Processing math: 100%
Research article

Results on non local impulsive implicit Caputo-Hadamard fractional differential equations

  • Received: 28 December 2023 Revised: 27 March 2024 Accepted: 04 June 2024 Published: 02 September 2024
  • The results for a new modeling integral boundary value problem using Caputo-Hadamard impulsive implicit fractional differential equations with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii fixed-point theorem, Schaefer's fixed point theorem and the Banach contraction principle serve as the basis of this unique strategy, and are used to achieve the desired results. We develop the illustrated examples at the end of the paper to support the validity of the theoretical statements.

    Citation: K. Venkatachalam, M. Sathish Kumar, P. Jayakumar. Results on non local impulsive implicit Caputo-Hadamard fractional differential equations[J]. Mathematical Modelling and Control, 2024, 4(3): 286-296. doi: 10.3934/mmc.2024023

    Related Papers:

    [1] Ekaterina Kldiashvili, Archil Burduli, Gocha Ghortlishvili . Application of Digital Imaging for Cytopathology under Conditions of Georgia. AIMS Medical Science, 2015, 2(3): 186-199. doi: 10.3934/medsci.2015.3.186
    [2] Tamás Micsik, Göran Elmberger, Anders Mikael Bergquist, László Fónyad . Experiences with an International Digital Slide Based Telepathology System for Routine Sign-out between Sweden and Hungary. AIMS Medical Science, 2015, 2(2): 79-89. doi: 10.3934/medsci.2015.2.79
    [3] Sanjay Konakondla, Steven A. Toms . Cerebral Connectivity and High-grade Gliomas: Evolving Concepts of Eloquent Brain in Surgery for Glioma. AIMS Medical Science, 2017, 4(1): 52-70. doi: 10.3934/medsci.2017.1.52
    [4] Joy Qi En Chia, Li Lian Wong, Kevin Yi-Lwern Yap . Quality evaluation of digital voice assistants for diabetes management. AIMS Medical Science, 2023, 10(1): 80-106. doi: 10.3934/medsci.2023008
    [5] Adel Razek . Augmented therapeutic tutoring in diligent image-assisted robotic interventions. AIMS Medical Science, 2024, 11(2): 210-219. doi: 10.3934/medsci.2024016
    [6] Belgüzar Kara, Elif Gökçe Tenekeci, Şeref Demirkaya . Factors Associated With Sleep Quality in Patients With Multiple Sclerosis. AIMS Medical Science, 2016, 3(2): 203-212. doi: 10.3934/medsci.2016.2.203
    [7] Jonathan Kissi, Daniel Kwame Kwansah Quansah, Jonathan Aseye Nutakor, Alex Boadi Dankyi, Yvette Adu-Gyamfi . Telehealth during COVID-19 pandemic era: a systematic review. AIMS Medical Science, 2022, 9(1): 81-97. doi: 10.3934/medsci.2022008
    [8] Vanessa Kai Lin Chua, Li Lian Wong, Kevin Yi-Lwern Yap . Quality evaluation of digital voice assistants for the management of mental health conditions. AIMS Medical Science, 2022, 9(4): 512-530. doi: 10.3934/medsci.2022028
    [9] Van Tuan Nguyen, Anh Tuan Tran, Nguyen Quyen Le, Thi Huong Nguyen . The features of computed tomography and digital subtraction angiography images of ruptured cerebral arteriovenous malformation. AIMS Medical Science, 2021, 8(2): 105-115. doi: 10.3934/medsci.2021011
    [10] Ilige Hage, Ramsey Hamade . Automatic Detection of Cortical Bones Haversian Osteonal Boundaries. AIMS Medical Science, 2015, 2(4): 328-346. doi: 10.3934/medsci.2015.4.328
  • The results for a new modeling integral boundary value problem using Caputo-Hadamard impulsive implicit fractional differential equations with Banach space are investigated, along with the existence and uniqueness of solutions. The Krasnoselskii fixed-point theorem, Schaefer's fixed point theorem and the Banach contraction principle serve as the basis of this unique strategy, and are used to achieve the desired results. We develop the illustrated examples at the end of the paper to support the validity of the theoretical statements.



    Diophantine equation is a classical problem in number theory. Let [α] denote the integer part of the real number α and N be a sufficiently large integer. In 1933, Segal [27,28] firstly studied additive problems with non-integer degrees, and proved that there exists a k0(c)>0 such that the Diophantine equation

    [xc1]+[xc2]++[xck]=N (1.1)

    is solvable for k>k0(c), where c>1 is not an integer. Later, Deshouillers [5] improved Segal's bound of k0(c) to 6c3(logc+14) with c>12. Further Arkhilov and Zhitkov [1] refined Deshouillers's result to 22c2(logc+4) with c>12. Afterwards, many results of various Diophantine equations were established (e.g., see [7,10,14,16,17,18,19,21,25,41,42]). In particular, Laporta [17] in 1999 showed that the equation

    [pc1]+[pc2]=N (1.2)

    is solvable in primes p1, p2 provided that 1<c<1716 and N is sufficiently large. Recently, the range of c in (1.2) was enlarged to 1<c<1411 by Zhu [40]. Kumchev [15] showed that the equation

    [mc]+[pc]=N (1.3)

    is solved for almost all N provided that 1<c<1615, where m is an integer and p is a prime. Afterwards, the range of c in (1.3) was enlarged to 1<c<1711 by Balanzario, Garaev and Zuazua [3].

    In 1995, Laporta and Tolev [18] considered the equation

    [pc1]+[pc2]+[pc3]=N (1.4)

    with prime variables p1,p2,p3. Denote the weighted number of solutions of Eq (1.4) by

    R(N)=[pc1]+[pc2]+[pc3]=N(logp1)(logp2)(logp3). (1.5)

    They established the following asymptotic formula

    R(N)=Γ3(1+1c)Γ(3c)N3c1+O(N3c1exp(log13δN))

    for any 0<δ<13 and 1<c<1716. Afterwards, the range of c was enlarged to 1<c<1211 by Kumchev and Nedeva [16], to 1<c<258235 by Zhai and Cao [39], and to 1<c<137119 by Cai [4].

    In this paper, we first show a more general result related to (1.5) by proving the following theorem.

    Theorem 1.1. Let N be a sufficiently large integer. Then for 1<c<3+3κλ3κ+2, we have

    R(N)=Γ3(1+1c)Γ(3c)N3c1+O(N3c1exp(log13δN)) (1.6)

    for any 0<δ<13, where (κ,λ) is an exponent pair, and the implied constant in the Osymbol depends only on c.

    Choosing (κ,λ)=BA2BABABABAB(0,1)=(81242,132242) in Theorem 1.1, we can immediately get the following corollary, which further improves the result of Cai [4].

    Corollary 1.2. Under the notations of Theorem 1.1, for 1<c<837727 the asymptotic formula (1.6) follows.

    It is easy to verify that the range of c in Corollary 1.2 is larger than one of Cai's result. Our improvement mainly derives from more accurate estimates of exponential sums by combining Van der Corput's method, exponent pairs and some elementary methods. Also the estimates of exponential sums has lots of applications in problems including automorphic forms (e.g., see [8,11,12,20,22,24,29,30,31,32,33,34,35,36,37,38]).

    Notation. Throughout the paper, N always denotes a sufficiently large integer. The letter p, with or without subscripts, is always reserved for primes. Let ε(0,1010(3+3κλ3κ+2c)). We denote by {x} and x the fraction part of x and the distance from x to the nearest integer, respectively. Let 1<c<3+3κλ3κ+2 and

    P=N1c,  τ=P1cε,  e(x)=e2πix,  S(α)=pP(logp)e(α[pc]).

    To prove Theorem 1.1, we need the following lemmas.

    Lemma 2.1 ([9,Lemma 5]). Suppose that zn is a sequence of complex numbers, then we have

    |Nn2Nzn|2(1+NQ)Qq=0(1qQ)Re(Nn2Nq¯znzn+q),

    where Re(t) and ¯t denote the real part and the conjugate of the complex number t, respectively.

    Lemma 2.2. Suppose that |x|>0 and c>1. Then for any exponent pair (κ,λ) and Ma<b2M, we have

    anbe(xnc)(|x|Mc)κMλκ+M1c|x|.

    Proof. We can get this lemma from [6,(3.3.4)].

    Lemma 2.3 ([2,Lemma 12]). Suppose that t is not an integer and H3. Then for any α(0,1), we have

    e(α{t})=|h|Hch(α)e(ht)+O(min(1,1Ht)),

    where

    ch(α)=1e(α)2πi(h+α).

    Lemma 2.4 ([9,Lemma 3]). Suppose that 3<U<V<Z<X, and {Z}=12, X64Z2U, Z4U2, V332X. Further suppose that F(n) is a complex valued function such that |F(n)|1. Then the sum

    Xn2XΛ(n)F(n)

    can be decomposed into O(log10X) sums, each of which either of type {I}:

    Mm2Ma(m)Nn2NF(mn)

    with N>Z, where a(m)mε and XMNX, or of type {II}:

    Mm2Ma(m)Nn2Nb(n)F(mn)

    with UMV, where a(m)mε,b(n)nε and XMNX.

    Lemma 2.5. Let f(t) be a real value function and continuous differentiable at least three times on [a,b](1a<b2a), |f(x)|Δ>0, then we have

    a<nbe(f(n))aΔ16+Δ13.

    Moreover, if 0<c1λ1c2λ1, |f(x)|λ1a1, then we have

    a<nbe(f(n))a12λ121+λ11;

    if c2λ112, then we have

    a<nbe(f(n))λ11.

    Proof. The first result was proved by Sargos [26]. And the remaining two results were due to Jia [13].

    Lemma 2.6 ([23,Lemma 2]). Let M>0, N>0, um>0, υn>0, Am>0, Bn>0 (1mM,1nN). Let also Q1 and Q2 be given non-negative numbers, Q1Q2. Then there is one q such that Q1qQ2 and

    Mm=1Amqum+Nn=1BnqυnMm=1Nn=1(AυnmBumn)1um+υn+Mm=1AmQum1+Nn=1BnQυn2.

    Lemma 2.7 ([36,Lemma 5]). Let f(x), g(x) be algebraic functions in [a,b], |f(x)|1R, f(x)1RU, U1, |g(x)|G, |g(x)|GU1. [α,β] is the image of [a,b] under the mapping y=f(x). nu is the solution of f(n)=u.

    bu={1,α<u<β,12,u=αNoru=βN.

    Then we have

    a<nbg(n)e(f(n))=α<uβbug(nu)|f(nu)|e(f(nu)unu+18)+O(Glog(βα+2)+G(ba+R)u1)+O(Gmin(R,1α)+Gmin(R,1β)).

    Lemma 2.8 ([13,Lemma 3]). Suppose that xN, f(x)P, and f(x)Δ. Then we have

    nNmin(D,1f(n))(P+1)(D+Δ1)log(2+Δ1).

    Lemma 2.9. For 0<α<1 and any exponent pair (κ,λ), we have

    T(α,X)=X<n2Xe(α[nc])Xκc+λ1+κlogX+XαXc.

    Proof. Throughout the proof of this lemma, we write H=Xκc+1λ+κ1+κ for convenience. Using Lemma 2.3 we can get

    T(α,X)=|h|Hch(α)X<n2Xe((h+α)nc)+O((logX)X<n2Xmin(1,1H||nc||)).

    Then by the expansion

    min(1,1H||θ||)=h=ahe(hθ),

    where

    |ah|=min(log2HH, 1|h|, Hh2),

    we have

    X<n2Xmin(1,1H||nc||)h=|ah||X<n2Xe(hnc)|Xlog2HH+1hH1h((hXc)κXλκ+XhXc)+hHHh2((hXc)κXλκ+XhXc)Xκc+λ1+κlogX,

    where we estimated the sum over n by Lemma 2.2.

    In a similar way, we have

    |h|Hch(α)X<n2Xe((h+α)nc)=c0(α)X<n2Xe(αnc)+1hHch(α)X<n2Xe((h+α)nc)Xκc+λ1+κlogX+XαXc.

    Then this lemma follows.

    Lemma 2.10 ([42,Lemma 2.1]). Suppose that f(n) is a real-valued function in the interval [N,N1], where 2N<N12N. If 0<c1λ1|f(n)|c2λ112, then we have

    N<nN1e(f(n))λ11.

    If |f(j)(n)|λ1Nj+1(j=1,2), then we have

    N<nN1e(f(n))λ11+N12λ121.

    If |f(j)(n)|λ1Nj+1(j=1,2,3,4,5,6), then we have

    N<nN1e(f(n))λ11+Nλλκ1,

    where (κ,λ) is any exponent pair.

    Lemma 2.11 ([9,Lemma 6]). Suppose that 0<a<b2a and R is an open convex set in C containing the real segment [a,b]. Suppose further that f(z) is analytic on R. f(x) is real for real xR. f(z)M for zR. There is a constant k>0 such that f(x)kM for all real xR. Let f(b)=α and  f(a)=β, and define xυ for each integer υ in the range α<υ<β by f(xυ)=υ. Then we have

    a<nbe(f(n))=e(18)α<υβ|f(xυ)|12e(f(xυ)υxυ)+O(M12+log(2+M(ba))).

    Lemma 3.1. Let P56XP, H=X1(1+2κ)c+λ2+2κ and ch(α) denote complex numbers such that ch(α)(1+|h|)1. Then uniformly for α(τ,1τ), we have

    SI=|h|Hch(α)Mm2Ma(m)Nn2Ne((h+α)(mn)c)X(1+2κ)c+λ2+2κ+2ε (3.1)

    for any a(m)mε, where (κ,λ) is any exponent pair, XMNX and MY with Y=min{X1,X2,X3,X4,X5,X6,X7,X8},

    X1=X152(1+2κ)c+λ2+2κc2112, X2=X5211(1+2κ)c+λ2+2κ4c11811,X3=X318(1+2κ)c+λ2+2κc8238, X4=X2(1+2κ)c+2λ1+κ3,X5=X4(1+2κ)c+4λ1+κ467,X6=X167(1+2κ)c+λ1+κ257,X7=X203(1+2κ)c+λ1+κ343,X8=X73(1+2κ)c+λ1+κ113.

    Proof. It is easy to deduce that

    SIMεhHKh,

    where Kh=mM|nNe((α+h)(mn)c)|. According to Hölder's inequality, we have

    K4hM3mM|nNe((α+h)(mn)c)|4. (3.2)

    Let zn=zn(m,α)=(α+h)(mn)c. Suppose that Q, J are two positive integers such that 1QNlog1X, 1JNlog1X. For the inner sum in (3.2), applying Lemma 2.1 twice, we can get

    K4hX4Q2+X4J+X3JQJj=1Qq=1|Eq,j|, (3.3)

    where

    Eq,j=mMN<n2Nqje(znzn+q+zn+q+jzn+j). (3.4)

    Let Δ(nc;q,j)=(n+q+j)c(n+q)c(n+j)c+nc, G(m,n)=(α+h)mcΔ(nc;q,j). Then znzn+qzn+j+zn+q+j=G(m,n). Thus we have

    Eq,j=mne(G(m,n)). (3.5)

    For any t1,0, we have

    Δ(nt;q,j)=t(t1)qjnt2+O(Nt3qj(q+j)), (3.6)

    then

    Gn=c(c1)(c2)(α+h)qjmcnc3(1+O(q+jN))

    and

    2Gn2=c(c1)(c2)(c3)(α+h)qjmcnc4(1+O(q+jN)). (3.7)

    If c(c1)(c2)(α+h)qjMcNc31100, by Lemma 2.5 we have

    mne(G(m,n))MN3((α+h)qjMcNc)1.

    From now we always suppose that c(c1)(c2)(α+h)qjMcNc31100. By Lemma 2.7 we have

    N<n2Njqe(G(m,n))=e(18)α<υ<β|2Gn2(m,nυ)|12e(G(m,nυ)υnυ)+R(m,q,j),

    where

    Gn(m,nυ)=υ,β=Gn(m,N),α=Gn(m,2Nqj),R=N4[(h+α)qjXc]1,υ(h+α)qjMcNc3,R(m,q,j)=O(logX+RN1+min(R,max(1α,1β))). (3.8)

    By Lemma 2.8, the contribution of R(m,q,j) to E(q,j) is

    MlogX+MRN1+mMmin(R,1α)+mMmin(R,1β)MlogX+X3c[(h+α)qjM2]1+[(h+α)qj]12MXc21logX. (3.9)

    Then we only need to deal with the following exponential sum

    mMα<υ<β|2Gn2(m,nυ)|12e(G(m,nυ)υnυ)=υmIυ|2Gn2(m,nυ)|12e(G(m,nυ)υnυ),

    where Iυ is a subinterval of [M,2M]. For a fixed υ, we define Δλ=Δ(nλυ;q,j), where λ is an arbitrary real number. We take the derivative of m in (3.8) and get

    nυ=cΔc1(c1)mΔc2. (3.10)

    It follows from (3.7) that

    ddm(2Gn2(m,nυ))=c2(h+α)mc1Δc2((c1)Δ2c2(c2)Δc1Δc3).

    Recalling (3.6), we can get

    ddm(2Gn2(m,nυ))=c2(c1)(c2)(c3)(h+α)qjmc1nc4υ(1+O(q+jN)).

    Thus for m, |2Gn2(m,nυ)|12 is monotonic. Let g(m)=G(m,nυ(m))υnυ(m). Then we have

    g(m)=c(α+h)mc1Δc,g(m)=c(α+h)c1(c1)2ΔcΔc2c2Δ2c1m2cΔc2=c(α+h)(c1)g1(m)g2(m)g0(m),g(m)=c(α+h)(c1)(g1g2)g0g0(g1g2)g20,

    where

    g1=((c1)2cΔc1Δc2+(c1)2(c2)ΔcΔc3)nυ(m),g2=2c2(c1)Δc1Δc2nυ(m),g0=(2c)m1c(c1)Δc2((c1)Δ2c2+cΔc1Δc3).

    From the above formulas we can obtain

    g(m)(h+α)qjM1Xc2.

    Using Lemma 2.5 and partial summation we can get

    mMυ|2Gn2(m,nυ)|12e(G(m,nυ)υnυ)(M((h+α)qjM1Xc2)16+((h+α)qjM1Xc2)13)×(h+α)qjMcNc3((h+α)qjMcNc4)12((h+α)qj)23M116X2c343+((h+α)qj)16M43Xc613. (3.11)

    By (3.5), (3.9) and (3.11), we have

    Eq,jlog1XM+((h+α)qjM2)1X3c+((h+α)qj)12MXc21+((h+α)qj)23M116X2c343+((h+α)qj)16M43Xc613. (3.12)

    Inserting (3.12) into (3.3), we obtain

    K4hlog1XX4Q2+X4J+MX3+((h+α)QJM2)1X6c+((h+α)QJ)12MXc2+2+((h+α)QJ)23M116X2c3+53+((h+α)QJ)16M43Xc6+83.

    Then choosing optimal J[0,Nlog1X] and Q[0,Nlog1X] and using Lemma 6 twice we can get

    Khlog3XB(h),

    where

    B(h)=X56+(α+h)114M17Xc14+57+(α+h)112M1148Xc12+1724+(α+h)130M415Xc30+1115+X34M14+(α+h)14X1c4+X2328M18+X2532M732+X1720M340+X1114M314.

    Recalling the definitions of H and Y, we have

    SIlog3XMεHB(H)X(1+2κ)c+λ2+2κ+2ε,

    and Lemma 3.1 is proved.

    Lemma 3.2. Let P56XP, H=X1(1+2κ)c+λ2+2κ, F=(h+α)Xcand ch(α) denote complex numbers such that ch(α)(1+|h|)1. Then uniformly for α(τ,1τ), we have

    SII=|h|Hch(α)Mm2Ma(m)Nn2Nb(n)e((h+α)(mn)c)X(1+2κ)c+λ2+2κ+2ε, (3.13)

    for any a(m)mε, b(n)nε, where (κ,λ) is any exponent pair, XMNX and

    max{X3(1+2κ)c+λ1+κF1,X42(1+2κ)c+2λ1+κ,X26533(1+2κ)c+λ1+κF539}MX(1+2κ)c+λ1+κ1.

    Proof. Taking Q=[X2(1+2κ)c+λ1+κlog1X], then we have Q=o(N). By Cauchy's inequality and Lemma 2.1, we have

    |SII|2mM|a(m)|2mM|nNb(n)e(f(mn))|2M2N2log2A+2BXQ+MNlog2AXQQq=1Eq, (3.14)

    where Eq=nN|b(n+q)b(n)||mMe(G(mn))| and G(m,n)=G(m,n,q)=(h+α)mcΔ(n,q;c), Δ(n,q;c)=(n+q)cnc.

    If |Gm|103Mq2, by Lemma 2.10 we have

    EqnN|b(n+q)b(n)|(MNFq+(FqMN)12M12)nN(|b(n+q)|2+|b(n)|2)(MNFq+Mq)MNqlog2BX (3.15)

    noting that MXF.

    Now we suppose |G/m|>103Mq2. By Lemma 11 we get

    mMe(G(m,n))MN1/2(Fq)1/2|r1(n)rr2(n)φ(n,r)e(s(r,n))|+logX+MN1/2(Fq)1/2,

    where s(r,n)=G(M(r,n),n)rm(r,n), φ(r,n)=(Fq)12MN12|2G(m(r,n),n)m2|12 and

    r1(n)=Gm(M,n),  r2(n)=Gm(2M,n).

    Thus we have

    EqMN1/2(Fq)1/2nN|b(n+q)b(n)||r1(n)<rr2(n)φ(n,r)e(s(r,n))|+Nlog2B+1X+MN3/2(Fq)1/2log2BX. (3.16)

    So it suffices to bound the sum

    Σ1=nN|b(n+q)b(n)||r1(n)<rr2(n)φ(n,r)e(s(r,n))|.

    Let T=[Fq3/M2N] and R=Fq/MN. By Cauchy's inequality and Lemma 2.1 again we get

    Σ12nN|b(n+q)b(n)|2nN|r1(n)<rr2(n)φ(n,r)e(s(r,n))|2N2R2log4BXT+NRlog4BXTΣ2, (3.17)

    where

    Σ2=Tt=1|nNr1(n)<rr2(n)tφ(n,r+t)φ(n,r)e(s(r+t)s(r,n))|

    and where we used the estimate

    nN|b(n+q)b(n)|2nN(|b(n+q)|4+|b(n)|4)Nlog4BX.

    It is easy to check that 10<T=o(R).

    Recall that s(r,n)=G(m(r,n),n)rm(r,n), where m(r,n) denotes the solution of

    Gm(m,n)=r.

    It is easy to deduce that

    sr(r,n)=Gmmrm(r,n)rmr=m(r,n).

    So we can obtain

    H(n):=Hr,t,q(n)=s(r+t,n)s(r,n)=r+trsu(u,n)du=r+trm(u,n)du,

    which implies that |H(j)|tMNj, (j=0,1,2,3,4,5,6). Denote by I(r,t) the interval N<n2N, r1(n)<nr2(n)t. Then we have

    Σ2Tt=1rR|nI(r,t)φ(n,r+t)φ(n,r)e(s(r+t,n)s(r,n))|.

    Thus using partial summation, we get

    Σ2Tt=1rR(tMN)κNλRMκNλκT1+κNR (3.18)

    with the exponent pair (κ,λ), if we note that MX26533(1+2κ)c+λ1+κF539. From (3.15)–(3.18) we get that for any 1qQ,

    EqMNlog2B+1Xq+Nlog2B+1X+MN32(Fq)12log2BX. (3.19)

    Now this lemma follows from inserting (3.19) into (3.14).

    Lemma 3.3. For τα1τ, we have

    S(α)P(1+2κ)c+λ2+2κ+4ε,

    where (κ,λ) is any exponent pair.

    Proof. Throughout the proof of this lemma, we write H=X1(1+2κ)c+λ2+2κ for convenience. By a dissection argument we only need to prove that

    X<n2XΛ(n)e(α[nc])X(1+2κ)c+λ2+2κ+3ε (3.20)

    holds for P56XP and τα1τ. According to Lemma 2.3, we have

    X<n2XΛ(n)e(α[nc])=|h|Hch(α)X<n2XΛ(n)e((h+α)nc)+O((logX)X<n2Xmin(1,1Hnc)). (3.21)

    By the expansion

    min(1,1Hnc)=h=ahe(hnc),

    where

    |ah|min(log2HH,1|h|,Hh2),

    we get

    X<n2Xmin(1,1Hnc)h=ah|X<n2Xe(hnc)|Xlog2HH+1hH1h((hXc)12+XhXc)+hHHh2((hXc)12+XhXc)X(1+2κ)c+λ2+2κlogX, (3.22)

    where we estimated the sum over n by Lemma 2.2 with the exponent pair (12,12).

    Let R=max{X3(1+2κ)c+λ1+κF1,X42(1+2κ)c+2λ1+κ,X26533(1+2κ)c+λ1+κF539}. Recall the definition of Y in Lemma 3.1. Let U=R, V=X(1+2κ)c+λ1+κ1, Z=[XY1]+12. By Lemma 4 with F(n)=e((h+α)nc), then we reduce the estimate of

    |h|Hch(α)X<n2XΛ(n)e((h+α)nc)

    to the estimates of sums of type I

    SI=|h|Hch(α)M<m2Ma(m)N<n2Ne((h+α)(mn)c), N>Z,

    and sums of type II

    SII=|h|Hch(α)M<m2Ma(m)N<n2Nb(n)e((h+α)(mn)c), U<M<V,

    where a(m)mε, b(n)nε, XMNX. By Lemma 3.1, we get

    SIX(1+2κ)c+λ2+2κ+2ε. (3.23)

    By Lemma 3.2, we get

    SIIX(1+2κ)c+λ2+2κ+3ε. (3.24)

    From (3.23) and (3.24) we can obtain

    |h|Hch(α)X<n2XΛ(n)e((h+α)nc)X(1+2κ)c+λ2+2κ+3ε. (3.25)

    Now (3.20) follows from (3.21), (3.22) and (3.25). Thus we complete the proof of this Lemma.

    It is easy to see that

    R(N)=1ττS3(α)e(αN)dα=ττS3(α)e(αN)dα+1ττS3(α)e(αN)dα=R1(N)+R2(N). (4.1)

    Following the argument of Laporta and Tolev [18,pages 928–929], we can get that

    R1(N)=Γ3(1+1c)Γ(3c)N3c1+O(N3c1exp(log13δN)) (4.2)

    for 1<c<32 and any 0<δ<13, where the implied constant in the Osymbol depends only on c.

    Let

    S(α,X)=X<p2Xe(α[pc])logp, T(α,X)=X<n2Xe(α[nc]).

    We can get

    R2(N)=1ττS3(α)e(αN)dα(logX)maxP56X0.5P|1ττS2(α)S(α,X)e(αN)dα|+P116log2P, (4.3)

    where we used

    1ττ|S2(α)|dα10|S2(α)|dαPlog2P. (4.4)

    Now, we start to estimate the absolute value on the right hand in (4.3). By Cauchy's inequality we have

    |1ττS2(α)S(α,X)e(αN)dα|=|X<p2X(logp)1ττS2(α)e(α[pc]αN)dα|X<p2X(logp)|1ττS2(α)e(α[pc]αN)dα|(logX)X<n2X|1ττS2(α)e(α[nc]αN)dα|X12(logX)(X<n2X|1ττS2(α)e(α[nc]αN)dα|2)12=X12(logX)(1ττ¯S2(β)e(βN)dβ1ττS2(α)T(αβ,X)e(αN)dα)12X12(logX)(1ττ|S(β)|2dβ1ττ|S(α)|2|T(αβ,X)|dα)12. (4.5)

    Then we have

    1ττ|S(α)|2|T(αβ,X)|dατ<α<1τ|αβ|Xc|S(α)|2|T(αβ,X)|dα+τ<α<1τ|αβ|>Xc|S(α)|2|T(αβ,X)|dα. (4.6)

    By Lemma 3.3, we have

    τ<α<1τ|αβ|Xc|S(α)|2|T(αβ,X)|dαXmaxα(τ,1τ)|S(α)|2|αβ|Xc1dαX1cP(1+2κ)c+λ1+κ+8ε, (4.7)

    where we used the trivial bound T(α,X)X. By Lemma 2.9, Lemma 3.3 and (4.4), we get

    τ<α<1τ|αβ|>Xc|S(α)|2|T(αβ,X)|dατ<α<1τ|αβ|>Xc|S(α)|2(Xκc+λ1+κlogX+X|αβ|Xc)dαXκc+λ1+κ(logX)1ττ|S(α)|2dα+maxα(τ,1τ)|S(α)|2|αβ|>XcX|αβ|XcdαXκc+λ1+κPlog3P+X1cP(1+2κ)c+λ1+κ+9ε. (4.8)

    Thus, combining (4.6)–(4.8) we obtain

    1ττ|S(α)|2|T(αβ,X)|dαXκc+λ1+κPlog3P+X1cP(1+2κ)c+λ1+κ+9ε. (4.9)

    By (4.3), (4.5) and (4.9), we can obtain

    R2(N)P3cε. (4.10)

    Now putting (4.1), (4.2) and (4.10) into together, we have

    R(N)=Γ3(1+1c)Γ(3c)N3c1+O(N3c1exp(log13δN))

    follows for any 0<δ<13, where the implied constant in the Osymbol depends only on c. Thus we complete the proof of Theorem 1.1.

    The authors would like to thank the referees for their many useful comments. This work is supported by National Natural Science Foundation of China (Grant Nos. 11801328 and 11771256).

    The authors declare no conflict of interest.



    [1] A. A. Kilbas, H. M. Srivastava, J. J. Trujillo, Theory and applications of fractional differential equations, Elsevier Science, 2006. https://doi.org/10.1016/s0304-0208(06)x8001-5
    [2] I. Podlubny, Fractional differential equations, Academic Press, 1999.
    [3] A. A. Kilbas, Hadamard type fractional calculus, J. Korean Math. Soc., 38 (2001), 1191–1204. https://doi.org/10.4134/JKMS.2001.38.6.1191 doi: 10.4134/JKMS.2001.38.6.1191
    [4] W. Benhamida, J. R. Graef, S. Hamani, Boundary value problems for Hadamard fractional differential equations with nonlocal multi-point boundary conditions, Fractional Differ. Calculus, 8 (2018), 165–176. https://doi.org/10.7153/fdc-2018-08-10 doi: 10.7153/fdc-2018-08-10
    [5] A. Boutiara, K. Guerbati, M. Benbachir, Caputo-Hadamard fractional differential equation with three-point boundary conditions in Banach spaces, AIMS Math., 5 (2020), 259–272. https://doi.org/10.3934/math.2020017 doi: 10.3934/math.2020017
    [6] P. Karthikeyan, K. Venkatachalam, Nonlocal multipoint boundary value problems for Caputo-Hadamard fractional integro-differential equations, Appl. Math., 2 (2020), 23–35.
    [7] R. P. Agarwal, A. Alsaedi, A. Alsharrif, B. Ahmed, On nonlinear fractional order boundary value problems with nonlocal multi-point conditions involving Liouville-Caputo derivatives, Differ. Equations Appl., 9 (2017), 147–160. https://doi.org/10.7153/dea-09-12 doi: 10.7153/dea-09-12
    [8] C. Derbazi, H. Hammouche, Caputo-Hadamard fractional differential equations with nonlocal fractional integro-differential boundary conditions via topological degree theory, AIMS Math., 5 (2020), 2694–2709. https://doi.org/10.3934/math.2020174 doi: 10.3934/math.2020174
    [9] M. S. Kumar, M. Deepa, J. Kavitha, V. Sadhasivam, Existence theory of fractional order three-dimensional differential system at resonance, Math. Modell. Control, 3 (2023), 127–138. https://doi.org/10.3934/mmc.2023012 doi: 10.3934/mmc.2023012
    [10] C. V. Bose, R. Udhayakumar, A. M. Elshenhab, M. S. Kumar, J. S. Ro, Discussion on the approximate controllability of Hilfer fractional neutral integro-differential inclusions via almost sectorial operators, Fractal Fract., 6 (2022), 607. https://doi.org/10.3390/fractalfract6100607 doi: 10.3390/fractalfract6100607
    [11] T. Gayathri, M. S. Kumar, V. Sadhasivam, Hille and Nehari type oscillation criteria for conformable fractional differential equations, Iraqi J. Sci., 62 (2021), 578–587. https://doi.org/10.24996/ijs.2021.62.2.23 doi: 10.24996/ijs.2021.62.2.23
    [12] J. Liu, W. Wei, J. Wang, W. Xu, Limit behavior of the solution of Caputo-Hadamard fractional stochastic differential equations, Appl. Math. Lett., 140 (2023), 108586. https://doi.org/10.1016/j.aml.2023.108586 doi: 10.1016/j.aml.2023.108586
    [13] J. Liu, W. Wei, W. Xu, An averaging principle for stochastic fractional differential equations driven by fBm involving impulses, Fractal Fract., 6 (2022), 256. https://doi.org/10.3390/fractalfract6050256 doi: 10.3390/fractalfract6050256
    [14] O. Kahouli, A. B. Makhlouf, L. Mchiri, H. Rguigui, Hyers-Ulam stability for a class of Hadamard fractional Itô-Doob stochastic integral equations, Chaos Solitons Fract., 166 (2022), 112918. https://doi.org/10.1016/j.chaos.2022.112918 doi: 10.1016/j.chaos.2022.112918
    [15] V. Lakshmikantham, D. D. Bainov, P. S. Simeonov, Theory of impulsive differential equations, Worlds Scientific, 1989.
    [16] A. M. Samoilenko, N. A. Perestyuk, Impulsive differential equations, World Scientific, 1995. https://doi.org/10.1142/9789812798664
    [17] M. Benchohra, S. Bouriah, J. R. Graef, Boundary value problems for nonlinear implicit Caputo-Hadamard type fractional differential equations with impulses, Medit. J. Math., 14 (2017), 206. https://doi.org/10.1007/s00009-017-1012-9 doi: 10.1007/s00009-017-1012-9
    [18] M. Benchohra, J. E. Lazreg, Existence results for nonlinear implicit fractional differential equations with impulse, Commun. Appl. Anal., 19 (2015), 413–426. https://doi.org/10.3934/caa.2015.19.413 doi: 10.3934/caa.2015.19.413
    [19] J. Hadamard, Essai sur létude des fonctions donnees par Leur developpement de Taylor, J. Math. Pure Appl., 8 (1892), 101–186. {https://eudml.org/doc/233965}
    [20] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Mellin transform analysis and integration by parts for Hadamard-type fractional integrals, J. Math. Anal. Appl., 270 (2002), 1–15. https://doi.org/10.1016/S0022-247X(02)00066-5 doi: 10.1016/S0022-247X(02)00066-5
    [21] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Fractional calculus in the mellin setting and Hadamard-type fractional integrals, J. Math. Anal. Appl., 269 (2002), 1–27. https://doi.org/10.1016/S0022-247X(02)00001-X doi: 10.1016/S0022-247X(02)00001-X
    [22] P. L. Butzer, A. A. Kilbas, J. J. Trujillo, Compositions of Hadamard-type fractional integration operators and the semigroup property, J. Math. Anal. Appl., 269 (2002), 387–400. https://doi.org/10.1016/S0022-247X(02)00049-5 doi: 10.1016/S0022-247X(02)00049-5
    [23] I. Mahariq, M. Kuzuoğlu, I. H. Tarman, H. Kurt, Photonic nanojet analysis by spectral element method, IEEE Pho. J., 6 (2014), 6802714. https://doi.org/10.1109/JPHOT.2014.2361615 doi: 10.1109/JPHOT.2014.2361615
    [24] I. Mahariq, A. Erciyas, A spectral element method for the solution of magnetostatic fields, Turk. J. Electr. Eng. Comput. Sci., 24 (2017), 2922–2932. https://doi.org/10.3906/elk-1605-6 doi: 10.3906/elk-1605-6
    [25] I. Mahario, On the application of the spectral element method in electromagnetic problems involving domain decomposition, Turk. J. Electr. Eng. Comput. Sci., 25 (2017), 1059–1069. https://doi.org/10.3906/ELK-1511-115 doi: 10.3906/ELK-1511-115
    [26] F. Jarad, T. Abdeljawad, D. Baleanu, Caputo-type modification of the Hadamard fractional derivatives, Adv. Differ. Equations, 2012 (2012), 142. https://doi.org/10.1186/1687-1847-2012-142 doi: 10.1186/1687-1847-2012-142
    [27] M. Benchohra, J. Henderson, S. K. Ntouyas, Impulsive differential equations and inclusions, Hindawi Publishing Corporation, 2006. https://doi.org/10.1155/9789775945501
    [28] B. Ahmad, G. Wang, A study of an impulsive four-point nonlocal boundary value problem of nonlinear fractional differential equations, Comput. Math. Appl., 62 (2011), 1341–1349. https://doi.org/10.1016/j.camwa.2011.04.033 doi: 10.1016/j.camwa.2011.04.033
    [29] A. Al-Omari, H. Al-Saadi, (ω,ρ)-BVP solution of impulsive Hadamard fractional differential equations, Mathematics, 11 (2023), 4370. https://doi.org/10.3390/math11204370 doi: 10.3390/math11204370
    [30] N. I. Mahmudov, M. Awadalla, K. Abuassba, Hadamard and Caputo-Hadamard FDE's with three point integral boundary conditions, Nonlinear Anal. Differ. Equations, 5 (2017), 271–282. https://doi.org/10.12988/nade.2017.7916 doi: 10.12988/nade.2017.7916
    [31] Y. Arioua, N. Benhamidouche, Boundary value problem for Caputo-Hadamard fractional differential equations, Sur. Math. Appl., 12 (2017), 103–115.
    [32] W. Benhamida, S. Hamani, J. Henderson, Boundary value problems for Caputo-Hadamard fractional differential equations, Adv. Theory Nonlinear Anal. Appl., 2 (2018), 138–145.
    [33] A. Ardjounia, A. Djoudi, Existence and uniqueness of solutions for nonlinear implicit Caputo-Hadamard fractional differential equations with nonlocal conditions, Adv. Theory Nonlinear Anal. Appl., 3 (2019), 46–52. https://doi.org/10.31197/atnaa.501118 doi: 10.31197/atnaa.501118
    [34] A. Irguedi, K. Nisse, S. Hamani, Functional impulsive fractional differential equations involving the Caputo-Hadamard derivative and integral boundary conditions, Int. J. Anal. Appl., 21 (2023), 15. https://doi.org/10.28924/2291-8639-21-2023-15 doi: 10.28924/2291-8639-21-2023-15
    [35] J. R. Graef, S. Hamani, Existence results for impulsive caputo-hadamard fractional differential equations with integral boundary conditions, Dyn. Syst. Appl., 32 (2023), 1–16. https://doi.org/10.46719/dsa2023.32.01 doi: 10.46719/dsa2023.32.01
    [36] S. Akhter, Existence of weak solutions for Caputo's fractional derivatives in Banach spaces, GANIT: J. Bang. Math. Soc., 39 (2019), 111–118. https://doi.org/10.3329/ganit.v39i0.44166 doi: 10.3329/ganit.v39i0.44166
  • This article has been cited by:

    1. Qian Sima, Shan Wu, Rahim Khan, The Acceptability of Traditional Culture under the Background of Deep Learning, 2022, 2022, 1687-5273, 1, 10.1155/2022/4010099
    2. Min Hong, Jiajia He, Kexian Zhang, Zhidou Guo, Does digital transformation of enterprises help reduce the cost of equity capital, 2023, 20, 1551-0018, 6498, 10.3934/mbe.2023280
    3. Kaimeng Zhang, Xihe Liu, Jingjing Wang, Exploring the relationship between corporate ESG information disclosure and audit fees: evidence from non-financial A-share listed companies in China, 2023, 11, 2296-665X, 10.3389/fenvs.2023.1196728
    4. Tingfang Zhang, Model Design and Discourse Construction of Intercultural Communication of Chinese Cultural Community in Globalized Business Environment, 2024, 9, 2444-8656, 10.2478/amns-2024-3259
    5. Guangbin Liu, Wei Nie, The role of Marxist ecological view on environmental protection in China, 2023, 0958-305X, 10.1177/0958305X231177738
    6. Yang Xu, Conghao Zhu, Runze Yang, Qiying Ran, Xiaodong Yang, Applications of linear regression models in exploring the relationship between media attention, economic policy uncertainty and corporate green innovation, 2023, 8, 2473-6988, 18734, 10.3934/math.2023954
    7. Shan Huang, Khor Teik Huat, Yue Liu, Study on the influence of Chinese traditional culture on corporate environmental responsibility, 2023, 20, 1551-0018, 14281, 10.3934/mbe.2023639
    8. Tinghui Li, Xin Shu, Gaoke Liao, Does corporate greenwashing affect investors' decisions?, 2024, 67, 15446123, 105877, 10.1016/j.frl.2024.105877
  • Reader Comments
  • © 2024 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(921) PDF downloads(50) Cited by(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog