Review

Yeasts in different types of cheese

  • Received: 01 August 2021 Accepted: 01 November 2021 Published: 08 November 2021
  • Yeasts constitute an important part of cheeses, and especially the artisanal ones. The current study reviews the occurrence of yeasts in different cheese varieties and the role of yeasts in cheesemaking process. The use of molecular methods for identification and strain typing has extended the knowledge for yeast diversity in cheeses. For the study of the occurrence of yeasts in different cheese types, seven categories are used, that is: 1) hard, 2) semi-hard, 3) soft, which includes soft pasta-filata and whey cheeses, 4) white brined cheeses, 5) mould surface ripened, 6) bacterial surface ripened cheeses, and 7) blue cheeses. For some cheese types, yeasts are the main microbial group, at least for some part of their ripening process, while for some other types, yeasts are absent. Differences between industrially manufactured cheeses and artisanal cheeses have specified. Artisanal cheeses possess a diverse assortment of yeast species, mainly belonging to the genera Candida, Clavisporalus, Cryptococcus, Debaryomyces, Geotrichum, Issatchenkia, Kazachstania, Kluyveromyces, Kodemaea, Pichia, Rhodotorula, Saccharomyces, Saturnispora, Torulaspora, Trichosporon, Yarrowia and ZygoSaccharomyces. The role of the yeasts for selected cheeses from the seven cheese categories is discussed.

    Citation: Thomas Bintsis. Yeasts in different types of cheese[J]. AIMS Microbiology, 2021, 7(4): 447-470. doi: 10.3934/microbiol.2021027

    Related Papers:

  • Yeasts constitute an important part of cheeses, and especially the artisanal ones. The current study reviews the occurrence of yeasts in different cheese varieties and the role of yeasts in cheesemaking process. The use of molecular methods for identification and strain typing has extended the knowledge for yeast diversity in cheeses. For the study of the occurrence of yeasts in different cheese types, seven categories are used, that is: 1) hard, 2) semi-hard, 3) soft, which includes soft pasta-filata and whey cheeses, 4) white brined cheeses, 5) mould surface ripened, 6) bacterial surface ripened cheeses, and 7) blue cheeses. For some cheese types, yeasts are the main microbial group, at least for some part of their ripening process, while for some other types, yeasts are absent. Differences between industrially manufactured cheeses and artisanal cheeses have specified. Artisanal cheeses possess a diverse assortment of yeast species, mainly belonging to the genera Candida, Clavisporalus, Cryptococcus, Debaryomyces, Geotrichum, Issatchenkia, Kazachstania, Kluyveromyces, Kodemaea, Pichia, Rhodotorula, Saccharomyces, Saturnispora, Torulaspora, Trichosporon, Yarrowia and ZygoSaccharomyces. The role of the yeasts for selected cheeses from the seven cheese categories is discussed.



    加载中


    Conflict of interest



    The author hereby declares that there is no conflict of interest that could arise.

    [1] Fox PF, Guinee TP, Cogan TM, et al. (2016) Principal families of cheese. Fundamentals of Cheese Science New York: Springer, 27-69.
    [2] Bintsis T, Athanasoulas A (2015) Dairy starter cultures. Dairy Microbiology-A Practical Approach Boca Raton: CRC Press, 114-154.
    [3] Licitra G (2010) World wide traditional cheeses: Banned for business? Dairy Sci Technol 90: 357-374. doi: 10.1051/dst/2010016
    [4] Papademas P, Bintsis TKindstedt (2018) The history of cheese. Global Cheesemaking Technology: Cheese Quality and Characteristics UK: Wiley & Sons, 3-19.
    [5] Montel MC, Buchin S, Mallet A, et al. (2014) Traditional cheeses: Rich and diverse microbiota with associated benefits. Int J Food Microbiol 177: 136-154. doi: 10.1016/j.ijfoodmicro.2014.02.019
    [6] Grattepanche F, Miescher-Schwenninger S, Meile L, et al. (2008) Recent developments in cheese cultures with protective and probiotic functionalities. Dairy Sci Technol 88: 421-444. doi: 10.1051/dst:2008013
    [7] Irlinger F, Layec S, Helinck S, et al. (2015) Cheese rind microbial communities: diversity, composition and origin. FEMS Microbiol Let 362: 1-11. doi: 10.1093/femsle/fnu015
    [8] Goerges S, Mounier J, Rea MC, et al. (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74: 2210-2217. doi: 10.1128/AEM.01663-07
    [9] Bokulich NA, Mills DA (2013) Facility-specific ‘house’ microbiome drives microbial landscapes of artisan cheesemaking plants. Appl Environ Microbiol 79: 5214-5223. doi: 10.1128/AEM.00934-13
    [10] Fox PF, Guinee TP, Cogan TM, et al. (2000) Microbiology of Cheese Ripening. Fundamentals of cheese science Gaithersburg: Aspen Publishers, 206-235.
    [11] Beresford TP, Fitzsimons NA, Brennan NL, et al. (2001) Recent advances in cheese microbiology. Int Dairy J 11: 259-274. doi: 10.1016/S0958-6946(01)00056-5
    [12] Delavenne E, Mounier J, Asmani K, et al. (2011) Fungal diversity in cow, goat and ewe milk. Int J Food Microbiol 151: 247-251. doi: 10.1016/j.ijfoodmicro.2011.08.029
    [13] Quigley L, O'Sullivan O, Stanton C, et al. (2013) The complex microbiota of raw milk. FEMS Microbiol Rev 37: 664-698. doi: 10.1111/1574-6976.12030
    [14] O'Sullivan O, Cotter PD (2017) Microbiota of Raw Milk and Raw Milk Cheeses. Cheese: Chemistry, Physics and Microbiology New York: Academic Press, 301-316.
    [15] Angelidis AS (2014) The Microbiology of Raw Milk. Dairy Microbiology-A Practical Approach Boca Raton: CRC Press, 22-68.
    [16] Lavoie K, Touchette M, St-Gelais D, et al. (2012) Characterization of the fungal microflora in raw milk and specialty cheeses of the province of Quebec. Dairy Sci Technol 92: 455-68. doi: 10.1007/s13594-011-0051-4
    [17] Boutrou R, Gueguen M (2005) Interests in Geotrichum candidum for cheese technology. Int J Food Microbiol 102: 1-20. doi: 10.1016/j.ijfoodmicro.2004.12.028
    [18] Cocolin L, Aggio D, Manzano M, et al. (2002) An application of PCR-DGGE analysis to profile the yeast populations in raw milk. Int Dairy J 12: 407-411. doi: 10.1016/S0958-6946(02)00023-7
    [19] Fadda ME, Mossa V, Pisano MB, et al. (2004) Occurrence and characterization of yeasts isolated from artisanal fioresardo cheese. Int J Food Microbiol 95: 51-59. doi: 10.1016/j.ijfoodmicro.2004.02.001
    [20] Büchl NR, Seiler H (2011) Yeasts in milk and dairy products. Encyclopedia of Dairy Sciences London: Elsevier Academic Press, 744-753. doi: 10.1016/B978-0-12-374407-4.00498-2
    [21] Fröhlich-Wyder MT, Arias-Roth E, Jakob E (2019) Cheese yeasts. Yeasts 36: 129-141. doi: 10.1002/yea.3368
    [22] Cogan TM, Goerges S, Gelsomino R, et al. (2014) Biodiversity of the surface microbial consortia from limburger, Reblochon, Livarot, Tilsit, and Gubbeen Cheeses. Microbiol Spectrum 2: CM–0010–2012. doi: 10.1128/microbiolspec.CM-0010-2012
    [23] Cantor MD, van den Tempel T, Kronborg Hansen T, et al. (2017) Blue cheese. Cheese: Chemistry, Physics and Microbiology Major London: Elsevier Academic Press, 929-954.
    [24] Geronikou A, Srimahaeak T, Rantsiou K, et al. (2020) Occurrence of yeasts in white-brined cheeses: Methodologies for identification, spoilage potential and good manufacturing practices. Front Microbiol 11: 21. doi: 10.3389/fmicb.2020.582778
    [25] Garnier L, Valence F, Mounier J (2017) Diversity and control of spoilage fungi in dairy products: an update. Microorganisms 5: 1-33. doi: 10.3390/microorganisms5030042
    [26] Lopandic K, Zelger S, Banszky LK, et al. (2006) Identification of yeasts associated with milk products using traditional and molecular techniques. Food Microbiol 23: 341-350. doi: 10.1016/j.fm.2005.05.001
    [27] Gori K, Ryssel M, Arneborg N, et al. (2013) Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses. Microbiol Ecol 65: 602-615. doi: 10.1007/s00248-012-0138-3
    [28] Buehler AJ, Evanowski RL, Martin NH, et al. (2017) Internal transcribed spacer (ITS) sequencing reveals considerable fungal diversity in dairy products. J Dairy Sci 100: 8814-8825. doi: 10.3168/jds.2017-12635
    [29] Garnier L, Valence F, Pawtowski A, et al. (2017) Diversity of spoilage fungi associated with French dairy products. Int J Food Microbiol 241: 191-197. doi: 10.1016/j.ijfoodmicro.2016.10.026
    [30] Haastrup MK, Johansen P, Malskær AH, et al. (2018) Cheese brines from Danish dairies reveal a complex microbiota comprising several halotolerant bacteria and yeasts. Int J Food Microbiol 285: 173-187. doi: 10.1016/j.ijfoodmicro.2018.08.015
    [31] Mounier J, Le Blay G, Vasseur V, et al. (2010) Application of denaturing high-performance liquid chromatography (DHPLC) for yeasts identification in red smear cheese surfaces. Let Appl Microbiol 51: 18-23.
    [32] Ercolini D, Frisso G, Mauriello G, et al. (2008) Microbial diversity in natural whey cultures used for the production of Caciocavallo Silano PDO cheese. Int J Food Microbiol 124: 164-170. doi: 10.1016/j.ijfoodmicro.2008.03.007
    [33] Andrade RP, Melo CN, Genisheva Z, et al. (2017) Yeasts from Canastra cheese production process: Isolation and evaluation of their potential for cheese whey fermentation. Food Res Int 91: 72-79. doi: 10.1016/j.foodres.2016.11.032
    [34] Wenning M, Seiler H, Scherer S (2002) Fourier-transform infrared microspectroscopy, a novel and rapid tool for identification of yeasts. Appl Environ Microbiol 68: 4717-4721. doi: 10.1128/AEM.68.10.4717-4721.2002
    [35] Quigley L, O'Sullivan O, Beresford TP, et al. (2011) Molecular approaches to analysing the microbial composition of raw milk and raw milk cheese. Int J Food Microbiol 150: 81-94. doi: 10.1016/j.ijfoodmicro.2011.08.001
    [36] Callon C, Delbes C, Duthoit F, et al. (2006) Application of SSCP-PCR finger-printing to profile the yeast community in raw milk Salers cheeses. System Appl Microbiol 29: 172-180. doi: 10.1016/j.syapm.2005.07.008
    [37] Lopez-Canovas L, Martinez Benitez MB, Herrera Isidron JA, et al. (2019) Pulsed Field Gel Electrophoresis: Past, present, and future. Anal Biochem 573: 17-29. doi: 10.1016/j.ab.2019.02.020
    [38] Petersen KM, Jespersen L (2004) Genetic diversity of the species Debaryomyces hansenii and the use of chromosome polymorphism for typing of strains isolated from surface-ripened cheeses. J Appl Microbiol 97: 205-213. doi: 10.1111/j.1365-2672.2004.02293.x
    [39] Fasoli G, Tofalo R, Lanciotti R, et al. (2015) Chromosomes arrangement, differentiation of growth kinetics and volatile molecule profiles in Kluyveromyces marxianus strains from Italian cheeses. Int J Food Microbiol 214: 151-158. doi: 10.1016/j.ijfoodmicro.2015.08.001
    [40] Naumova ES, Sadykova AZ, Michailova YV, et al. (2017) Polymorphism of lactose genes in the dairy yeasts Kluyveromyces marxianus, potential probiotic microorganisms. Microbiol 86: 363-369. doi: 10.1134/S0026261717030122
    [41] Padilla B, Manzanares P, Belloch C (2014) Yeast species and genetic heterogeneity within Debaryomyces hansenii along the ripening process of traditional ewes' and goats' cheeses. Food Microbiol 38: 160-166. doi: 10.1016/j.fm.2013.09.002
    [42] Sohier D, Dizes AS, Thuault D, et al. (2009) Important genetic diversity revealed by inter-LTR PCR fingerprinting of Kluyveromyces marxianus and Debaryomyces hansenii strains from French traditional cheeses. Dairy Sci Technol 89: 569-581. doi: 10.1051/dst/2009032
    [43] Jacques N, Mallet S, Laaghouiti F, et al. (2017) Specific populations of the yeast Geotrichumcandidum revealed by molecular typing. Yeasts 34: 165-178. doi: 10.1002/yea.3223
    [44] Bokulich NA, Mills DA (2012) Next-generation approaches to the microbial ecology of food fermentations. BMB Rep 45: 377-389. doi: 10.5483/BMBRep.2012.45.7.148
    [45] Stellato G, De Filippis F, La Storia A, et al. (2015) Coexistence of lactic acid bacteria and potential spoilage microbiota in a dairy processing environment. Appl Environ Microbiol 81: 7893-7904. doi: 10.1128/AEM.02294-15
    [46] Ryssel M, Johansen P, Al-Soud WA, et al. (2015) Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques. Int J Food Microbiol 215: 124-130. doi: 10.1016/j.ijfoodmicro.2015.09.012
    [47] Ercolini D (2013) High-throughput sequencing and metagenomics: moving forward in the culture independent analysis of food microbial ecology. Appl Environ Microbiol 79: 3148-3155. doi: 10.1128/AEM.00256-13
    [48] Wolfe BE, Button JE, Santarelli M, et al. (2014) Cheese rind communities provide tractable systems for in situ and in vitro studies of microbial diversity. Cell 158: 422-433. doi: 10.1016/j.cell.2014.05.041
    [49] Quigley L, O'Sullivan O, Beresford TP, et al. (2012) High-throughput sequencing for detection of subpopulations of bacteria not previously associated with artisanal cheeses. Appl Environ Microbiol 78: 5717-5723. doi: 10.1128/AEM.00918-12
    [50] Bintsis T, Papademas P (2018) An overview of the cheesemaking process. Global Cheesemaking Technology Chichester: John Wiley & Sons, 120-156.
    [51] Fleet GH, Mian MA (1987) The occurrence and growth of yeasts in dairy products. Int J Food Microbiol 4: 145-155. doi: 10.1016/0168-1605(87)90021-3
    [52] Welthagen JJ, Viljoen BC (1996) The presence of yeasts in different cheese types. Yeasts in the dairy industry: positive and negative aspects, Copenhagen, Denmark Brussels, Belgium: International Dairy Federation, 78-87.
    [53] Tofalo R, Fasoli G, Schirone M, et al. (2014) The predominance, biodiversity and biotechnological properties of Kluyveromyces marxianus in the production of Pecorino di Farindola cheese. Int J Food Microbiol 187: 41-49. doi: 10.1016/j.ijfoodmicro.2014.06.029
    [54] Gardini F, Tofalo R, Belletti N, et al. (2006) Characterization of yeasts involved in the ripening of Pecorino Crotonese cheese. Food Microbiol 23: 641-648. doi: 10.1016/j.fm.2005.12.005
    [55] Capece A, Romano P (2009) ‘Pecorino di filiano’ cheese as a selective habitat for the yeast species, Debaryomyces hanseniiInt J Food Microbiol 132: 180-184. doi: 10.1016/j.ijfoodmicro.2009.04.007
    [56] Cosentino S, Fadda ME, Deplano M, et al. (2001) Yeasts associated with sardinian ewe's dairy products. Int J Food Microbiol 69: 53-58. doi: 10.1016/S0168-1605(01)00572-4
    [57] Fadda ME, Cosentino S, Deplano M, et al. (2001) Yeasts populations in Sardinian feta cheese. Int J Food Microbiol 69: 153-156. doi: 10.1016/S0168-1605(01)00586-4
    [58] Chombo-Morales P, Kirchmayr M, Gschaedler A, et al. (2016) Effects of controlling ripening conditions on the dynamics of the native microbial population of Mexican artisanal Cotija cheese assessed by PCRDGGE. LWT-Food Sci Technol 65: 1153-1161. doi: 10.1016/j.lwt.2015.09.044
    [59] Cardoso VM, Borelli BM, Lara CA, et al. (2015) The influence of seasons and ripening time on yeast communities of a traditional Brazilian cheese. Food Res Int 69: 331-340. doi: 10.1016/j.foodres.2014.12.040
    [60] Corbo MR, Lanciotti R, Albenzio M, et al. (2001) Occurrence and characterization of yeasts isolated from milks and dairy products of Apulia region. Int J Food Microbiol 69: 147-152. doi: 10.1016/S0168-1605(01)00585-2
    [61] Wyder MT, Puhan Z (1999) Role of selected yeasts in cheese ripening. Int Dairy J 9: 117-124. doi: 10.1016/S0958-6946(99)00032-1
    [62] Pereira-Dias S, Potes ME, Marinho A, et al. (2000) Characterisation of yeast flora isolated froman artisanal Portuguese ewes' cheese. Int J Food Microbiol 60: 55-63. doi: 10.1016/S0168-1605(00)00323-8
    [63] Borelli BM, Ferreira EG, Lacerda ICA, et al. (2006) Yeast populations associated with the artisanal cheese produced in the region of Serra da Canastra, Brazil. World J Microbiol Biotechnol 22: 1115-1119. doi: 10.1007/s11274-006-9151-3
    [64] Goncalves Dos Santos MTP, Benito MJ, de Guia Cordoba M, et al. (2017) Yeast community in traditional Portuguese Serpa cheese by culture-dependent and -independent DNA approaches. Int J Food Microbiol 262: 63-70. doi: 10.1016/j.ijfoodmicro.2017.09.013
    [65] Ceugniez A, Taminiau B, Coucheney F, et al. (2017) Fungal diversity of ‘Tomme d' Orchies’ cheese during the ripening process as revealed by a metagenomic study. Int J Food Microbiol 258: 89-93. doi: 10.1016/j.ijfoodmicro.2017.07.015
    [66] Atanassova MR, Fernandez-Otero C, Rodriguez-Alonso P, et al. (2016) Characterization of yeasts isolated from artisanal short-ripened cows' cheeses produced in Galicia (NW Spain). Food Microbiol 53: 172-181. doi: 10.1016/j.fm.2015.09.012
    [67] Dolci P, Barmaz A, Zenato S, et al. (2009) Maturing dynamics of surface microflora in Fontina PDO cheese studied by culture-dependent and -independent methods. J Appl Microbiol 106: 278-287. doi: 10.1111/j.1365-2672.2008.04001.x
    [68] Biagiotti C, Ciani M, Canonico L, et al. (2018) Occurrence and involvement of yeast biota in ripening of Italian Fossa cheese. European Food Res Technol 244: 1921-1931. doi: 10.1007/s00217-018-3104-6
    [69] Borelli BM, Ferreira EG, Lacerda ICA, et al. (2006) Yeast populations associated with the artisanal cheese produced in the region of Serra da Canastra, Brazil. World J Microbiol Biotechnol 22: 1115-1119. doi: 10.1007/s11274-006-9151-3
    [70] Welthagen JJ, Viljoen BC (1998) Yeast profile in Gouda cheese during processing and ripening. Int J Food Microbiol 41: 185-194. doi: 10.1016/S0168-1605(98)00042-7
    [71] Bonetta S, Carraro E, Rantsiou K, et al. (2008) Microbiological characterisation of Robiola di Roccaverano cheese using PCR-DGGE. Food Microbiol 25: 786-792. doi: 10.1016/j.fm.2008.04.013
    [72] Pangallo D, Sakova N, Korenova J, et al. (2014) Microbial diversity and dynamics during the production of may bryndza cheese. Int J Food Microbiol 170: 38-43. doi: 10.1016/j.ijfoodmicro.2013.10.015
    [73] Lioliou K, Litopoulou-Tzanetaki E, Tzanetakis N, et al. (2001) Changes in the microflora of Manouri, a traditional Greek whey cheese, during storage. Int J Dairy Technol 54: 100-106. doi: 10.1046/j.1364-727x.2001.00017.x
    [74] Romano P, Ricciardi A, Salzano G, et al. (2001) Yeasts from Water Buffalo Mozzarella, a traditional cheese of the Mediterranean area. Int J Food Microbiol 69: 45-51. doi: 10.1016/S0168-1605(01)00571-2
    [75] Aponte M, Pepe O, Blaiotta G (2010) Short communication: Identification and technological characterization of yeast strains isolated from samples of water buffalo mozzarella cheese. J Dairy Sci 93: 2358-2361. doi: 10.3168/jds.2009-2948
    [76] Bintsis T, Papademas P (2002) Microbiological quality of white-brined cheeses: a review. Intern J Dairy Technol 55: 113-120. doi: 10.1046/j.1471-0307.2002.00054.x
    [77] Rantsiou K, Urso R, Dolci P, et al. (2008) Microflora of Feta cheese from four Greek manufacturers. Int J Food Microbiol 126: 36-42. doi: 10.1016/j.ijfoodmicro.2008.04.031
    [78] El-Sharoud WM, Belloch C, Peris D, et al. (2009) Molecular identification of yeasts associated with traditional egyptian dairy products. J Food Sci 74: 341-346. doi: 10.1111/j.1750-3841.2009.01258.x
    [79] Jacques N, Casaregola S (2008) Safety assessment of dairy microorganisms: the hemiascomycetous yeasts. Int J Food Microbiol 126: 321-326. doi: 10.1016/j.ijfoodmicro.2007.08.020
    [80] Kauffman CA (2006) Fungal infections. Proc Am Thorac Soc 3: 35-40. doi: 10.1513/pats.200510-110JH
    [81] Seiler H, Busse M (1990) The yeasts of cheese brines. Int J Food Microbiol 11: 289-304. doi: 10.1016/0168-1605(90)90022-W
    [82] Spinnler HE, Leclercq-Perlat MN (2007) White-mould cheese. Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 268-269.
    [83] Roostista R, Fleet GH (1996) The occurrence and growth of yeasts in Camembert and blue veined cheeses. Int J Food Microbiol 28: 393-404. doi: 10.1016/0168-1605(95)00018-6
    [84] Viljoen BC, Khoury AR, Hattingh A (2003) Seasonal diversity of yeasts associated with white-surface mould-ripened cheeses. Food Res Int 36: 275-283. doi: 10.1016/S0963-9969(02)00169-2
    [85] Addis E, Fleet GH, Cox JM, et al. (2001) The growth, properties and interactions of yeasts and bacteria associated with the maturation of Camembert and blue-veined cheeses. Int J Food Microbiol 69: 25-36. doi: 10.1016/S0168-1605(01)00569-4
    [86] Chen LS, Ma Y, Maubois JL, et al. (2010) Identification of yeasts from raw milk and selection for some specific antioxidant properties. Int J Dairy Technol 63: 47-54. doi: 10.1111/j.1471-0307.2009.00548.x
    [87] McSweeney PLH (2007) Bacterial surface-ripened cheeses. Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 289-290.
    [88] Scheehan JJ (2007) What organisms grow on the surface of smear cheeses? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 291-292.
    [89] Dugat-Bony E, Garnier L, Denonfoux J, et al. (2016) Highlighting the microbial diversity of 12 French cheese varieties. Int J Food Microbiol 238: 265-273. doi: 10.1016/j.ijfoodmicro.2016.09.026
    [90] Masoud W, Jakobsen M (2005) The combined effects of pH, NaCl and temperature on growth of cheese ripening cultures of Debaryomyces hansenii and coryneform bacteria. Int Dairy J 15: 69-77. doi: 10.1016/j.idairyj.2004.05.008
    [91] Goerges S, Mounier J, Rea MC, et al. (2008) Commercial ripening starter microorganisms inoculated into cheese milk do not successfully establish themselves in the resident microbial ripening consortia of a South German red smear cheese. Appl Environ Microbiol 74: 2210-2217. doi: 10.1128/AEM.01663-07
    [92] Gori K, Ryssel M, Arneborg N, et al. (2013) Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses. Microbiol Ecol 65: 602-615. doi: 10.1007/s00248-012-0138-3
    [93] Giannino ML, Buffoni JN, Massone E, et al. (2011) Internal transcribed spacer as a target to assess yeast biodiversity in italian taleggio PDO cheese. J Food Sci 76: 511-514. doi: 10.1111/j.1750-3841.2011.02288.x
    [94] Corsetti A, Rossi J, Gobbetti M (2001) Interactions between yeasts and bacteria in the smear surface-ripened cheeses. Int J Food Microbiol 69: 1-10. doi: 10.1016/S0168-1605(01)00567-0
    [95] Mounier J, Monnet C, Vallaeys T, et al. (2008) Microbial interactions within a cheese microbial community. Appl Environ Microbiol 74: 172-181. doi: 10.1128/AEM.01338-07
    [96] Wojtatowicz M, Chrzanowska J, Juszczyk P, et al. (2001) Identification and biochemical characteristics of yeast microflora of Rokpol cheese. Int J Food Microbiol 69: 135-140. doi: 10.1016/S0168-1605(01)00582-7
    [97] Gkatzionis K, Yunita D, Linforth RS, et al. (2014) Diversity and activities of yeasts from different parts of a Stilton cheese. Int J Food Microbiol 177: 109-116. doi: 10.1016/j.ijfoodmicro.2014.02.016
    [98] Viljoen BC, Knox AM, De Jager PH, et al. (2003) Development of yeast populations during processing and ripening of blue veined cheese. Food Technol Biotechnol 41: 291-297.
    [99] Kaminarides SE, Anifantakis M (1989) Evolution of the microflora of Kopanisti cheese during ripening. Study of the yeast flora. Lait 69: 537-546. doi: 10.1051/lait:1989637
    [100] Besançon X, Smet C, Chabalier C, et al. (1992) Study of surface yeast flora of Roquefort cheese. Int J Food Microbiol 17: 9-18. doi: 10.1016/0168-1605(92)90014-T
    [101] Van den Tempel T, Jakobsen M (2000) The technological characteristics of Debaromyces hansenii and Yarrowia lipolytica and their potential as starter cultures for production of Danablu. Int Dairy J 10: 263-270. doi: 10.1016/S0958-6946(00)00053-4
    [102] Hansen TK, TempelTvd, Cantor MD, et al. (2001) Saccharomyces cerevisiae as a starter culture in Mycella. Int J Food Microbiol 69: 101-111. doi: 10.1016/S0168-1605(01)00577-3
    [103] Bintsis T (2006) Quality of the Brine. Brined Cheeses Oxford: Blackwell Publishing Ltd, 264-301. doi: 10.1002/9780470995860.ch9
    [104] Zhang L, Huang C, Malskaer AH, et al. (2020) The effects of NaCl and temperature on growth and survival of yeast strains isolated from danish cheese brines. Curr Microbiol 77: 3377-3384. doi: 10.1007/s00284-020-02185-y
    [105] Gori K, Ryssel M, Arneborg N, et al. (2013) Isolation and identification of the microbiota of Danish farmhouse and industrially produced surface-ripened cheeses. Microbiol Ecol 65: 602-615. doi: 10.1007/s00248-012-0138-3
    [106] Jaeger B, Hoppe-Seyler T, Bockelmann W, et al. (2002) The influence of the brine microflora on the ripening of smear cheeses. Milchwissenschaft-Milk Sci Int 57: 645-648.
    [107] Ryssel M, Johansen P, Al-Soud WA, et al. (2015) Microbial diversity and dynamics throughout manufacturing and ripening of surface ripened semi-hard Danish Danbo cheeses investigated by culture-independent techniques. Int J Food Microbiol 215: 124-130. doi: 10.1016/j.ijfoodmicro.2015.09.012
    [108] Sørensen LM, Gori K, Petersen MA, et al. (2011) Flavour compound production by Yarrowia lipolytica, Saccharomyces cerevisiae and Debaryomyces hansenii in a cheese-surface model. Int Dairy J 21: 970-978. doi: 10.1016/j.idairyj.2011.06.005
    [109] Bintsis T, Litopoulou-Tzanetaki E, Davies R, et al. (2000) Microbiology of brines used to mature feta cheese. Int J Dairy Technol 53: 106-112. doi: 10.1111/j.1471-0307.2000.tb02671.x
    [110] Moatsou G, Govaris A (2011) White brined cheeses: A diachronic exploitation of small ruminants milk in Greece. Small Rumin Res 101: 113-121. doi: 10.1016/j.smallrumres.2011.09.031
    [111] Guinee TP (2007) How should cheese brine be prepared and maintained? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 94-95.
    [112] Alichanidis E (2007) What causes early and late gas blowing in white-brined cheeses? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 332-335.
    [113] Alichanidis E (2007) What causes blowing of the white-brined cheese containers? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 336-337.
    [114] Vivier D, Rivemale M, Reverbel JP, et al. (1994) Study of the growth of yeasts from Feta cheese. Int J Food Microbiol 22: 207-215. doi: 10.1016/0168-1605(94)90143-0
    [115] McSweeney PLH (2007) Why does cheese develop a pink discoloration? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 223-224.
    [116] Ardö Y (2007) Why does Blue cheese develop brown spots? Cheese Problems Solved Cambridge: Woodhead Publishing Limited, 286.
    [117] Carreira A, Paloma L, Loureiro V (1998) Pigment producing yeasts involved in the brown surface discoloration of ewes' cheese. Int J Food Microbiol 41: 223-230. doi: 10.1016/S0168-1605(98)00054-3
    [118] Ben Tahar I, Kus-Liskiewicz M, Lara Y, et al. (2020) Characterization of a nontoxic pyomelanin pigment produced by the yeast Yarrowia lipolyticaBiotechnol Prog 36: e2912. doi: 10.1002/btpr.2912
    [119] Zheng X, Shi X, Wang B (2021) A Review on the General Cheese Processing Technology, Flavor Biochemical Pathways and the Influence of Yeasts in Cheese. Front Microbiol 12: 703284. doi: 10.3389/fmicb.2021.703284
    [120] Nussinovitch A, Rosen B, Firstenberg-Eden R (1987) Effects of yeasts on survival of Staphylococcus aureus in pickled cheese brine. J Food Prot 50: 1023-1024. doi: 10.4315/0362-028X-50.12.1023
    [121] Banjara N, Suhr MJ, Hallen-Adams HE (2015) Diversity of yeasts and mold species from a variety of cheese types. Curr Microbiol 70: 792-800. doi: 10.1007/s00284-015-0790-1
  • Reader Comments
  • © 2021 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5332) PDF downloads(323) Cited by(10)

Article outline

Figures and Tables

Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog