005-0155-y
    [122] Sanda F, Endo T (1999) Syntheses and functions of polymers based on amino acids. Macromol Chem Phys 200: 2651-2661. doi: 10.1002/(SICI)1521-3935(19991201)200:12<2651::AID-MACP2651>3.0.CO;2-P
    [123] Gross RA, Kalra B (2002) Biodegradable Polymers for the Environment. Science 297: 803. doi: 10.1126/science.297.5582.803
    [124] Low KC, Wheeler AP, Koskan LP (1996) Commercial Poly(aspartic acid) and Its Uses. Hydrophilic Polymers: American Chemical Society 99-111.
    [125] Thombre SM, Sarwade BD (2005) Synthesis and Biodegradability of Polyaspartic Acid: A Critical Review. J Macromol Sci, Part A 42: 1299-1315. doi: 10.1080/10601320500189604
    [126] Bourke SL, Kohn J (2003) Polymers derived from the amino acid l-tyrosine: polycarbonates, polyarylates and copolymers with poly(ethylene glycol). Adv Drug Delivery Rev 55: 447-466. doi: 10.1016/S0169-409X(03)00038-3
    [127] Friedman M (1999) Chemistry, Nutrition, and Microbiology of d-Amino Acids. J Agric Food Chem 47: 3457-3479. doi: 10.1021/jf990080u
    [128] Fujii N (2002) D-Amino Acids in Living Higher Organisms. Orig Life Evol Biosph 32: 103-127. doi: 10.1023/A:1016031014871
    [129] Powell JT, Vine N, Crossman M (1992) On the accumulation of d-aspartate in elastin and other proteins of the ageing aorta. Atherosclerosis 97: 201-208. doi: 10.1016/0021-9150(92)90132-Z
    [130] Ritz-Timme S, Laumeier I, Collins MJ (2003) Aspartic acid racemization: evidence for marked longevity of elastin in human skin. Br J Dermatol 149: 951-959. doi: 10.1111/j.1365-2133.2003.05618.x
    [131] Fisher GH, Garcia NM, Payan IL, et al. (1986) D-aspartic acid in purified myelin and myelin basic protein. Biochem Biophys Res Commun 135: 683-687. doi: 10.1016/0006-291X(86)90047-1
    [132] Lee JM, Petrucelli L, Fisher G, et al. (2002) Evidence for D-aspartyl-beta-amyloid secretase activity in human brain. J Neuropathol Exp Neurol 61: 125-131. doi: 10.1093/jnen/61.2.125
    [133] Hashimoto A, Oka T (1997) Free D-aspartate and D-serine in the mammalian brain and periphery. Prog Neurobiol 52: 325-353. doi: 10.1016/S0301-0082(97)00019-1
    [134] Homma H (2007) Biochemistry of D-aspartate in mammalian cells. Amino Acids 32: 3-11. doi: 10.1007/s00726-006-0354-6
    [135] Topo E, Soricelli A, D'Aniello A, et al. (2009) The role and molecular mechanism of D-aspartic acid in the release and synthesis of LH and testosterone in humans and rats. Reprod Biol Endocrinol 7: 120. doi: 10.1186/1477-7827-7-120
    [136] Hooi MYS, Truscott RJW (2011) Racemisation and human cataract. D-Ser, D-Asp/Asn and D-Thr are higher in the lifelong proteins of cataract lenses than in age-matched normal lenses. Age (Dordrecht, Neth) 33: 131-141. doi: 10.1007/s11357-010-9171-7
    [137] Richter K, Egger R, Kreil G (1987) D-alanine in the frog skin peptide dermorphin is derived from L-alanine in the precursor. Science 238: 200-202. doi: 10.1126/science.3659910
    [138] Erspamer V, Melchiorri P, Falconieri-Erspamer G, et al. (1989) Deltorphins: a family of naturally occurring peptides with high affinity and selectivity for delta opioid binding sites. Proc Natl Acad Sci U S A 86: 5188-5192. doi: 10.1073/pnas.86.13.5188
    [139] Mor A, Delfour A, Sagan S, et al. (1989) Isolation of dermenkephalin from amphibian skin, a high-affinity delta-selective opioid heptapeptide containing a D-amino acid residue. FEBS Lett 255: 269-274. doi: 10.1016/0014-5793(89)81104-4
    [140] Kamatani Y, Minakata H, Kenny PT, et al. (1989) Achatin-I, an endogenous neuroexcitatory tetrapeptide from Achatina fulica Férussac containing a D-amino acid residue. Biochem Biophys Res Commun 160: 1015-1020. doi: 10.1016/S0006-291X(89)80103-2
    [141] Soyez D, Laverdure AM, Kallen J, et al. (1997) Demonstration of a cell-specific isomerization of invertebrate neuropeptides. Neurosci 82: 935-942. doi: 10.1016/S0306-4522(97)00254-6
    [142] Chung JS, Zmora N, Katayama H, et al. (2010) Crustacean hyperglycemic hormone (CHH) neuropeptidesfamily: Functions, titer, and binding to target tissues. Gen Comp Endocrinol 166: 447-454. doi: 10.1016/j.ygcen.2009.12.011
    [143] Kawamura I, Mijiddorj B, Kayano Y, et al. (2020) Separation of D-amino acid-containing peptide phenylseptin using 3,3′-phenyl-1,1′-binaphthyl-18-crown-6-ether columns. BBA Proteins Proteom 1868: 140429. doi: 10.1016/j.bbapap.2020.140429
    [144] Mijiddorj B, Kaneda S, Sato H, et al. (2018) The role of d-allo-isoleucine in the deposition of the anti-Leishmania peptide bombinin H4 as revealed by 31P solid-state NMR, VCD spectroscopy, and MD simulation. BBA Proteins Proteom 1866: 789-798. doi: 10.1016/j.bbapap.2018.01.005
    [145] Ohta N, Kubota I, Takao T, et al. (1991) Fulicin, a novel neuropeptide containing a D-amino acid residue isolated from the ganglia of Achatina fulica. Biochemi Biophys Res Commun 178: 486-493. doi: 10.1016/0006-291X(91)90133-R
    [146] Jimenez EC, Olivera BM, Gray WR, et al. (1996) Contryphan is a D-tryptophan-containing Conus peptide. J Biol Chem 271: 28002-28005. doi: 10.1074/jbc.271.45.28002
    [147] Kuwada M, Teramoto T, Kumagaye KY, et al. (1994) Omega-agatoxin-TK containing D-serine at position 46, but not synthetic omega-[L-Ser46]agatoxin-TK, exerts blockade of P-type calcium channels in cerebellar Purkinje neurons. Mol Pharmacol 46: 587.
    [148] Mandrioli R, Mercolini L, Raggi MA (2013) Recent trends in the analysis of amino acids in fruits and derived foodstuffs. Anal Bioanal Chem 405: 7941-7956. doi: 10.1007/s00216-013-7025-8
    [149] Zagon J, Dehne L-I, Bögl K-W (1994) D-amino acids in organisms and food. Nutr Res 14: 445-463. doi: 10.1016/S0271-5317(05)80182-4
    [150] Tian H, Zheng N, Li S, et al. (2017) Characterization of chiral amino acids from different milk origins using ultra-performance liquid chromatography coupled to ion-mobility mass spectrometry. Sci Rep 7: 46289. doi: 10.1038/srep46289
    [151] Gandolfi I, Palla G, Marchelli R, et al. (1994) D-alanine in Fruit Juices: A Molecular Marker of Bacterial Activity, Heat Treatments and Shelf-life. J Food Sci 59: 152-154. doi: 10.1111/j.1365-2621.1994.tb06921.x
    [152] Kimura T, Hesaka A, Isaka Y (2020) D-Amino acids and kidney diseases. Clin Exp Nephrol 24: 404-410. doi: 10.1007/s10157-020-01862-3
    [153] Hesaka A, Yasuda K, Sakai S, et al. (2019) Dynamics of d-serine reflected the recovery course of a patient with rapidly progressive glomerulonephritis. CEN Case Reports 8: 297-300. doi: 10.1007/s13730-019-00411-6
    [154] Chen Y-C, Chou W-H, Tsou H-H, et al. (2019) A Post-hoc Study of D-Amino Acid Oxidase in Blood as an Indicator of Post-stroke Dementia. Front Neurol 10: 402. doi: 10.3389/fneur.2019.00402
    [155] Nagano T, Yamao S, Terachi A, et al. (2019) D-amino acid oxidase promotes cellular senescence via the production of reactive oxygen species. Life Sci Alliance 2: e201800045. doi: 10.26508/lsa.201800045
    [156] Foulon CF, Reist CJ, Bigner DD, et al. (2000) Radioiodination via D-amino acid peptide enhances cellular retention and tumor xenograft targeting of an internalizing anti-epidermal growth factor receptor variant III monoclonal antibody. Cancer Res 60: 4453-4460.
    [157] Ariyoshi M, Katane M, Hamase K, et al. (2017) D-Glutamate is metabolized in the heart mitochondria. Sci Rep 7: 43911. doi: 10.1038/srep43911
    [158] Grishin DV, Zhdanov DD, Pokrovskaya MV, et al. (2020) D-amino acids in nature, agriculture and biomedicine. All Life 13: 11-22. doi: 10.1080/21553769.2019.1622596
    [159] Solanas C, de la Torre BG, Fernández-Reyes M, et al. (2009) Therapeutic index of gramicidin S is strongly modulated by D-phenylalanine analogues at the beta-turn. J Med Chem 52: 664-674. doi: 10.1021/jm800886n
    [160] Heck SD, Siok CJ, Krapcho KJ, et al. (1994) Functional consequences of posttranslational isomerization of Ser46 in a calcium channel toxin. Science 266: 1065. doi: 10.1126/science.7973665
    [161] Torres AM, Menz I, Alewood PF, et al. (2002) D-Amino acid residue in the C-type natriuretic peptide from the venom of the mammal, Ornithorhynchus anatinus, the Australian platypus. FEBS Lett 524: 172-176. doi: 10.1016/S0014-5793(02)03050-8
    [162] Sasamura T, Matsuda A, Kokuba Y (1998) Tumor growth inhibition and nutritional effect of D-amino acid solution in AH109A hepatoma-bearing rats. J Nutr Sci Vitaminol (Tokyo) 44: 79-87. doi: 10.3177/jnsv.44.79
    [163] Deijen JB, Orlebeke JF (1994) Effect of tyrosine on cognitive function and blood pressure under stress. Brain Res Bull 33: 319-323. doi: 10.1016/0361-9230(94)90200-3
    [164] Rekoslavskaya NI (1986) Possible role of N-malonyl-D-tryptophan as an auxin precursor. Biologia Plantarum 28: 62. doi: 10.1007/BF02885326
    [165] Cava F, Lam H, de Pedro MA, et al. (2011) Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cell Mol Life Sci 68: 817-831. doi: 10.1007/s00018-010-0571-8
    [166] Teo AC, Roper DI (2015) Core Steps of Membrane-Bound Peptidoglycan Biosynthesis: Recent Advances, Insight and Opportunities. Antibiotics (Basel) 4: 495-520. doi: 10.3390/antibiotics4040495
    [167] Vemula H, Ayon NJ, Burton A, et al. (2017) Antibiotic Effects on Methicillin-Resistant Staphylococcus aureus Cytoplasmic Peptidoglycan Intermediate Levels and Evidence for Potential Metabolite Level Regulatory Loops. Antimicrob Agents Chemother 61: e02253-02216. doi: 10.1128/AAC.02253-16
    [168] Stranden AM, Ehlert K, Labischinski H, et al. (1997) Cell wall monoglycine cross-bridges and methicillin hypersusceptibility in a femAB null mutant of methicillin-resistant Staphylococcus aureus. J Bacteriol 179: 9-16. doi: 10.1128/JB.179.1.9-16.1997
    [169] Vemula H, Ayon NJ, Gutheil WG (2016) Cytoplasmic peptidoglycan intermediate levels in Staphylococcus aureus. Biochimie 121: 72-78. doi: 10.1016/j.biochi.2015.11.017
    [170] Lam H, Oh DC, Cava F, et al. (2009) D-amino acids govern stationary phase cell wall remodeling in bacteria. Science 325: 1552-1555. doi: 10.1126/science.1178123
    [171] Alvarez L, Aliashkevich A, de Pedro MA, et al. (2018) Bacterial secretion of D-arginine controls environmental microbial biodiversity. Isme J 12: 438-450. doi: 10.1038/ismej.2017.176
    [172] de Pedro MA, Quintela JC, Holtje JV, et al. (1997) Murein segregation in Escherichia coli. J Bacteriol 179: 2823-2834. doi: 10.1128/JB.179.9.2823-2834.1997
    [173] Wu H, Xue E, Zhi N, et al. (2020) d-Methionine and d-Phenylalanine Improve Lactococcus lactis F44 Acid Resistance and Nisin Yield by Governing Cell Wall Remodeling. Appl Environ Microbiol 86.
    [174] Hu H, Emerson J, Aronson AI (2007) Factors involved in the germination and inactivation of Bacillus anthracis spores in murine primary macrophages. FEMS Microbiol Lett 272: 245-250. doi: 10.1111/j.1574-6968.2007.00766.x
    [175] Reynolds PE, Courvalin P (2005) Vancomycin resistance in enterococci due to synthesis of precursors terminating in D-alanyl-D-serine. Antimicrob Agents Chemother 49: 21-25. doi: 10.1128/AAC.49.1.21-25.2005
    [176] Hall-Stoodley L, Costerton JW, Stoodley P (2004) Bacterial biofilms: from the Natural environment to infectious diseases. Nat Rev Microbiol 2: 95-108. doi: 10.1038/nrmicro821
    [177] Kostakioti M, Hadjifrangiskou M, Hultgren SJ (2013) Bacterial biofilms: development, dispersal, and therapeutic strategies in the dawn of the postantibiotic era. Cold Spring Harbor Perspect Med 3: a010306. doi: 10.1101/cshperspect.a010306
    [178] Kolodkin-Gal I, Romero D, Cao S, et al. (2010) D-amino acids trigger biofilm disassembly. Science 328: 627-629. doi: 10.1126/science.1188628
    [179] Hochbaum AI, Kolodkin-Gal I, Foulston L, et al. (2011) Inhibitory effects of D-amino acids on Staphylococcus aureus biofilm development. J Bacteriol 193: 5616-5622. doi: 10.1128/JB.05534-11
    [180] Ramon-Perez ML, Diaz-Cedillo F, Ibarra JA, et al. (2014) D-Amino acids inhibit biofilm formation in Staphylococcus epidermidis strains from ocular infections. J Med Microbiol 63: 1369-1376. doi: 10.1099/jmm.0.075796-0
    [181] Sarkar S, Pires MM (2015) d-Amino acids do not inhibit biofilm formation in Staphylococcus aureus. PLoS One 10: e0117613. doi: 10.1371/journal.pone.0117613
    [182] Bucher T, Kartvelishvily E, Kolodkin-Gal I (2016) Methodologies for Studying B. subtilis Biofilms as a Model for Characterizing Small Molecule Biofilm Inhibitors. J Vis Exp 116: 54612.
    [183] Jia R, Li Y, Al-Mahamedh HH, et al. (2017) Enhanced Biocide Treatments with D-amino Acid Mixtures against a Biofilm Consortium from a Water Cooling Tower. Front Microbiol 8: 1538. doi: 10.3389/fmicb.2017.01538
    [184] Li H, Anuwongcharoen N, Malik AA, et al. (2016) Roles of d-Amino Acids on the Bioactivity of Host Defense Peptides. Int J Mol Sci 17.
    [185] Ghssein G, Brutesco C, Ouerdane L, et al. (2016) Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 352: 1105-1109. doi: 10.1126/science.aaf1018
    [186] Strydom DJ, Andersen TT, Apostol I, et al. (1993) Cysteine and Tryptophan Amino Acid Analysis of ABRF92-AAA. Techniques in Protein Chemistry IV Academic Press, 279-288.
    [187] Martínez-Rodríguez S, Martínez-Gómez AI, Rodríguez-Vico F, et al. (2010) Natural Occurrence and Industrial Applications of d-Amino Acids: An Overview. Chem Biodiversity 7: 1531-1548. doi: 10.1002/cbdv.200900245
    [188] Cartus AT (2012) 12 - d-Amino acids and cross-linked amino acids as food contaminants. Chemical Contaminants and Residues in Food Woodhead Publishing, 286-319. doi: 10.1533/9780857095794.2.286
    [189] Stokes JL, Gunness M, Dwyer IM, et al. (1945) Microbiological Methods for the Determination of Amino Acids. J Biol Chem 163: 159-168.
    [190] Archibald RM (1946) Enzymatic methods in amino acid analysis. Ann N Y Acad Sci 47: 181-186. doi: 10.1111/j.1749-6632.1946.tb31712.x
    [191] Dale T, Court WE (1981) Improved separation of amino acids by thin-layer chromatography. Chromatographia 14: 617-620. doi: 10.1007/BF02291097
    [192] Ali M, Abdul M, Gaber E-D (2012) Amino acid and vitamin determinations by TLC/HPTLC: review of the current state. Open Chem 10: 731-750. doi: 10.2478/s11532-012-0019-0
    [193] Mayadunne R, Nguyen T-T, Marriott PJ (2005) Amino acid analysis by using comprehensive two-dimensional gas chromatography. Anal Bioanal Chem 382: 836-847. doi: 10.1007/s00216-005-3083-x
    [194] E. Otter D (2012) Standardised methods for amino acid analysis of food. Br J Nutr 108: S230-S237. doi: 10.1017/S0007114512002486
    [195] Ilisz I, Aranyi A, Pataj Z, et al. (2012) Recent advances in the direct and indirect liquid chromatographic enantioseparation of amino acids and related compounds: A review. J Pharm Biomed Anal 69: 28-41. doi: 10.1016/j.jpba.2012.01.020
    [196] Ilisz I, Péter A, Lindner W (2016) State-of-the-art enantioseparations of natural and unnatural amino acids by high-performance liquid chromatography. TrAC, Trends Anal Chem 81: 11-22. doi: 10.1016/j.trac.2016.01.016
    [197] Ayon NJ, Sharma AD, Gutheil WG (2019) LC-MS/MS-Based Separation and Quantification of Marfey's Reagent Derivatized Proteinogenic Amino Acid DL-Stereoisomers. J Am Soc Mass Spectrom 30: 448-458. doi: 10.1007/s13361-018-2093-9
    [198] Kim BY, Yang J, Gong M, et al. (2009) Multidimensional separation of chiral amino acid mixtures in a multilayered three-dimensional hybrid microfluidic/nanofluidic device. Anal Chem 81: 2715-2722. doi: 10.1021/ac802630p
    [199] Poinsot V, Carpene MA, Bouajila J, et al. (2012) Recent advances in amino acid analysis by capillary electrophoresis. Electrophoresis 33: 14-35. doi: 10.1002/elps.201100360
    [200] Creamer JS, Mora MF, Willis PA (2017) Enhanced Resolution of Chiral Amino Acids with Capillary Electrophoresis for Biosignature Detection in Extraterrestrial Samples. Anal Chem 89: 1329-1337. doi: 10.1021/acs.analchem.6b04338
    [201] Waldhier MC, Gruber MA, Dettmer K, et al. (2009) Capillary electrophoresis and column chromatography in biomedical chiral amino acid analysis. Anal Bioanal Chem 394: 695-706. doi: 10.1007/s00216-009-2792-y
    [202] Giuffrida A, Maccarrone G, Cucinotta V, et al. (2014) Recent advances in chiral separation of amino acids using capillary electromigration techniques. J Chromatogr A 1363: 41-50. doi: 10.1016/j.chroma.2014.08.041
    [203] Moini M, Schultz CL, Mahmood H (2003) CE/Electrospray Ionization-MS Analysis of Underivatized d/l-Amino Acids and Several Small Neurotransmitters at Attomole Levels through the Use of 18-Crown-6-tetracarboxylic Acid as a Complexation Reagent/Background Electrolyte. Anal Chem 75: 6282-6287. doi: 10.1021/ac034708i
    [204] Wu Y, Zhai Y, Zhang Y, et al. (2014) Chiral separation and determination of amino acids in real samples by LE-MEKC using Cu(II)-l-proline as chiral selector. J Chromatogr B 965: 254-259. doi: 10.1016/j.jchromb.2014.07.001
    [205] Hirs CH, Stein WH, Moore S (1954) The amino acid composition of ribonuclease. J Biol Chem 211: 941-950.
    [206] Tsugita A, Scheffler J-J (1982) A Rapid Method for Acid Hydrolysis of Protein with a Mixture of Trifluoroacetic Acid and Hydrochloric Acid. Eur J Biochem 124: 585-588. doi: 10.1111/j.1432-1033.1982.tb06634.x
    [207] Kabaha K, Taralp A, Cakmak I, et al. (2011) Accelerated hydrolysis method to estimate the amino acid content of wheat (Triticum durum Desf.) flour using microwave irradiation. J Agric Food Chem 59: 2958-2965. doi: 10.1021/jf103678c
    [208] Sharer JD, De Biase I, Matern D, et al. (2018) Laboratory analysis of amino acids, 2018 revision: a technical standard of the American College of Medical Genetics and Genomics (ACMG). Genet Med 20: 1499-1507. doi: 10.1038/s41436-018-0328-6
    [209] Miyazawa T, Minowa H, Imagawa K, et al. (1997) Enantiomeric Separation of Non-Protein Amino Acids by Chiral Ligand-Exchange High-Performance Liquid Chromatography. Anal Lett 30: 867-882. doi: 10.1080/00032719708006430
    [210] Petritis K, Valleix A, Elfakir C, et al. (2001) Simultaneous analysis of underivatized chiral amino acids by liquid chromatography–ionspray tandem mass spectrometry using a teicoplanin chiral stationary phase. J Chromatogr A 913: 331-340. doi: 10.1016/S0021-9673(00)01268-1
    [211] Miyoshi Y, Koga R, Oyama T, et al. (2012) HPLC analysis of naturally occurring free d-amino acids in mammals. J Pharm Biomed Anal 69: 42-49. doi: 10.1016/j.jpba.2012.01.041
    [212] Cohen SA, Michaud DP (1993) Synthesis of a fluorescent derivatizing reagent, 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate, and its application for the analysis of hydrolysate amino acids via high-performance liquid chromatography. Anal Biochem 211: 279-287. doi: 10.1006/abio.1993.1270
    [213] Bhushan R, Brückner H (2011) Use of Marfey's reagent and analogs for chiral amino acid analysis: Assessment and applications to natural products and biological systems. J Chromatogr B 879: 3148-3161. doi: 10.1016/j.jchromb.2011.05.058
    [214] Vemula H, Kitase Y, Ayon NJ, et al. (2017) Gaussian and linear deconvolution of LC-MS/MS chromatograms of the eight aminobutyric acid isomers. Anal Biochem 516: 75-85. doi: 10.1016/j.ab.2016.10.017
    [215] Langrock T, Czihal P, Hoffmann R (2006) Amino acid analysis by hydrophilic interaction chromatography coupled on-line to electrospray ionization mass spectrometry. Amino Acids 30: 291-297. doi: 10.1007/s00726-005-0300-z
    [216] Armstrong M, Jonscher K, Reisdorph NA (2007) Analysis of 25 underivatized amino acids in human plasma using ion-pairing reversed-phase liquid chromatography/time-of-flight mass spectrometry. Rapid Commun Mass Spectrom 21: 2717-2726. doi: 10.1002/rcm.3124
    [217] Piraud M, Vianey-Saban C, Petritis K, et al. (2005) Ion-pairing reversed-phase liquid chromatography/electrospray ionization mass spectrometric analysis of 76 underivatized amino acids of biological interest: a new tool for the diagnosis of inherited disorders of amino acid metabolism. Rapid Commun Mass Spectrom 19: 1587-1602. doi: 10.1002/rcm.1957
    [218] Le A, Ng A, Kwan T, et al. (2014) A rapid, sensitive method for quantitative analysis of underivatized amino acids by liquid chromatography-tandem mass spectrometry (LC-MS/MS). J Chromatogr B Analyt Technol Biomed Life Sci 944: 166-174. doi: 10.1016/j.jchromb.2013.11.017
    [219] Fujii K, Ikai Y, Oka H, et al. (1997) A Nonempirical Method Using LC/MS for Determination of the Absolute Configuration of Constituent Amino Acids in a Peptide: Combination of Marfey's Method with Mass Spectrometry and Its Practical Application. Anal Chem 69: 5146-5151. doi: 10.1021/ac970289b
    [220] Ferré S, González-Ruiz V, Guillarme D, et al. (2019) Analytical strategies for the determination of amino acids: Past, present and future trends. J Chromatogr B 1132: 121819. doi: 10.1016/j.jchromb.2019.121819
    [221] Stokvis E, Rosing H, Beijnen JH (2005) Stable isotopically labeled internal standards in quantitative bioanalysis using liquid chromatography/mass spectrometry: necessity or not? Rapid Commun Mass Spectrom 19: 401-407. doi: 10.1002/rcm.1790
    [222] Barrado E, Rodriguez JA, Castrillejo Y (2009) Determination of primary amino acids in wines by high performance liquid magneto-chromatography. Talanta 78: 672-675. doi: 10.1016/j.talanta.2008.12.023
    [223] Eto S, Yamaguchi M, Bounoshita M, et al. (2011) High-throughput comprehensive analysis of d- and l-amino acids using ultra-high performance liquid chromatography with a circular dichroism (CD) detector and its application to food samples. J Chromatogr B 879: 3317-3325. doi: 10.1016/j.jchromb.2011.07.025
    [224] Pérez-Míguez R, Bruyneel B, Castro-Puyana M, et al. (2019) Chiral Discrimination of DL-Amino Acids by Trapped Ion Mobility Spectrometry after Derivatization with (+)-1-(9-Fluorenyl)ethyl Chloroformate. Anal Chem 91: 3277-3285. doi: 10.1021/acs.analchem.8b03661
    [225] Schurig V (2002) Chiral separations using gas chromatography. TrAC, Trends Anal Chem 21: 647-661. doi: 10.1016/S0165-9936(02)00808-7
    [226] Erbe T, Brückner H (2000) Chromatographic determination of amino acid enantiomers in beers and raw materials used for their manufacture. J Chromatogr A 881: 81-91. doi: 10.1016/S0021-9673(00)00255-7
    [227] Pätzold R, Brückner H (2006) Gas chromatographic determination and mechanism of formation of D-amino acids occurring in fermented and roasted cocoa beans, cocoa powder, chocolate and cocoa shell. Amino Acids 31: 63. doi: 10.1007/s00726-006-0330-1
    [228] Gu L, Jones AD, Last RL (2007) LC−MS/MS Assay for Protein Amino Acids and Metabolically Related Compounds for Large-Scale Screening of Metabolic Phenotypes. Anal Chem 79: 8067-8075. doi: 10.1021/ac070938b
    [229] Kaspar H, Dettmer K, Gronwald W, et al. (2009) Advances in amino acid analysis. Anal Bioanal Chem 393: 445-452. doi: 10.1007/s00216-008-2421-1
    [230] Schurig V (2011) Gas chromatographic enantioseparation of derivatized α-amino acids on chiral stationary phases—Past and present. J Chromatogr B 879: 3122-3140. doi: 10.1016/j.jchromb.2011.04.005
    [231] Szökő É, Vincze I, Tábi T (2016) Chiral separations for d-amino acid analysis in biological samples. J Pharm Biomed Anal 130: 100-109. doi: 10.1016/j.jpba.2016.06.054
    [232] Konya Y, Bamba T, Fukusaki E (2016) Extra-facile chiral separation of amino acid enantiomers by LC-TOFMS analysis. J Biosci Bioeng 121: 349-353. doi: 10.1016/j.jbiosc.2015.06.017
    [233] Nakano Y, Konya Y, Taniguchi M, et al. (2017) Development of a liquid chromatography-tandem mass spectrometry method for quantitative analysis of trace d-amino acids. J Biosci Bioeng 123: 134-138. doi: 10.1016/j.jbiosc.2016.07.008
    [234] Konya Y, Taniguchi M, Fukusaki E (2017) Novel high-throughput and widely-targeted liquid chromatography–time of flight mass spectrometry method for d-amino acids in foods. J Biosci Bioeng 123: 126-133. doi: 10.1016/j.jbiosc.2016.07.009
    [235] Dell'mour M, Jaitz L, Oburger E, et al. (2010) Hydrophilic interaction LC combined with electrospray MS for highly sensitive analysis of underivatized amino acids in rhizosphere research. J Sep Sci 33: 911-922. doi: 10.1002/jssc.200900743
    [236] Horak J, Lämmerhofer M (2019) Stereoselective separation of underivatized and 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate derivatized amino acids using zwitterionic quinine and quinidine type stationary phases by liquid chromatography–High resolution mass spectrometry. J Chromatogr A 1596: 69-78. doi: 10.1016/j.chroma.2019.02.060
    [237] Bäurer S, Ferri M, Carotti A, et al. (2020) Mixed-mode chromatography characteristics of chiralpak ZWIX(+) and ZWIX(−) and elucidation of their chromatographic orthogonality for LC × LC application. Anal Chim Acta 1093: 168-179. doi: 10.1016/j.aca.2019.09.068
    [238] Han M, Xie M, Han J, et al. (2018) Development and validation of a rapid, selective, and sensitive LC–MS/MS method for simultaneous determination of d- and l-amino acids in human serum: application to the study of hepatocellular carcinoma. Anal Bioanal Chem 410: 2517-2531. doi: 10.1007/s00216-018-0883-3
    [239] Kinoshita K, Jingu S, Yamaguchi J-i (2013) A surrogate analyte method to determine d-serine in mouse brain using liquid chromatography–tandem mass spectrometry. Anal Biochem 432: 124-130. doi: 10.1016/j.ab.2012.09.035
    [240] Pesek JJ, Matyska MT, Fischer SM, et al. (2008) Analysis of hydrophilic metabolites by high-performance liquid chromatography–mass spectrometry using a silica hydride-based stationary phase. J Chromatogr A 1204: 48-55. doi: 10.1016/j.chroma.2008.07.077
    [241] Raimbault A, Dorebska M, West C (2019) A chiral unified chromatography–mass spectrometry method to analyze free amino acids. Anal Bioanal Chem 411: 4909-4917. doi: 10.1007/s00216-019-01783-5
    [242] Raimbault A, Noireau A, West C (2020) Analysis of free amino acids with unified chromatography-mass spectrometry—application to food supplements. J Chromatogr A 1616: 460772. doi: 10.1016/j.chroma.2019.460772
    [243] Miller L, Yue L (2020) Chiral separation of underivatized amino acids in supercritical fluid chromatography with chiral crown ether derived column. Chirality 32: 981-989. doi: 10.1002/chir.23204
    [244] Sánchez-Hernández L, Bernal JL, Nozal MJd, et al. (2016) Chiral analysis of aromatic amino acids in food supplements using subcritical fluid chromatography and Chirobiotic T2 column. J Supercrit Fluids 107: 519-525. doi: 10.1016/j.supflu.2015.06.027
    [245] Oyama T, Negishi E, Onigahara H, et al. (2015) Design and synthesis of a novel pre-column derivatization reagent with a 6-methoxy-4-quinolone moiety for fluorescence and tandem mass spectrometric detection and its application to chiral amino acid analysis. J Pharm Biomed Anal 116: 71-79. doi: 10.1016/j.jpba.2015.05.039
    [246] Pietrogrande MC, Basaglia G (2010) Enantiomeric resolution of biomarkers in space analysis: Chemical derivatization and signal processing for gas chromatography–mass spectrometry analysis of chiral amino acids. J Chromatogr A 1217: 1126-1133. doi: 10.1016/j.chroma.2009.09.055
    [247] Bhushan R, Brückner H (2004) Marfey's reagent for chiral amino acid analysis: a review. Amino Acids 27: 231-247. doi: 10.1007/s00726-004-0118-0
    [248] Ilisz I, Berkecz R, Péter A (2008) Application of chiral derivatizing agents in the high-performance liquid chromatographic separation of amino acid enantiomers: A review. J Pharm Biomed Anal 47: 1-15. doi: 10.1016/j.jpba.2007.12.013
    [249] Tanwar S, Bhushan R (2015) Enantioresolution of Amino Acids: A Decade's Perspective, Prospects and Challenges. Chromatographia 78: 1113-1134. doi: 10.1007/s10337-015-2933-8
    [250] Kotthaus AF, Altenbach HJ (2011) A new chiral derivatizing agent for the HPLC separation of α-amino acids on a standard reverse-phase column. Amino Acids 40: 527-532. doi: 10.1007/s00726-010-0665-5
    [251] Péter A, Vékes E, Török G (2000) Application of (S)-N-(4-nitrophenoxycarbonyl) phenylalanine methoxyethyl ester as a new chiral derivatizing agent for proteinogenic amino acid analysis by high-performance liquid chromatography. Chromatographia 52: 821-826. doi: 10.1007/BF02491012
    [252] Olajos E, Peter A, Casimir R, et al. (2001) HPLC enantioseparation of phenylalanine analogs by application of (S)-N-(4-nitrophenoxycarbonyl)phenylalanine methoxyethyl ester as a new chiral derivatizing agent. Chromatographia 54: 77-82. doi: 10.1007/BF02491837
    [253] Visser WF, Verhoeven-Duif NM, Ophoff R, et al. (2011) A sensitive and simple ultra-high-performance-liquid chromatography–tandem mass spectrometry based method for the quantification of d-amino acids in body fluids. J Chromatogr A 1218: 7130-7136. doi: 10.1016/j.chroma.2011.07.087
    [254] Reischl RJ, Lindner W (2012) Methoxyquinoline labeling—A new strategy for the enantioseparation of all chiral proteinogenic amino acids in 1-dimensional liquid chromatography using fluorescence and tandem mass spectrometric detection. J Chromatogr A 1269: 262-269. doi: 10.1016/j.chroma.2012.07.046
    [255] Reischl RJ, Hartmanova L, Carrozzo M, et al. (2011) Chemoselective and enantioselective analysis of proteinogenic amino acids utilizing N-derivatization and 1-D enantioselective anion-exchange chromatography in combination with tandem mass spectrometric detection. J Chromatogr A 1218: 8379-8387. doi: 10.1016/j.chroma.2011.09.046
    [256] Harada M, Karakawa S, Yamada N, et al. (2019) Biaryl axially chiral derivatizing agent for simultaneous separation and sensitive detection of proteinogenic amino acid enantiomers using liquid chromatography–tandem mass spectrometry. J Chromatogr A 1593: 91-101. doi: 10.1016/j.chroma.2019.01.075
    [257] Manica DP, Lapos JA, Daniel Jones A, et al. (2003) Analysis of the stability of amino acids derivatized with naphthalene-2,3-dicarboxaldehyde using high-performance liquid chromatography and mass spectrometry. Anal Biochem 322: 68-78. doi: 10.1016/j.ab.2003.07.002
    [258] Karakawa S, Shimbo K, Yamada N, et al. (2015) Simultaneous analysis of d-alanine, d-aspartic acid, and d-serine using chiral high-performance liquid chromatography-tandem mass spectrometry and its application to the rat plasma and tissues. J Pharm Biomed Anal 115: 123-129. doi: 10.1016/j.jpba.2015.05.024
    [259] Müller C, Fonseca JR, Rock TM, et al. (2014) Enantioseparation and selective detection of D-amino acids by ultra-high-performance liquid chromatography/mass spectrometry in analysis of complex biological samples. J Chromatogr A 1324: 109-114. doi: 10.1016/j.chroma.2013.11.026
    [260] Zampolli MG, Basaglia G, Dondi F, et al. (2007) Gas chromatography–mass spectrometry analysis of amino acid enantiomers as methyl chloroformate derivatives: Application to space analysis. J Chromatogr A 1150: 162-172. doi: 10.1016/j.chroma.2006.12.033
    [261] Menestrina F, Osorio Grisales J, Castells CB (2016) Chiral analysis of derivatized amino acids from kefir by gas chromatography. Microchem J 128: 267-273. doi: 10.1016/j.microc.2016.05.007
    [262] Bertrand M, Chabin A, Brack A, et al. (2008) Separation of amino acid enantiomers VIA chiral derivatization and non-chiral gas chromatography. J Chromatogr A 1180: 131-137. doi: 10.1016/j.chroma.2007.12.004
    [263] Zampolli M, Meunier D, Sternberg R, et al. (2006) GC-MS analysis of amino acid enantiomers as their N(O,S)-perfluoroacyl perfluoroalkyl esters: Application to space analysis. Chirality 18: 279-295. doi: 10.1002/chir.20241
    [264] Pätzold R, Schieber A, Brückner H (2005) Gas chromatographic quantification of free D-amino acids in higher vertebrates. Biomed Chromatogr 19: 466-473. doi: 10.1002/bmc.515
    [265] Lorenzo MP, Dudzik D, Varas E, et al. (2015) Optimization and validation of a chiral GC–MS method for the determination of free d-amino acids ratio in human urine: Application to a Gestational Diabetes Mellitus study. J Pharm Biomed Anal 107: 480-487. doi: 10.1016/j.jpba.2015.01.015
    [266] Lajkó G, Ilisz I, Tóth G, et al. (2015) Application of Cinchona alkaloid-based zwitterionic chiral stationary phases in supercritical fluid chromatography for the enantioseparation of Nα-protected proteinogenic amino acids. J Chromatogr A 1415: 134-145. doi: 10.1016/j.chroma.2015.08.058
    [267] Fleischer H, Thurow K (2013) Fast mass spectrometry-based enantiomeric excess determination of proteinogenic amino acids. Amino Acids 44: 1039-1051. doi: 10.1007/s00726-012-1439-z
    [268] Ianni F, Sardella R, Lisanti A, et al. (2015) Achiral–chiral two-dimensional chromatography of free amino acids in milk: A promising tool for detecting different levels of mastitis in cows. J Pharm Biomed Anal 116: 40-46. doi: 10.1016/j.jpba.2014.12.041
    [269] Woiwode U, Neubauer S, Lindner W, et al. (2018) Enantioselective multiple heartcut two-dimensional ultra-high-performance liquid chromatography method with a Coreshell chiral stationary phase in the second dimension for analysis of all proteinogenic amino acids in a single run. J Chromatogr A 1562: 69-77. doi: 10.1016/j.chroma.2018.05.062
    [270] Miyoshi Y, Nagano M, Ishigo S, et al. (2014) Chiral amino acid analysis of Japanese traditional Kurozu and the developmental changes during earthenware jar fermentation processes. J Chromatogr B 966: 187-192. doi: 10.1016/j.jchromb.2014.01.034
    [271] Ishii C, Akita T, Mita M, et al. (2018) Development of an online two-dimensional high-performance liquid chromatographic system in combination with tandem mass spectrometric detection for enantiomeric analysis of free amino acids in human physiological fluid. J Chromatogr A 1570: 91-98. doi: 10.1016/j.chroma.2018.07.076
    [272] Myrgorodska I, Meinert C, Martins Z, et al. (2016) Quantitative enantioseparation of amino acids by comprehensive two-dimensional gas chromatography applied to non-terrestrial samples. J Chromatogr A 1433: 131-136. doi: 10.1016/j.chroma.2016.01.014
  • This article has been cited by:

    1. Alexander Klump, The Inverse First-passage Time Problem as Hydrodynamic Limit of a Particle System, 2023, 25, 1387-5841, 10.1007/s11009-023-10020-7
    2. Alexander Klump, Mladen Savov, Conditions for existence and uniqueness of the inverse first-passage time problem applicable for Lévy processes and diffusions, 2025, 35, 1050-5164, 10.1214/25-AAP2157
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(14514) PDF downloads(750) Cited by(25)

Figures and Tables

Figures(5)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog