Review Special Issues

Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae

  • Received: 20 November 2022 Revised: 12 February 2023 Accepted: 20 February 2023 Published: 27 February 2023
  • The emergence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) have been recognized as a major public health concern. Here, we investigated the molecular epidemiology and its correlation with the mechanisms of resistance in CRKP isolates by compiling studies on the molecular epidemiology of CRKP strains worldwide. CRKP is increasing worldwide, with poorly characterized epidemiology in many parts of the world. Biofilm formation, high efflux pump gene expression, elevated rates of resistance, and the presence of different virulence factors in various clones of K. pneumoniae strains are important health concerns in clinical settings. A wide range of techniques has been implemented to study the global epidemiology of CRKP, such as conjugation assays, 16S-23S rDNA, string tests, capsular genotyping, multilocus sequence typing, whole-genome sequencing-based surveys, sequence-based PCR, and pulsed-field gel electrophoresis. There is an urgent need to conduct global epidemiological studies on multidrug-resistant infections of K. pneumoniae across all healthcare institutions worldwide to develop infection prevention and control strategies. In this review, we discuss different typing methods and resistance mechanisms to explore the epidemiology of K. pneumoniae pertaining to human infections.

    Citation: Sunil Kumar, Razique Anwer, Arezki Azzi. Molecular typing methods & resistance mechanisms of MDR Klebsiella pneumoniae[J]. AIMS Microbiology, 2023, 9(1): 112-130. doi: 10.3934/microbiol.2023008

    Related Papers:

  • The emergence and transmission of carbapenem-resistant Klebsiella pneumoniae (CRKP) have been recognized as a major public health concern. Here, we investigated the molecular epidemiology and its correlation with the mechanisms of resistance in CRKP isolates by compiling studies on the molecular epidemiology of CRKP strains worldwide. CRKP is increasing worldwide, with poorly characterized epidemiology in many parts of the world. Biofilm formation, high efflux pump gene expression, elevated rates of resistance, and the presence of different virulence factors in various clones of K. pneumoniae strains are important health concerns in clinical settings. A wide range of techniques has been implemented to study the global epidemiology of CRKP, such as conjugation assays, 16S-23S rDNA, string tests, capsular genotyping, multilocus sequence typing, whole-genome sequencing-based surveys, sequence-based PCR, and pulsed-field gel electrophoresis. There is an urgent need to conduct global epidemiological studies on multidrug-resistant infections of K. pneumoniae across all healthcare institutions worldwide to develop infection prevention and control strategies. In this review, we discuss different typing methods and resistance mechanisms to explore the epidemiology of K. pneumoniae pertaining to human infections.



    加载中

    Acknowledgments



    The authors extend their appreciation to the Deputyship for Research & Innovation, Ministry of Education in Saudi Arabia for funding this research work through project number 1089.

    Conflict of interests



    All authors declare no conflicts of interest in this paper.

    [1] Wang G, Zhao G, Chao X, et al. (2020) The characteristic of virulence, biofilm and antibiotic resistance of Klebsiella pneumoniae. Int J Environ Res Public Health 17: 6278. https://doi.org/10.3390/ijerph17176278
    [2] Martin RM, Bachman MA (2018) Colonization, infection, and the accessory genome of Klebsiella pneumoniae. Front Cell Infect Microbiol 8. https://doi.org/10.3389/fcimb.2018.00004
    [3] Remya PA, Shanthi M, Sekar U (2019) Characterisation of virulence genes associated with pathogenicity in Klebsiella pneumoniae. Indian J Med Microbiol 37: 210-218. https://doi.org/10.4103/ijmm.IJMM_19_157
    [4] Russo TA, Olson R, Fang CT, et al. (2018) Identification of biomarkers for differentiation of hypervirulent Klebsiella pneumoniae from classical K. pneumoniae. J Clin Microbiol 56. https://doi.org/10.1128/JCM.00776-18
    [5] Maurya N, Jangra M, Tambat R, et al. (2019) Alliance of efflux pumps with beta-Lactamases in multidrug-resistant Klebsiella pneumoniae isolates. Microb Drug Resist 25: 1155-1163. https://doi.org/10.1089/mdr.2018.0414
    [6] Pitout JD, Nordmann P, Poirel L (2015) Carbapenemase-producing Klebsiella pneumoniae, a key pathogen set for global nosocomial dominance. Antimicrob Agents Chemother 59: 5873-5884. https://doi.org/10.1128/AAC.01019-15
    [7] Iyer R, Moussa SH, Tommasi R, et al. (2019) Role of the Klebsiella pneumoniae TolC porin in antibiotic efflux. Res Microbiol 170: 112-116. https://doi.org/10.1016/j.resmic.2018.11.003
    [8] Logan LK, Weinstein RA (2017) The epidemiology of carbapenem-resistant Enterobacteriaceae: the impact and evolution of a global menace. J Infect Dis 215: S28-S36. https://doi.org/10.1093/infdis/jiw282
    [9] Kumar S, Chaudhary M, Yadav M, et al. (2020) Global surveillance programs on antimicrobial resistance. Sustainable Agr Rev 46: 33-58. https://doi.org/10.1007/978-3-030-53024-2_2
    [10] Genovese C, La Fauci V, D'Amato S, et al. (2020) Molecular epidemiology of antimicrobial resistant microorganisms in the 21th century: a review of the literature. Acta Biomed 91: 256-273. https://doi.org/10.23750/abm.v91i2.9176
    [11] Diancourt L, Passet V, Verhoef J, et al. (2005) Multilocus sequence typing of Klebsiella pneumoniae nosocomial isolates. J Clin Microbiol 43: 4178-82. https://doi.org/10.1128/JCM.43.8.4178-4182.2005
    [12] Gaibani P, Ambretti S, Tamburini MV, et al. (2018) Clinical application of Bruker Biotyper MALDI-TOF/MS system for real-time identification of KPC production in Klebsiella pneumoniae clinical isolates. J Glob Antimicrob Resist 12: 169-170. https://doi.org/10.1016/j.jgar.2018.01.016
    [13] Wang Q, Li B, Tsang AK, et al. (2013) Genotypic analysis of Klebsiella pneumoniae isolates in a Beijing hospital reveals high genetic diversity and clonal population structure of drug-resistant isolates. PLoS One 8: e57091. https://doi.org/10.1371/journal.pone.0057091
    [14] Boom R, Sol CJ, Salimans MM, et al. (1990) Rapid and simple method for purification of nucleic acids. J Clin Microbiol 28: 495-503. https://doi.org/10.1128/jcm.28.3.495-503.1990
    [15] Liu Y, Liu C, Zheng W, et al. (2008) PCR detection of Klebsiella pneumoniae in infant formula based on 16S-23S internal transcribed spacer. Int J Food Microbiol 125: 230-235. https://doi.org/10.1016/j.ijfoodmicro.2008.03.005
    [16] Singh G, Biswal M, Hallur V, et al. (2015) Utility of whole-cell repetitive extragenic palindromic sequence-based PCR (REP-PCR) for the rapid detection of nosocomial outbreaks of multidrug resistant organisms: experience at a tertiary care center in North India. Indian J Med Microbiol 33: 221-224. https://doi.org/10.4103/0255-0857.154857
    [17] Ghalavand Z, Heidary Rouchi A, Bahraminasab H, et al. (2018) Molecular testing of Klebsiella pneumoniae contaminating tissue allografts recovered from deceased donors. Cell Tissue Bank 19: 391-398. https://doi.org/10.1007/s10561-018-9684-3
    [18] Hou XH, Song XY, Ma XB, et al. (2015) Molecular characterization of multidrug-resistant Klebsiella pneumoniae isolates. Braz J Microbiol 46: 759-768. https://doi.org/10.1590/S1517-838246320140138
    [19] Gao Y, Zhang L, Li MC, et al. (2010) Molecular typing of Klebsiella pneumonia by pulse-field gel electrophoresis in combination with multilocus sequence typing. Zhonghua Liu Xing Bing Xue Za Zhi 31: 786-790.
    [20] Han H, Zhou H, Li H, et al. (2013) Optimization of pulse-field gel electrophoresis for subtyping of Klebsiella pneumoniae. Int J Environ Res Public Health 10: 2720-2731. https://doi.org/10.3390/ijerph10072720
    [21] Zakaria AM, Hassuna NA (2019) Modified PFGE protocol for improving typeability of DNA degradation susceptible nosocomial Klebsiella pneumoniae. J Med Microbiol 68: 1787-1792. https://doi.org/10.1099/jmm.0.001093
    [22] Cheng F, Li Z, Lan S, et al. (2018) Characterization of Klebsiella pneumoniae associated with cattle infections in southwest China using multi-locus sequence typing (MLST), antibiotic resistance and virulence-associated gene profile analysis. Braz J Microbiol 49: 93-100. https://doi.org/10.1016/j.bjm.2018.06.004
    [23] Liu S, Wang X, Ge J, et al. (2021) Analysis of carbapenemase-resistant genotypes of highly virulent Klebsiella pneumoniae and clinical infection characteristics of different MLST types. Evid Based Complement Alternat Med 2021: 3455121. https://doi.org/10.1155/2021/3455121
    [24] Gona F, Comandatore F, Battaglia S, et al. (2020) Comparison of core-genome MLST, coreSNP and PFGE methods for Klebsiella pneumoniae cluster analysis. Microb Genom 6. https://doi.org/10.1099/mgen.0.000347
    [25] Snitkin ES, Zelazny AM, Thomas PJ, et al. (2012) Tracking a hospital outbreak of carbapenem-resistant Klebsiella pneumoniae with whole-genome sequencing. Sci Transl Med 4: 148ra116. https://doi.org/10.1126/scitranslmed.3004129
    [26] Founou RC, Founou LL, Allam M, et al. (2019) Whole genome sequencing of extended spectrum beta-lactamase (ESBL)-producing Klebsiella pneumoniae isolated from hospitalized patients in KwaZulu-Natal, South Africa. Sci Rep 9: 6266. https://doi.org/10.1038/s41598-019-42672-2
    [27] Nutman A, Marchaim D (2019) How to: molecular investigation of a hospital outbreak. Clin Microbiol Infect 25: 688-695. https://doi.org/10.1016/j.cmi.2018.09.017
    [28] Ahmad S, Abulhamd A (2015) Phenotypic and molecular characterization of nosocomial K. pneumoniae isolates by ribotyping. Adv Med Sci 60: 69-75. https://doi.org/10.1016/j.advms.2014.10.003
    [29] Schumann P, Pukall R (2013) The discriminatory power of ribotyping as automatable technique for differentiation of bacteria. Syst Appl Microbiol 36: 369-375. https://doi.org/10.1016/j.syapm.2013.05.003
    [30] Manchanda V, Singh NP, Shamweel A, et al. (2006) Molecular epidemiology of clinical isolates of ampc producing Klebsiella pneumoniae. Indian J Med Microbiol 24: 177-181.
    [31] Aboulela A, El-Sherbini E, Abu-Sheasha G, et al. (2020) Molecular strain typing of multidrug-resistant Klebsiella pneumoniae: capsular wzi gene sequencing versus multiple locus variable number tandem repeat analysis. Diagn Microbiol Infect Dis 98: 115139. https://doi.org/10.1016/j.diagmicrobio.2020.115139
    [32] Carattoli A, Bertini A, Villa L, et al. (2005) Identification of plasmids by PCR-based replicon typing. J Microbiol Methods 63: 219-228. https://doi.org/10.1016/j.mimet.2005.03.018
    [33] Shankar C, Muthuirulandi Sethuvel DP, Neeravi AR, et al. (2020) Identification of plasmids by PCR based replicon typing in bacteremic Klebsiella pneumoniae. Microb Pathog 148: 104429. https://doi.org/10.1016/j.micpath.2020.104429
    [34] Johnson TJ, Nolan LK (2009) Plasmid replicon typing. Methods Mol Biol 551: 27-35. https://doi.org/10.1007/978-1-60327-999-4_3
    [35] Nielsen JB, Skov MN, Jorgensen RL, et al. (2011) Identification of CTX-M15-, SHV-28-producing Klebsiella pneumoniae ST15 as an epidemic clone in the Copenhagen area using a semi-automated Rep-PCR typing assay. Eur J Clin Microbiol Infect Dis 30: 773-778. https://doi.org/10.1007/s10096-011-1153-x
    [36] Genc S, Kolayli F, Ozcelik EY (2021) Molecular characterization of carbapenemase producing Klebsiella pneumoniae strains by multiplex PCR and PFGE methods: the first K.pneumoniae isolates co-producing OXA-48/KPC and KPC/NDM in Turkey. J Infect Chemother 28: 192-198. https://doi.org/10.1016/j.jiac.2021.10.009
    [37] Wu B, Wang Y, Ling Z, et al. (2020) Heterogeneity and diversity of mcr-8 genetic context in chicken-associated Klebsiella pneumoniae. Antimicrob Agents Chemother 65. https://doi.org/10.1128/AAC.01872-20
    [38] Indrajith S, Mukhopadhyay AK, Chowdhury G, et al. (2021) Molecular insights of carbapenem resistance Klebsiella pneumoniae isolates with focus on multidrug resistance from clinical samples. J Infect Public Health 14: 131-138. https://doi.org/10.1016/j.jiph.2020.09.018
    [39] Lopes E, Saavedra MJ, Costa E, et al. (2020) Epidemiology of carbapenemase-producing Klebsiella pneumoniae in northern Portugal: Predominance of KPC-2 and OXA-48. J Glob Antimicrob Resist 22: 349-353. https://doi.org/10.1016/j.jgar.2020.04.007
    [40] Szymankiewicz M, Nowikiewicz T, Stefaniuk E, et al. (2021) Characteristics of ESBL-producing enterobacterales colonizing the gastrointestinal tract in patients admitted to the oncological hospital. Curr Microbiol 78: 642-648. https://doi.org/10.1007/s00284-020-02334-3
    [41] Tot T, Kibel S, Sardelic S, et al. (2021) Polyclonal spread of colistin resistant Klebsiella pneumoniae in Croatian hospitals and outpatient setting. Germs 11: 163-178. https://doi.org/10.18683/germs.2021.1254
    [42] Kumar S, Patil PP, Singhal L, et al. (2019) Molecular epidemiology of carbapenem-resistant Acinetobacter baumannii isolates reveals the emergence of blaOXA-23 and blaNDM-1 encoding international clones in India. Infect Genet Evol 75: 103986. https://doi.org/10.1016/j.meegid.2019.103986
    [43] Chen CM, Wang M, Li XP, et al. (2021) Homology analysis between clinically isolated extraintestinal and enteral Klebsiella pneumoniae among neonates. BMC Microbiol 21: 25. https://doi.org/10.1186/s12866-020-02073-2
    [44] Shankar C, Jacob JJ, Sugumar SG, et al. (2021) Distinctive mobile genetic elements observed in the clonal expansion of carbapenem-resistant Klebsiella pneumoniae in India. Microb Drug Resist 27: 1096-1104. https://doi.org/10.1089/mdr.2020.0316
    [45] Banerjee T, Wangkheimayum J, Sharma S, et al. (2021) Extensively drug-resistant hypervirulent Klebsiella pneumoniae from a series of neonatal sepsis in a tertiary care hospital, India. Front Med (Lausanne) 8: 645955. https://doi.org/10.3389/fmed.2021.645955
    [46] Wang CH, Ma L, Huang LY, et al. (2021) Molecular epidemiology and resistance patterns of blaOXA-48 Klebsiella pneumoniae and Escherichia coli: a nationwide multicenter study in Taiwan. J Microbiol Immunol Infect 54: 665-672. https://doi.org/10.1016/j.jmii.2020.04.006
    [47] Silva-Sanchez J, Barrios-Camacho H, Hernandez-Rodriguez E, et al. (2021) Molecular characterization of KPC-2-producing Klebsiella pneumoniae ST258 isolated from bovine mastitis. Braz J Microbiol 52: 1029-1036. https://doi.org/10.1007/s42770-021-00445-y
    [48] Zhao W, Li S, Schwarz S, et al. (2021) Detection of a NDM-5-producing Klebsiella pneumoniae sequence type 340 (CG258) high-risk clone in swine. Vet Microbiol 262: 109218. https://doi.org/10.1016/j.vetmic.2021.109218
    [49] Brahmia S, Lalaoui R, Nedjai S, et al. (2021) First clinical cases of KPC-2-Producing Klebsiella pneumoniae ST258 in Algeria and outbreak of Klebsiella pneumoniae ST101 harboring blaOXA-48 gene in the urology department of Annaba Hospital. Microb Drug Resist 27: 652-659. https://doi.org/10.1089/mdr.2020.0080
    [50] Kumar S, Anwer R, Yadav M, et al. (2021) Molecular typing and global epidemiology of Staphylococcus aureus. Curr Pharmacol Rep 7: 179-186. https://doi.org/10.1007/s40495-021-00264-7
    [51] Kumar S, Saifi Z, Sharma A, et al. (2020) Rapid identification of clinical isolates of Klebsiella pneumoniae using MALDI-TOF MS from North India. Bull Pure Appl Sci (Zoology) 39: 194-199. https://doi.org/10.5958/2320-3188.2020.00022.4
    [52] Gautam V, Sharma M, Singhal L, et al. (2017) MALDI-TOF mass spectrometry: an emerging tool for unequivocal identification of non-fermenting Gram-negative bacilli. Indian J Med Res 145: 665-672. https://doi.org/10.4103/ijmr.IJMR_1105_15
    [53] Kumar S, Anwer R, Sehrawat A, et al. (2021) Assessment of bacterial pathogens in drinking water: a serious safety concern. Curr Pharmacol Rep 7: 206-212. https://doi.org/10.1007/s40495-021-00263-8
    [54] Kumar S, Anwer R, Yadav M, et al. (2021) MALDI-TOF MS and molecular methods for identifying multidrug resistant clinical isolates of Acinetobacter baumannii. Res J Biotechnol 16: 47-52.
    [55] Pena I, Pena-Vina E, Rodriguez-Avial I, et al. (2022) Comparison of performance of MALDI-TOF MS and MLST for biotyping carbapenemase-producing Klebsiella pneumoniae sequence types ST11 and ST101 isolates. Enferm Infecc Microbiol Clin (Engl Ed) 40: 172-178. https://doi.org/10.1016/j.eimc.2020.10.018
    [56] Asencio-Egea MA, Gaitan-Pitera J, Huertas-Vaquero M, et al. (2021) Interhospital dissemination of KPC-3 producing-Klebsiella pneumoniae ST512. Detection by MALDI-TOF. Enferm Infecc Microbiol Clin (Engl Ed) 39: 83-86. https://doi.org/10.1016/j.eimc.2019.12.014
    [57] Huang Y, Li J, Wang Q, et al. (2021) Rapid detection of KPC-producing Klebsiella pneumoniae in China based on MALDI-TOF MS. J Microbiol Methods 192: 106385. https://doi.org/10.1016/j.mimet.2021.106385
    [58] Bridel S, Watts SC, Judd LM, et al. (2021) Klebsiella MALDI TypeR: a web-based tool for Klebsiella identification based on MALDI-TOF mass spectrometry. Res Microbiol 172: 103835. https://doi.org/10.1016/j.resmic.2021.103835
    [59] Meng X, Yang J, Duan J, et al. (2019) Assessing molecular epidemiology of carbapenem-resistant Klebsiella pneumoniae (CR-KP) with MLST and MALDI-TOF in Central China. Sci Rep 9: 2271. https://doi.org/10.1038/s41598-018-38295-8
    [60] Purighalla S, Esakimuthu S, Reddy M, et al. (2017) Discriminatory power of three typing techniques in determining relatedness of nosocomial Klebsiella pneumoniae isolates from a tertiary hospital in India. Indian J Med Microbiol 35: 361-368. https://doi.org/10.4103/ijmm.IJMM_16_308
    [61] Elbehiry A, Marzouk E, Hamada M, et al. (2017) Application of MALDI-TOF MS fingerprinting as a quick tool for identification and clustering of foodborne pathogens isolated from food products. New Microbiol 40: 269-278.
    [62] Anwer R, Darami H, Almarri FK, et al. (2022) MALDI-TOF MS for rapid analysis of bacterial pathogens causing urinary tract infections in the Riyadh region. Diseases 10: 78. https://doi.org/10.3390/diseases10040078
    [63] Kumar S, Patil PP, Midha S, et al. (2015) Genome sequence of Acinetobacter baumannii Strain 5021_13, isolated from cerebrospinal fluid. Genome Announc 3. https://doi.org/10.1128/genomeA.01213-15
    [64] Kumar S, Patil PP, Midha S, et al. (2015) Genome sequence of Acinetobacter baumannii Strain 10441_14 belonging to ST451, isolated from India. Genome Announc 3. https://doi.org/10.1128/genomeA.01322-15
    [65] Ben-Chetrit E, Mc Gann P, Maybank R, et al. (2021) Colistin-resistant Klebsiella pneumoniae bloodstream infection: old drug, bad bug. Arch Microbiol 203: 2999-3006. https://doi.org/10.1007/s00203-021-02289-4
    [66] Sherif M, Palmieri M, Mirande C, et al. (2021) Whole-genome sequencing of Egyptian multidrug-resistant Klebsiella pneumoniae isolates: a multi-center pilot study. Eur J Clin Microbiol Infect Dis 40: 1451-1460. https://doi.org/10.1007/s10096-021-04177-7
    [67] Gentile B, Grottola A, Orlando G, et al. (2020) A retrospective whole-genome sequencing analysis of carbapenem and colistin-resistant Klebsiella Pneumoniae nosocomial strains isolated during an MDR surveillance program. Antibiotics (Basel) 9: 246. https://doi.org/10.3390/antibiotics9050246
    [68] Saavedra SY, Bernal JF, Montilla-Escudero E, et al. (2021) Complexity of genomic epidemiology of carbapenem-resistant Klebsiella pneumoniae isolates in Colombia urges the reinforcement of whole genome sequencing-based surveillance programs. Clin Infect Dis 73: S290-S299. https://doi.org/10.1093/cid/ciab777
    [69] Fu P, Tang Y, Li G, et al. (2019) Pandemic spread of blaKPC-2 among Klebsiella pneumoniae ST11 in China is associated with horizontal transfer mediated by IncFII-like plasmids. Int J Antimicrob Agents 54: 117-124. https://doi.org/10.1016/j.ijantimicag.2019.03.014
    [70] Yan Z, Zhou Y, Du M, et al. (2019) Prospective investigation of carbapenem-resistant Klebsiella pneumonia transmission among the staff, environment and patients in five major intensive care units, Beijing. J Hosp Infect 101: 150-157. https://doi.org/10.1016/j.jhin.2018.11.019
    [71] Hu Y, Zhou H, Lu J, et al. (2021) Evaluation of the IR Biotyper for Klebsiella pneumoniae typing and its potentials in hospital hygiene management. Microb Biotechnol 14: 1343-1352. https://doi.org/10.1111/1751-7915.13709
    [72] Kumar S, Anwer R, Yadav M, et al. (2022) An update on advancements in treatment options for managing Klebsiella pneumoniae infections. Curr Pharmacol Rep 8: 439-449. https://doi.org/10.1007/s40495-022-00302-y
    [73] Bernardini A, Cuesta T, Tomas A, et al. (2019) The intrinsic resistome of Klebsiella pneumoniae. Int J Antimicrob Agents 53: 29-33. https://doi.org/10.1016/j.ijantimicag.2018.09.012
    [74] Wattal C, Goel N, Oberoi JK, et al. (2010) Surveillance of multidrug resistant organisms in tertiary care hospital in Delhi, India. J Assoc Physicians India 58: 32-36.
    [75] Codjoe FS, Donkor ES (2017) Carbapenem resistance: a review. Med Sci (Basel) 6. https://doi.org/10.3390/medsci6010001
    [76] Kumar S, Anwer R, Azzi A (2021) Virulence potential and treatment options of multidrug-resistant (MDR) Acinetobacter baumannii. Microorganisms 9. https://doi.org/10.3390/microorganisms9102104
    [77] AlQumaizi KI, Kumar S, Anwer R, et al. (2022) Differential gene expression of efflux pumps and porins in clinical isolates of MDR Acinetobacter baumannii. Life (Basel) 12. https://doi.org/10.3390/life12030419
    [78] Gautam V, Kumar S, Patil PP, et al. (2020) Exploring the interplay of resistance nodulation division efflux pumps, Ampc and Oprd in antimicrobial resistance of Burkholderia cepacia complex in clinical isolates. Microb Drug Resist 26: 1144-1152. https://doi.org/10.1089/mdr.2019.0102
    [79] Kumar S, Singhal L, Ray P, et al. (2020) Over-expression of RND and MATE efflux pumps contribute to decreased susceptibility in clinical isolates of carbapenem resistant Acinetobacter baumannii. Int J Pharm Res 12: 342-349.
    [80] Turkel I, Yildirim T, Yazgan B, et al. (2017) Relationship between antibiotic resistance, efflux pumps, and biofilm formation in extended-spectrum beta-lactamase producing Klebsiella pneumoniae. J Chemother 30: 354-363. https://doi.org/10.1080/1120009X.2018.1521773
    [81] Schaenzer AJ, Wright GD (2020) Antibiotic resistance by enzymatic modification of antibiotic targets. Trends Mol Med 26: 768-782. https://doi.org/10.1016/j.molmed.2020.05.001
    [82] McDanel J, Schweizer M, Crabb V, et al. (2017) Incidence of extended-spectrum beta-lactamase (ESBL)-Producing Escherichia coli and Klebsiella infections in the United States: a systematic literature review. Infect Control Hosp Epidemiol 38: 1209-1215. https://doi.org/10.1017/ice.2017.156
    [83] Pulzova L, Navratilova L, Comor L (2017) Alterations in outer membrane permeability favor drug-resistant phenotype of Klebsiella pneumoniae. Microb Drug Resist 23: 413-420. https://doi.org/10.1089/mdr.2016.0017
    [84] Lv F, Cai J, He Q, et al. (2021) Overexpression of efflux pumps mediate pan resistance of Klebsiella pneumoniae Sequence Type 11. Microb Drug Resist 27: 1405-1411. https://doi.org/10.1089/mdr.2020.0395
    [85] Gao H, Liu Y, Wang R, et al. (2020) The transferability and evolution of NDM-1 and KPC-2 co-producing Klebsiella pneumoniae from clinical settings. EBioMedicine 51: 102599. https://doi.org/10.1016/j.ebiom.2019.102599
    [86] Tsioutis C, Eichel VM, Mutters NT (2021) Transmission of Klebsiella pneumoniae carbapenemase (KPC)-producing Klebsiella pneumoniae: the role of infection control. J Antimicrob Chemother 76: i4-i11. https://doi.org/10.1093/jac/dkaa492
    [87] Shields RK, Chen L, Cheng S, et al. (2017) Emergence of ceftazidime-avibactam resistance due to plasmid-borne blaKPC-3 mutations during treatment of carbapenem-resistant Klebsiella pneumoniae infections. Antimicrob Agents Chemother 61. https://doi.org/10.1128/AAC.02097-16
    [88] Shankar C, Karunasree S, Manesh A, et al. (2019) First report of whole-genome sequence of colistin-resistant Klebsiella quasipneumoniae subsp. similipneumoniae Producing KPC-9 in India. Microb Drug Resist 25: 489-493. https://doi.org/10.1089/mdr.2018.0116
    [89] Yang Y, Ahmed M, Qin M, et al. (2022) Carriage of distinct blaKPC-2 and blaOXA-48 plasmids in a single ST11 hypervirulent Klebsiella pneumoniae isolate in Egypt. BMC Genomics 23: 20. https://doi.org/10.1186/s12864-021-08214-9
    [90] Paul M (2021) Management of KPC-producing Klebsiella pneumoniae in clinical practice: introduction. J Antimicrob Chemother 76: i2-i3. https://doi.org/10.1093/jac/dkaa491
    [91] Cano A, Gutierrez-Gutierrez B, Machuca I, et al. (2018) Risks of infection and mortality among patients colonized with Klebsiella pneumoniae carbapenemase-producing K. pneumoniae: validation of scores and proposal for management. Clin Infect Dis 66: 1204-1210. https://doi.org/10.1093/cid/cix991
    [92] Bedenic B, Sardelic S, Luxner J, et al. (2016) Molecular characterization of class b carbapenemases in advanced stage of dissemination and emergence of class d carbapenemases in Enterobacteriaceae from Croatia. Infect Genet Evol 43: 74-82. https://doi.org/10.1016/j.meegid.2016.05.011
    [93] Al-Agamy MH, Aljallal A, Radwan HH, et al. (2018) Characterization of carbapenemases, ESBLs, and plasmid-mediated quinolone determinants in carbapenem-insensitive Escherichia coli and Klebsiella pneumoniae in Riyadh hospitals. J Infect Public Health 11: 64-68. https://doi.org/10.1016/j.jiph.2017.03.010
    [94] Amarsy R, Jacquier H, Munier AL, et al. (2021) Outbreak of NDM-1-producing Klebsiella pneumoniae in the intensive care unit during the COVID-19 pandemic: another nightmare. Am J Infect Control 49: 1324-1326. https://doi.org/10.1016/j.ajic.2021.07.004
    [95] Han R, Shi Q, Wu S, et al. (2020) Dissemination of carbapenemases (KPC, NDM, OXA-48, IMP, and VIM) among carbapenem-resistant Enterobacteriaceae isolated from adult and children patients in China. Front Cell Infect Microbiol 10. https://doi.org/10.3389/fcimb.2020.00314
    [96] Bayoumi MA, Hamid OM (2022) The emergence of carbapenem resistant Enterobacteriaceae producing GIM-1 and SIM-1 clinical isolates in Khartoum-Sudan. Infect Drug Resist 15: 2679-2684. https://doi.org/10.2147/IDR.S365983
    [97] Poirel L, Castanheira M, Carrer A, et al. (2011) OXA-163, an OXA-48-related class D beta-lactamase with extended activity toward expanded-spectrum cephalosporins. Antimicrob Agents Chemother 55: 2546-2551. https://doi.org/10.1128/AAC.00022-11
    [98] Ma L, Wang JT, Wu TL, et al. (2015) Emergence of OXA-48-Producing Klebsiella pneumoniae in Taiwan. PLoS One 10: e0139152. https://doi.org/10.1371/journal.pone.0139152
    [99] Ortiz-Padilla M, Portillo-Calderon I, de Gregorio-Iaria B, et al. (2021) Interplay among different fosfomycin resistance mechanisms in Klebsiella pneumoniae. Antimicrob Agents Chemother 65. https://doi.org/10.1128/AAC.01911-20
    [100] Ito R, Mustapha MM, Tomich AD, et al. (2017) Widespread fosfomycin resistance in Gram-negative bacteria attributable to the chromosomal fosA gene. mBio 8. https://doi.org/10.1128/mBio.00749-17
    [101] Li Y, Zheng B, Zhu S, et al. (2015) Antimicrobial susceptibility and molecular mechanisms of fosfomycin resistance in clinical Escherichia coli isolates in Mainland China. PLoS One 10: e0135269. https://doi.org/10.1371/journal.pone.0135269
    [102] Castaneda-Garcia A, Blazquez J, Rodriguez-Rojas A (2013) Molecular mechanisms and clinical impact of acquired and intrinsic fosfomycin resistance. Antibiotics (Basel) 2: 217-236. https://doi.org/10.3390/antibiotics2020217
    [103] Nigiz S, Hazirolan G, Koseoglu Eser O, et al. (2021) First detection of Klebsiella pneumoniae isolate co-harboring fosfomycin resistance gene fosA3 and blactx-m among Gram negative urine isolates in a Turkish hospital. Microb Drug Resist 28. https://doi.org/10.1089/mdr.2021.0114
    [104] Kashefieh M, Hosainzadegan H, Baghbanijavid S, et al. (2021) The molecular epidemiology of resistance to antibiotics among Klebsiella pneumoniae isolates in Azerbaijan, Iran. J Trop Med 2021. https://doi.org/10.1155/2021/9195184
    [105] Baghbanijavid S, Kafil HS, Farajniya S, et al. (2021) The association of the phylogenetic typing of the Klebsiella pneumoniae isolates with antibiotic resistance. Emerg Med Int 2021. https://doi.org/10.1155/2021/1316992
    [106] Liu P, Chen S, Wu ZY, et al. (2020) Mechanisms of fosfomycin resistance in clinical isolates of carbapenem-resistant Klebsiella pneumoniae. J Glob Antimicrob Resist 22: 238-243. https://doi.org/10.1016/j.jgar.2019.12.019
    [107] Farfour E, Degand N, Riverain E, et al. (2020) Fosfomycin, from susceptibility to resistance: impact of the new guidelines on breakpoints. Med Mal Infect 50: 611-616. https://doi.org/10.1016/j.medmal.2020.07.003
    [108] Liu Y, Lin Y, Wang Z, et al. (2021) Molecular mechanisms of colistin resistance in Klebsiella pneumoniae in a tertiary care teaching hospital. Front Cell Infect Microbiol 11: 673503. https://doi.org/10.3389/fcimb.2021.673503
    [109] Jaidane N, Bonnin RA, Mansour W, et al. (2018) Genomic insights into colistin-resistant Klebsiella pneumoniae from a Tunisian teaching hospital. Antimicrob Agents Chemother 62. https://doi.org/10.1128/AAC.01601-17
    [110] Cannatelli A, Giani T, D'Andrea MM, et al. (2014) MgrB inactivation is a common mechanism of colistin resistance in KPC-producing Klebsiella pneumoniae of clinical origin. Antimicrob Agents Chemother 58: 5696-5703. https://doi.org/10.1128/AAC.03110-14
    [111] Mmatli M, Mbelle NM, Maningi NE, et al. (2020) Emerging transcriptional and genomic mechanisms mediating carbapenem and polymyxin resistance in Enterobacteriaceae: a systematic review of current reports. mSystems 5. https://doi.org/10.1128/mSystems.00783-20
    [112] Poirel L, Jayol A, Nordmann P (2017) Polymyxins: antibacterial activity, susceptibility testing, and resistance mechanisms encoded by plasmids or chromosomes. Clin Microbiol Rev 30: 557-596. https://doi.org/10.1128/CMR.00064-16
    [113] Liu YY, Wang Y, Walsh TR, et al. (2016) Emergence of plasmid-mediated colistin resistance mechanism MCR-1 in animals and human beings in China: a microbiological and molecular biological study. Lancet Infect Dis 16: 161-168. https://doi.org/10.1016/S1473-3099(15)00424-7
    [114] Li B, Yin F, Zhao X, et al. (2019) Colistin resistance gene mcr-1 mediates cell permeability and resistance to hydrophobic antibiotics. Front Microbiol 10: 3015. https://doi.org/10.3389/fmicb.2019.03015
    [115] Palucha A, Mikiewicz B, Hryniewicz W, et al. (1999) Concurrent outbreaks of extended-spectrum beta-lactamase-producing organisms of the family Enterobacteriaceae in a Warsaw hospital. J Antimicrob Chemother 44: 489-499.
    [116] Paterson DL, Ko WC, Von Gottberg A, et al. (2001) Outcome of cephalosporin treatment for serious infections due to apparently susceptible organisms producing extended-spectrum beta-lactamases: implications for the clinical microbiology laboratory. J Clin Microbiol 39: 2206-2212.
    [117] Bauernfeind A, Chong Y, Schweighart S (1989) Extended broad spectrum beta-lactamase in Klebsiella pneumoniae including resistance to cephamycins. Infection 17: 316-321.
    [118] Tangden T, Cars O, Melhus A, et al. (2010) Foreign travel is a major risk factor for colonization with Escherichia coli producing CTX-M-type extended-spectrum beta-lactamases: a prospective study with Swedish volunteers. Antimicrob Agents Chemother 54: 3564-3568. https://doi.org/10.1128/AAC.00220-10
    [119] Ur Rahman S, Ali T, Ali I, et al. (2018) The growing genetic and functional diversity of extended Spectrum Beta-lactamases. Biomed Res Int 2018: 9519718. https://doi.org/10.1155/2018/9519718
    [120] Paterson DL, Bonomo RA (2005) Extended-spectrum beta-lactamases: a clinical update. Clin Microbiol Rev 18: 657-686. https://doi.org/10.1128/CMR.18.4.657-686.2005
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1736) PDF downloads(146) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog