Editorial Special Issues

Hamiltonian lattice dynamics

  • Hamiltonian lattice dynamics is a very active and relevant field of research. In this Special Issue, by means of some recent results by leading experts in the field, we tried to illustrate how broad and rich it can be, and how it can be seen as excellent playground for Mathematics in Engineering.

    Citation: Simone Paleari, Tiziano Penati. Hamiltonian lattice dynamics[J]. Mathematics in Engineering, 2019, 1(4): 881-887. doi: 10.3934/mine.2019.4.881

    Related Papers:

    [1] Xin Gao, Yue Zhang . Bifurcation analysis and optimal control of a delayed single-species fishery economic model. Mathematical Biosciences and Engineering, 2022, 19(8): 8081-8106. doi: 10.3934/mbe.2022378
    [2] Hongwei Sun, Qian Gao, Guiming Zhu, Chunlei Han, Haosen Yan, Tong Wang . Identification of influential observations in high-dimensional survival data through robust penalized Cox regression based on trimming. Mathematical Biosciences and Engineering, 2023, 20(3): 5352-5378. doi: 10.3934/mbe.2023248
    [3] Miin-Shen Yang, Wajid Ali . Fuzzy Gaussian Lasso clustering with application to cancer data. Mathematical Biosciences and Engineering, 2020, 17(1): 250-265. doi: 10.3934/mbe.2020014
    [4] Linqian Guo, Qingrong Meng, Wenqi Lin, Kaiyuan Weng . Identification of immune subtypes of melanoma based on single-cell and bulk RNA sequencing data. Mathematical Biosciences and Engineering, 2023, 20(2): 2920-2936. doi: 10.3934/mbe.2023138
    [5] Wentao Hu, Yufeng Shi, Cuixia Chen, Ze Chen . Optimal strategic pandemic control: human mobility and travel restriction. Mathematical Biosciences and Engineering, 2021, 18(6): 9525-9562. doi: 10.3934/mbe.2021468
    [6] Shuo Sun, Xiaoni Cai, Jinhai Shao, Guimei Zhang, Shan Liu, Hongsheng Wang . Machine learning-based approach for efficient prediction of diagnosis, prognosis and lymph node metastasis of papillary thyroid carcinoma using adhesion signature selection. Mathematical Biosciences and Engineering, 2023, 20(12): 20599-20623. doi: 10.3934/mbe.2023911
    [7] Peiqing Lv, Jinke Wang, Xiangyang Zhang, Chunlei Ji, Lubiao Zhou, Haiying Wang . An improved residual U-Net with morphological-based loss function for automatic liver segmentation in computed tomography. Mathematical Biosciences and Engineering, 2022, 19(2): 1426-1447. doi: 10.3934/mbe.2022066
    [8] Jiaxi Lu, Yingwei Guo, Mingming Wang, Yu Luo, Xueqiang Zeng, Xiaoqiang Miao, Asim Zaman, Huihui Yang, Anbo Cao, Yan Kang . Determining acute ischemic stroke onset time using machine learning and radiomics features of infarct lesions and whole brain. Mathematical Biosciences and Engineering, 2024, 21(1): 34-48. doi: 10.3934/mbe.2024002
    [9] Taniya Mukherjee, Isha Sangal, Biswajit Sarkar, Qais Ahmed Almaamari . Logistic models to minimize the material handling cost within a cross-dock. Mathematical Biosciences and Engineering, 2023, 20(2): 3099-3119. doi: 10.3934/mbe.2023146
    [10] Chengkang Li, Ran Wei, Yishen Mao, Yi Guo, Ji Li, Yuanyuan Wang . Computer-aided differentiates benign from malignant IPMN and MCN with a novel feature selection algorithm. Mathematical Biosciences and Engineering, 2021, 18(4): 4743-4760. doi: 10.3934/mbe.2021241
  • Hamiltonian lattice dynamics is a very active and relevant field of research. In this Special Issue, by means of some recent results by leading experts in the field, we tried to illustrate how broad and rich it can be, and how it can be seen as excellent playground for Mathematics in Engineering.




    [1] Chong C, Foehr A, Charalampidis EG, et al. (2019) Breathers and other time-periodic solutions in an array of cantilevers decorated with magnets. Mathematics in Engineering 1: 489-507.
    [2] Christodoulidi H, Efthymiopoulos C (2019) Stages of dynamics in the fermi-pasta-ulam system as probed by the first toda integral. Mathematics in Engineering 1: 359-377.
    [3] Danieli C, Manda BM, Mithun T, et al. (2019) Computational efficiency of numerical integration methods for the tangent dynamics of many-body hamiltonian systems in one and two spatial dimensions. Mathematics in Engineering 1: 447-488.
    [4] Fermi E, Pasta J, Ulam S (1955) Studies of nonlinear problems. Los Alamos document LA-1940.
    [5] Giardetti N, Shapiro A, Windle S, et al. (2019) Metastability of solitary waves in diatomic fput lattices. Mathematics in Engineering 1: 419-433.
    [6] Herrmann M, Matthies K (2019) Solitary waves in atomic chains and peridynamical media. Mathematics in Engineering 1: 281-308.
    [7] Kevrekidis PG (2019) Instabilities via negative krein signature in a weakly non-hamiltonian dnls model. Mathematics in Engineering 1: 378-390.
    [8] Macías-Díaz JE, Bountis A, Christodoulidi H (2019) Energy transmission in hamiltonian systems of globally interacting particles with klein-gordon on-site potentials. Mathematics in Engineering 1: 343-358. doi: 10.3934/mine.2019.2.343
    [9] Pistone L, Chibbaro S, Bustamante MD, et al. (2019) Universal route to thermalization in weaklynonlinear one-dimensional chains. Mathematics in Engineering 1: 672-698.
    [10] Vélez José AP, Panayotaros P, et al. (2019) Wannier functions and discrete nls equations for nematicons. Mathematics in Engineering 1: 309-326.
    [11] Wattis JAD, (2019) Asymptotic approximations to travelling waves in the diatomic fermi-pastaulam lattice. Mathematics in Engineering 1: 327-342.
  • This article has been cited by:

    1. Anahita Ghazvini, Nurfadhlina Mohd Sharef, Siva Kumar Balasundram, Lai Soon Lee, A Concentration Prediction-Based Crop Digital Twin Using Nutrient Co-Existence and Composition in Regression Algorithms, 2024, 14, 2076-3417, 3383, 10.3390/app14083383
    2. 丽鑫 杨, Shanghai 50 Stock Index Tracking Research Based on Elastic Net Dimensionality Reduction Two-Step Estimation Regression Model, 2023, 13, 2163-1476, 7130, 10.12677/ORF.2023.136699
    3. Megat Syahirul Amin Megat Ali, Azlee Zabidi, Nooritawati Md Tahir, Ihsan Mohd Yassin, Farzad Eskandari, Azlinda Saadon, Mohd Nasir Taib, Abdul Rahim Ridzuan, Short-term Gini coefficient estimation using nonlinear autoregressive multilayer perceptron model, 2024, 10, 24058440, e26438, 10.1016/j.heliyon.2024.e26438
    4. Margaretha Ohyver, Achmad Choiruddin, Parameter Estimation of Geographically and Temporally Weighted Elastic Net Ordinal Logistic Regression, 2025, 13, 2227-7390, 1345, 10.3390/math13081345
    5. Elrasheid Elkhidir, Tirth Patel, James Olabode Bamidele Rotimi, Predictive Modelling for Residential Construction Demands Using ElasticNet Regression, 2025, 15, 2075-5309, 1649, 10.3390/buildings15101649
  • Reader Comments
  • © 2019 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(3845) PDF downloads(445) Cited by(4)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog