Loading [MathJax]/jax/output/SVG/jax.js
Research article Special Issues

Parkinsons Disease-related Circulating microRNA Biomarkers——a Validation Study

  • Parkinson's disease (PD) is the second most common neurodegenerative disease. One of the major challenges in studying this progressive neurological disorder is to identify and develop biomarkers for early detection. Recently, several blood-based microRNA (miRNA) biomarkers for PD have been reported. However, follow-up studies with new, independent cohorts have been rare. Previously, we identified a panel of four circulating miRNA biomarkers for PD (miR-1826, miR-450b-3p, miR-505, and miR-626) with biomarker performance of 91% sensitivity and 100% specificity. However, the expression of miR-450b-3p could not be detected in a new, independent validation set. In our current study, we improved the detection power by including a non-biased pre-amplification step in quantitative real-time PCR (qRT-PCR) and reevaluated the biomarker performance. We found the panel of four PD-related miRNAs achieved the predictive power of 83% sensitivity and 75% specificity in our validation set. This is the first biomarker validation study of PD which showed reproducibility and robustness of plasma-based circulating miRNAs as molecular biomarkers and qRT-PCR as potential diagnostic assay.

    Citation: David Petillo, Stephen Orey, Aik Choon Tan, Lars Forsgren, Sok Kean Khoo. Parkinsons Disease-related Circulating microRNA Biomarkers——a Validation Study[J]. AIMS Medical Science, 2015, 2(1): 7-14. doi: 10.3934/medsci.2015.1.7

    Related Papers:

    [1] Nader Al-Rashidi . Innovative approaches to fractional modeling: Aboodh transform for the Keller-Segel equation. AIMS Mathematics, 2024, 9(6): 14949-14981. doi: 10.3934/math.2024724
    [2] Humaira Yasmin, Aljawhara H. Almuqrin . Analytical study of time-fractional heat, diffusion, and Burger's equations using Aboodh residual power series and transform iterative methodologies. AIMS Mathematics, 2024, 9(6): 16721-16752. doi: 10.3934/math.2024811
    [3] Muhammad Imran Liaqat, Sina Etemad, Shahram Rezapour, Choonkil Park . A novel analytical Aboodh residual power series method for solving linear and nonlinear time-fractional partial differential equations with variable coefficients. AIMS Mathematics, 2022, 7(9): 16917-16948. doi: 10.3934/math.2022929
    [4] Yousef Jawarneh, Humaira Yasmin, Abdul Hamid Ganie, M. Mossa Al-Sawalha, Amjid Ali . Unification of Adomian decomposition method and ZZ transformation for exploring the dynamics of fractional Kersten-Krasil'shchik coupled KdV-mKdV systems. AIMS Mathematics, 2024, 9(1): 371-390. doi: 10.3934/math.2024021
    [5] Mariam Sultana, Muhammad Waqar, Ali Hasan Ali, Alina Alb Lupaş, F. Ghanim, Zaid Ameen Abduljabbar . Numerical investigation of systems of fractional partial differential equations by new transform iterative technique. AIMS Mathematics, 2024, 9(10): 26649-26670. doi: 10.3934/math.20241296
    [6] Humaira Yasmin, Aljawhara H. Almuqrin . Efficient solutions for time fractional Sawada-Kotera, Ito, and Kaup-Kupershmidt equations using an analytical technique. AIMS Mathematics, 2024, 9(8): 20441-20466. doi: 10.3934/math.2024994
    [7] Aslı Alkan, Halil Anaç . The novel numerical solutions for time-fractional Fornberg-Whitham equation by using fractional natural transform decomposition method. AIMS Mathematics, 2024, 9(9): 25333-25359. doi: 10.3934/math.20241237
    [8] M. Mossa Al-Sawalha, Khalil Hadi Hakami, Mohammad Alqudah, Qasem M. Tawhari, Hussain Gissy . Novel Laplace-integrated least square methods for solving the fractional nonlinear damped Burgers' equation. AIMS Mathematics, 2025, 10(3): 7099-7126. doi: 10.3934/math.2025324
    [9] Asif Khan, Tayyaba Akram, Arshad Khan, Shabir Ahmad, Kamsing Nonlaopon . Investigation of time fractional nonlinear KdV-Burgers equation under fractional operators with nonsingular kernels. AIMS Mathematics, 2023, 8(1): 1251-1268. doi: 10.3934/math.2023063
    [10] Hayman Thabet, Subhash Kendre, James Peters . Travelling wave solutions for fractional Korteweg-de Vries equations via an approximate-analytical method. AIMS Mathematics, 2019, 4(4): 1203-1222. doi: 10.3934/math.2019.4.1203
  • Parkinson's disease (PD) is the second most common neurodegenerative disease. One of the major challenges in studying this progressive neurological disorder is to identify and develop biomarkers for early detection. Recently, several blood-based microRNA (miRNA) biomarkers for PD have been reported. However, follow-up studies with new, independent cohorts have been rare. Previously, we identified a panel of four circulating miRNA biomarkers for PD (miR-1826, miR-450b-3p, miR-505, and miR-626) with biomarker performance of 91% sensitivity and 100% specificity. However, the expression of miR-450b-3p could not be detected in a new, independent validation set. In our current study, we improved the detection power by including a non-biased pre-amplification step in quantitative real-time PCR (qRT-PCR) and reevaluated the biomarker performance. We found the panel of four PD-related miRNAs achieved the predictive power of 83% sensitivity and 75% specificity in our validation set. This is the first biomarker validation study of PD which showed reproducibility and robustness of plasma-based circulating miRNAs as molecular biomarkers and qRT-PCR as potential diagnostic assay.


    Many complicated structures' memory and natural features may be realized using fractional calculus (FC), which studies integrals and derivatives of fractional orders [1,2]. Many recent FC applications have included analyzing the dynamics of large-scale physical events by converting derivatives and integrals from classical to non-integer order. Many branches of engineering and the physical sciences use it, including electric circuits, mathematical biology, control theory, robotics, viscoelasticity, flow models, relaxation, and signal processing [3,4]. Numerous mysterious ideas have been refined via the study of fractional calculus, for example, logistic regression, Malthusian growth, and blood alcohol concentration, all of which have shown that fractional operators outperform integer-order operators [5,6].

    Derivatives of fractional order such as Riemann-Liouville, Atangana Baleanu, Caputo, Hilfer, Grunwald-Letnikov, Caputo Fabrizio, and Riemann-Liouville are among the numerous that have recently been proposed [7,8]. Since all fractional derivatives may be reduced in Caputo's meaning with minor parametric adjustments, the fractional derivative of Caputo is the essential principle of FC to investigate fractional differential equations (FDEs). Caputo's operator, which has numerous applications to model various physical models, possesses a power-law kernel. To address this difficulty, the alternative fractional differential operator [9] was developed, which consists of a Mittag-Leffler kernel and an exponentially decaying kernel. Caputo-Fabrizio (CF) and Atangana-Baleanu are operators characterized by their non-singular kernels. These operators have been widely applied in analyzing diverse problem classes, including but not limited to biology, economics, geophysics, and bioengineering [10].

    Korteweg and de Vries introduced the KdV equation in 1895 to formulate a model for Russell's soliton phenomenon, encompassing water waves of long and small amplitude. Solitons are classified as stable solitary waves, signifying their particle-like nature [11]. Various applied disciplines, including plasma physics, fluid dynamics, quantum mechanics, and optics, implement the KdV equations [12]. Particle physics has employed the fifth-order KdV equations to analyze many nonlinear phenomena [13]. Its function in the propagation of waves is crucial [14]. The authors find third-order and fifth-order dispersive terms in the KdV form equation pertinent to the magneto-acoustic wave problem. Furthermore, these dispersive terms manifest themselves in the vicinity of critical angle propagation [15]. An electrically conducting fluid, plasma is also dynamic and quasi-neutral. Ions, electrons, and neutral particles comprise it. Due to the electrical conductivity exhibited by plasma, it includes both electric and magnetic regions. The variety of particles and regions supports diverse types of plasma waves. A magnetic lock is a less longitudinal ion dispersion. In the low magnetic field range, the magneto-acoustic wave exhibits characteristics of an ion acoustic wave [16,17]. However, at low temperatures, it transforms into an Alfven wave.

    Equivalent to the general model for the investigation of magnetic characteristics of acoustic waves with surface tension is the fifth order of KdV. According to a recent investigation [18,19], the solutions to the equation above concerning traveling waves persist beyond infinity. The following are two widely recognized types of fifth-order KdV equations [20,21]:

    $ DpΩη(ϵ,Ω)5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,  0<p1. $ (1.1)
    $ DpΩη(ϵ,Ω)+5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,  0<p1. $ (1.2)

    Here, Eqs (1.1) and (1.2) are called the Kawahara and KdV equation of fifth-order, respectively. The extreme nonlinearity of these mathematical models makes it difficult to find suitable analytical methods. Researchers have developed and implemented several techniques for solving nonlinear and linear equations of KdV in the past ten years. These techniques include the variational iteration method [21], the multi-symplectic method [22], He's homotopy perturbation method [23], and the Exp-function method [24].

    Omar Abu Arqub established residual power series method (RPSM) in 2013 [25]. It is created by merging the residual error function with the Taylor series. According to [26], an infinite convergence series solves differential equations (DEs). The development of novel RPSM algorithms has been prompted by several DEs, including KdV Burger's equation, fuzzy DEs, Boussinesq DEs, and numerous others [27,28]. The goal of these algorithms is to provide efficient and accurate estimates.

    A novel strategy for solving FDEs was established by integrating two effective methods. Some approaches that fall into these categories include those that use the natural transform [29], the Laplace transform with RPSM [30], and the homotopy perturbation method [31]. In this work, we used a novel combination method known as the Abdooh residual power series method (ARPSM) to discover approximation and precise solutions for time-fractional nonlinear partial differential equations (PDEs). This innovative method is significant because it combines the Aboodh transform technique with the RPSM [32,33].

    The computing effort and complexity needed are significant issues with the previously mentioned approaches. Our suggested Aboodh transform iterative method (ATIM) [34] is this work's unique aspect that solves the Kawahara and KdV equations of fractional order. By integrating the Aboodh transform with the new iterative technique, this strategy significantly reduces the computing effort and complexity required. According to [35,36], the suggested approach yields a convergent series solution.

    The ARPSM and the ATIM are the two most straightforward approaches to solving fractional DEs. These methods fully and immediately explain the symbolic terms used in analytical solutions and offer numerical solutions to PDEs. This paper assesses ATIM and ARPSM's efficacy in solving the fifth-order KdV and Kawahara equations.

    The fifth-order KdV and Kawahara equations are solved using ARPSM and ATIM. These methods provide more precise numerical answers when compared with other numerical techniques. Additionally, a comparison analysis is performed on the numerical findings. The suggested approaches' findings are consistent with one another, which is a strong indicator of their efficacy and reliability. For various values of fractional-order derivatives, there is additional graphical importance. Therefore, the methods are accurate, easy to implement, not affected by computational error phases, and quick. This study lays the groundwork for researchers to quickly solve various PDEs.

    Definition 2.1. [37] Assume that $ \eta({{\epsilon}}, {{\Omega}}) $ is an exponential order continuous function. The definition of the Aboodh transform (AT), assuming $ \sigma\geq0 $ for $ \eta({{\epsilon}}, {{\Omega}}) $, is as follows:

    $ A[\eta({{\epsilon}}, {{\Omega}})] = \Psi({{\epsilon}},\xi) = \frac{1}{\xi}\displaystyle{\int}_{0}^{\infty}\eta({{\epsilon}}, {{\Omega}})e^{-{{\Omega}}\xi}d{{\Omega}},\ \ {r}_{1}\leq\xi\leq{r}_{2}. $

    The Aboodh inverse transform (AIT) is given as:

    $ A^{-1}[\Psi({{\epsilon}},\xi)] = \eta({{\epsilon}}, {{\Omega}}) = \frac{1}{2\pi i}\displaystyle{\int}_{u-i\infty}^{u+i\infty}\Psi({{\epsilon}}, {{\Omega}})\xi e^{{{\Omega}}\xi}d{{\Omega}}, $

    where $ {{\epsilon}} = ({{\epsilon}}_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in \mathbb{R}^{p} $ and $ p\in\mathbb{N} $.

    Lemma 2.1. [38,39] It is assumed that there exist two exponentially ordered, piecewise continuous functions $ \eta_{1}({{\epsilon}}, \Omega) $ and $ \eta_{2}({{\epsilon, \Omega}}) $ on $ [0, \infty] $. Let $ A[\eta_{1}({{\epsilon}}, {{\Omega}})] = \Psi_{1}({{\epsilon}}, {{\Omega}}), A[\eta_{2}({{\epsilon}}, {{\Omega}})] = \Psi_{2}({{\epsilon}}, {{\Omega}}) $, and $ \chi_{1}, \chi_{2} $ be arbitrary constants. These characteristics are thus true:

    (1) $ A[\chi_{1}\eta_{1}({{\epsilon}}, {{\Omega}})+\chi_{2}\eta_{2}({{\epsilon}}, {{\Omega}})] = \chi_{1}\Psi_{1}({{\epsilon}}, \xi)+\chi_{2}\Psi_{2}({{\epsilon}}, {{\Omega}}) $,

    (2) $ A^{-1}[\chi_{1}\Psi_{1}({{\epsilon}}, {{\Omega}})+\chi_{2}\Psi_{2}({{\epsilon}}, {{\Omega}})] = \chi_{1}\eta_{1}({{\epsilon}}, \xi)+\chi_{2}\eta_{2}({{\epsilon}}, {{\Omega}}) $,

    (3) $ A[J_{{{\Omega}}}^{{p}}\eta({{\epsilon}}, {{\Omega}})] = \frac{\Psi({{\epsilon}}, \xi)}{\xi^{{p}}} $,

    (4) $ A[D_{{{\Omega}}}^{{p}}\eta({{\epsilon}}, {{\Omega}})] = \xi^{{p}}\Psi({{\epsilon}}, \xi)-\sum_{K = 0}^{r-1}\frac{\eta^{K}({{\epsilon}}, 0)}{\xi^{K-{p}+2}}, r-1 < {p}\leq r, \ r\in \mathbb{N} $.

    Definition 2.2. [40] In terms of order $ p $, the function $ \eta({{\epsilon}}, {{\Omega}}) $ has derivative of fractional order as stated by Caputo.

    $ D_{{{\Omega}}}^{{p}}\eta({{\epsilon}}, {{\Omega}}) = J_{{{\Omega}}}^{m-{p}}\eta^{(m)}({{\epsilon}}, {{\Omega}}), \ m-1 < {p}\leq m,\ r\geq 0, $

    where $ {{\epsilon}} = ({{\epsilon}}_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in \mathbb{R}^{p} $ and $ p, m\in R, J_{{{\Omega}}}^{m-{p}} $ is the integral of the Riemann-Liouville of $ \eta({{\epsilon}}, {{\Omega}}) $.

    Definition 2.3. [41] The representation of power series is composed of the following structure.

    $ \sum\limits_{r = 0}^{\infty}\hbar_{r}({{\epsilon}})({{\Omega}}-{{\Omega}}_{0})^{r{p}} = 1+\hbar_{1}({{\Omega}}-{{\Omega}}_{0})^{{p}}+\hbar_{2}({{\Omega}}-{{\Omega}}_{0})^{2{p}} +\cdots, $

    where $ {{\epsilon}} = ({{\epsilon}}_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in \mathbb{R}^{p} $ and $ p\in \mathbb{N} $. This is known as the multiple fractional power series concerning $ {{\Omega}}_{0} $, where $ {{\Omega}} $ and $ \hbar_{r}({{\epsilon}})'s $ are variable and series coefficients, respectively.

    Lemma 2.2. Consider the exponential order function is denoted as $ \eta({{\epsilon}}, {{\Omega}}) $. $ A[\eta({{\epsilon}}, {{\Omega}})] = \Psi({{\epsilon}}, \xi) $ is the description of the AT in this case. Hence,

    $ A[DrpΩη(ϵ,Ω)]=ξrpΨ(ϵ,ξ)r1j=0ξp(rj)2DjpΩη(ϵ,0),0<p1, $ (2.1)

    where $ {{\epsilon}} = ({{\epsilon}}_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in \mathbb{R}^{p} $ and $ p\in \mathbb{N} $ and $ D_{{{\Omega}}}^{r{p}} = D_{{{\Omega}}}^{{p}}.D_{{{\Omega}}}^{{p}}.\cdots.D_{{{\Omega}}}^{{p}}(r-times) $

    Proof. By using the induction method, we have to prove Eq (2.1). In Eq (2.1), substitute $ r = 1 $.

    $ A[D_{{{\Omega}}}^{{p}}\eta({{\epsilon}}, {{\Omega}})] = \xi^{{p}}\Psi({{\epsilon}},\xi)-\xi^{{p}-2}\eta({{\epsilon}},0)-\xi^{{p}-2}D_{{{\Omega}}}^{{p}}\eta({{\epsilon}},0). $

    On the bases of Lemma 2.1, Eq (2.1) for $ r = 1 $ holds true. Put $ r = 2 $ in Eq (2.1).

    $ A[D2prη(ϵ,Ω)]=ξ2pΨ(ϵ,ξ)ξ2p2η(ϵ,0)ξp2DpΩη(ϵ,0). $ (2.2)

    From left-hand side (LHS) of Eq (2.2), we obtain:

    $ LHS=A[D2pΩη(ϵ,Ω)]. $ (2.3)

    The expressions for Eq (2.3) are as follows:

    $ LHS=A[DpΩη(ϵ,Ω)]. $ (2.4)

    Assume

    $ z(ϵ,Ω)=DpΩη(ϵ,Ω). $ (2.5)

    This makes Eq (2.4) as

    $ LHS=A[DpΩz(ϵ,Ω)]. $ (2.6)

    From the definition of the derivative of Caputo, we make changes in Eq (2.6).

    $ LHS=A[J1pz(ϵ,Ω)]. $ (2.7)

    By applying the Riemann-Liouville integral Eq (2.7), we obtain:

    $ LHS=A[z(ϵ,Ω)]ξ1p. $ (2.8)

    By using the AT feature of differentiability, Eq (2.8) is modified:

    $ LHS=ξpZ(ϵ,ξ)z(ϵ,0)ξ2p. $ (2.9)

    From Eq (2.5), we derive:

    $ Z({{\epsilon}},\xi) = \xi^{{p}}\Psi({{\epsilon}},\xi)-\frac{\eta({{\epsilon}},0)}{\xi^{2-{p}}}, $

    where $ A[z({{\epsilon}}, {{\Omega}})] = Z({{\epsilon}}, \xi) $. Hence, Eq (2.9) becomes

    $ LHS=ξ2pΨ(ϵ,ξ)η(ϵ,0)ξ22pDpΩη(ϵ,0)ξ2p. $ (2.10)

    Let's suppose Eq (2.1) holds true for $ r = K $. Substitute $ r = K $ in Eq (2.1):

    $ A[DKpΩη(ϵ,Ω)]=ξKpΨ(ϵ,ξ)K1j=0ξp(Kj)2DjpΩDjpΩη(ϵ,0), 0<p1. $ (2.11)

    Substituting $ r = K+1 $ in Eq (2.1):

    $ A[D(K+1)pΩη(ϵ,Ω)]=ξ(K+1)pΨ(ϵ,ξ)Kj=0ξp((K+1)j)2DjpΩη(ϵ,0). $ (2.12)

    After analyzing Eq (2.12)'s LHS, we deduce

    $ LHS=A[DKpΩ(DKpΩ)]. $ (2.13)

    Let

    $ D_{{{\Omega}}}^{K{p}} = g({{\epsilon}}, {{\Omega}}). $

    By Eq (2.13), we drive

    $ LHS=A[DpΩg(ϵ,Ω)]. $ (2.14)

    By using the integral of the Riemann-Liouville and derivative of Caputo on Eq (2.14), the subsequent result can be obtained.

    $ LHS=ξpA[DKpΩη(ϵ,Ω)]g(ϵ,0)ξ2p. $ (2.15)

    To get Eq (2.15), use Eq (2.11).

    $ LHS=ξrpΨ(ϵ,ξ)r1j=0ξp(rj)2DjpΩη(ϵ,0). $ (2.16)

    In addition, Eq (2.16) produces the subsequent outcome.

    $ LHS = A[D_{{{\Omega}}}^{r{p}}\eta({{\epsilon}},0)]. $

    Thus, for $ r = K+1 $, Eq (2.1) holds. For all positive integers, Eq (2.1) holds true according to the mathematical induction technique.

    A deeper understanding of the ARPSM and multiple fractional Taylor series (MFTS) are given as follow.

    Lemma 2.3. Consider the function $ \eta({{\epsilon}}, {{\Omega}}) $ is an exponential order. $ A[\eta({{\epsilon}}, {{\Omega}})] = \Psi({{\epsilon}}, \xi) $ is the expression that signifies the AT of $ \eta({{\epsilon}}, {{\Omega}}) $. AT is represented as follows in MFTS notation:

    $ Ψ(ϵ,ξ)=r=0r(ϵ)ξrp+2,ξ>0, $ (2.17)

    where, $ {{\epsilon}} = (s_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in\mathbb{R}^{p}, \ p\in \mathbb{N} $.

    Proof. Consider the Taylor's series:

    $ η(ϵ,Ω)=0(ϵ)+1(ϵ)ΩpΓ[p+1]AA+2(ϵ)Ω2pΓ[2p+1]+. $ (2.18)

    The subsequent equality is produced when the AT is applied to Eq (2.18):

    $ A\left[\eta({{\epsilon}}, {{\Omega}})\right] = A\left[\hbar_{0}({{\epsilon}})\right]+A\left[\hbar_{1}({{\epsilon}})\frac{{{\Omega}}^{{p}}}{\Gamma[{p}+1]}\right]+A\left[\hbar_{1}({{\epsilon}}) \frac{{{\Omega}}^{2{p}}}{\Gamma[2{p}+1]}\right]+\cdots. $

    This is achieved by utilizing the AT's features.

    $ A\left[\eta({{\epsilon}}, {{\Omega}})\right] = \hbar_{0}({{\epsilon}})\frac{1}{\xi^{2}}+\hbar_{1}({{\epsilon}})\frac{1}{\Gamma[{p}+1]}\frac{1}{\xi^{{p}+2}}+\hbar_{2}({{\epsilon}}) \frac{1}{\Gamma[2{p}+1]}\frac{1}{\xi^{2{p}+2}}\cdots. $

    Hence, by Eq (2.17), a new Taylor's series is obtained:

    Lemma 2.4. Let the multiple fractional power series (MFPS) be expressed in terms of Taylor's series new form Eq (2.17), $ A[\eta(\epsilon, \Omega)] = \Psi(\epsilon, \xi) $.

    $ 0(ϵ)=limξξ2Ψ(ϵ,ξ)=η(ϵ,0). $ (2.19)

    Proof. Let's suppose the Taylor's series:

    $ 0(ϵ)=ξ2Ψ(ϵ,ξ)1(ϵ)ξp2(ϵ)ξ2p. $ (2.20)

    As denoted by Eq (2.20), the necessary solution can be obtained by employing $ lim_{x\rightarrow \infty} $ in Eq (2.19) and performing a short calculation.

    Theorem 2.5. The following is an MFPS representation of the function $ A[\eta({{\epsilon}}, {{\Omega}})] = \Psi({{\epsilon}}, \xi) $:

    $ \Psi({{\epsilon}},\xi) = \sum\limits_{0}^{\infty}\frac{\hbar_{r}({{\epsilon}})}{\xi^{r{p}+2}}, \ \xi > 0, $

    where $ {{\epsilon}} = ({{\epsilon}}_{1}, {{\epsilon}}_{2}, \cdots, {{\epsilon}}_{p})\in\mathbb{R}^p $ and $ p\in\mathbb{N} $. Then, we have

    $ \hbar_{r}({{\epsilon}}) = D_{r}^{r{p}}\eta({{\epsilon}},0), $

    where, $ D_{{{\Omega}}}^{r{p}} = D_{{{\Omega}}}^{{p}}.D_{{{\Omega}}}^{{p}}.\cdots.D_{{{\Omega}}}^{{p}}(r-times) $.

    Proof. Let's suppose the Taylor's series:

    $ 1(ϵ)=ξp+2Ψ(ϵ,ξ)ξp0(ϵ)2(ϵ)ξp3(ϵ)ξ2p $ (2.21)

    $ \lim_{\xi\rightarrow \infty} $, is applied to Eq (2.21), and we get

    $ \hbar_{1}({{\epsilon}}) = \lim\limits_{\xi\rightarrow \infty}(\xi^{{p}+2}\Psi({{\epsilon}},\xi)-\xi^{{p}}\hbar_{0}({{\epsilon}}))-\lim\limits_{\xi\rightarrow \infty}\frac{\hbar_{2}({{\epsilon}})}{\xi^{{p}}} -\lim\limits_{\xi\rightarrow \infty}\frac{\hbar_{3}({{\epsilon}})}{\xi^{2{p}}}- \cdots. $

    The equality that results from taking the limit is as follows:

    $ 1(ϵ)=limξ(ξp+2Ψ(ϵ,ξ)ξp0(ϵ)). $ (2.22)

    Using Lemma 2.2, we obtain:

    $ 1(ϵ)=limξ(ξ2A[DpΩη(ϵ,Ω)](ξ)). $ (2.23)

    Furthermore, the Eq (2.23) is modified using Lemma 2.3.

    $ \hbar_{1}({{\epsilon}}) = D_{{{\Omega}}}^{{p}}\eta({{\epsilon}},0). $

    Using Taylor's series and applying $ limit_{\xi\rightarrow \infty} $ again, we obtain:

    $ \hbar_{2}({{\epsilon}}) = \xi^{2{p}+2}\Psi({{\epsilon}},\xi)-\xi^{2{p}}\hbar_{0}({{\epsilon}})-\xi^{{p}}\hbar_{1}({{\epsilon}})-\frac{\hbar_{3}({{\epsilon}})}{\xi^{{p}}}- \cdots. $

    Lemma 2.3 gives us the result

    $ 2(ϵ)=limξξ2(ξ2pΨ(ϵ,ξ)ξ2p20(ϵ)ξp21(ϵ)). $ (2.24)

    Equation (2.24) is transformed using Lemmas 2.2 and Eq (2.4).

    $ \hbar_{2}({{\epsilon}}) = D_{{{\Omega}}}^{2{p}}\eta({{\epsilon}},0). $

    Apply the same procedure and Taylor series, and we obtain:

    $ \hbar_{3}({{\epsilon}}) = \lim\limits_{\xi\rightarrow \infty}\xi^2(A[D_{{{\Omega}}}^{2{p}}\eta({{\epsilon}},{p})](\xi)). $

    Finally, we get:

    $ \hbar_{3}({{\epsilon}}) = D_{{{\Omega}}}^{3{p}}\eta({{\epsilon}},0). $

    In general,

    $ \hbar_{r}({{\epsilon}}) = D_{{{\Omega}}}^{r{p}}\eta({{\epsilon}},0), $

    is proved. The new Taylor series has the conditions for the convergence given in the subsequent theorem.

    Theorem 2.6. The expression for MFTS is given in Lemma 2.3 and can be expressed as: $ A [\eta({{\epsilon}}, {{\Omega}})] = \Psi({{\epsilon}}, \xi) $. When $ |\xi^{a}A[D_{{{\Omega}}}^{(K+1){p}}\eta({{\epsilon}}, {{\Omega}})]|\leq T $, $ \forall $ $ 0 < {p} \leq 1 $, and $ 0 < \xi \leq s $, $ R_K({{\epsilon}}, \xi) $ is the residual of the new MFTS satisfying:

    $ |R_{K}({{\epsilon}},\xi)|\leq \frac{T}{\xi^{(K = 1){p}+2}}, \ 0 < \xi\leq s. $

    Proof. For $ r = 0, 1, 2, \cdots, K + 1 $, and $ 0 < \xi \leq s $, we consider to define $ A[D_{{{\Omega}}}^{r{p}}\eta({{\epsilon}}, {{\Omega}})](\xi) $. Utilize the Taylor series to derive the subsequent relation:

    $ RK(ϵ,ξ)=Ψ(ϵ,ξ)Kr=0r(ϵ)ξrp+2. $ (2.25)

    Apply Theorem 2.5 on Eq (2.25) to obtain:

    $ RK(ϵ,ξ)=Ψ(ϵ,ξ)Kr=0DrpΩη(ϵ,0)ξrp+2. $ (2.26)

    $ \xi^{(K+1)a+2} $ is to be multiplied with Eq (2.26) to obtain the following form.

    $ ξp(K+1)+2RK(ϵ,ξ)=ξ2(ξp(K+1)Ψ(ϵ,ξ)Kr=0ξp(K+1r)2DrpΩη(ϵ,0)). $ (2.27)

    Equation (2.27) is modified with Lemma 2.2:

    $ ξp(K+1)+2RK(ϵ,ξ)=ξ2A[Dp(K+1)Ωη(ϵ,Ω)]. $ (2.28)

    The absolute of Eq (2.28) gives us

    $ |ξp(K+1)+2RK(ϵ,ξ)|=|ξ2A[Dp(K+1)Ωη(ϵ,Ω)]|. $ (2.29)

    By applying the conditions listed in Eq (2.29), the subsequent result is achieved.

    $ Tξp(K+1)+2RK(ϵ,ξ)Tξp(K+1)+2. $ (2.30)

    Equation (2.30) yields the desired outcome.

    $ |R_K({{\epsilon}},\xi)|\leq \frac{T}{\xi^{{p}(K+1)+2}}. $

    Therefore, new conditions for the series to converge are developed.

    In this paper, we explain how ARPSM rules formed the basis of our solution.

    Step 1: Assume the general PDE:

    $ DqpΩη(ϵ,Ω)+ϑ(ϵ)N(η)δ(ϵ,η)=0. $ (3.1)

    Step 2: Apply the AT on Eq (3.1):

    $ A[DqpΩη(ϵ,Ω)+ϑ(ϵ)N(η)δ(ϵ,η)]=0. $ (3.2)

    Utilizing Lemma 2.1 to modify Eq (3.2),

    $ Ψ(ϵ,s)=q1j=0DjΩη(ϵ,0)sqp+2ϑ(ϵ)Y(s)sqp+F(ϵ,s)sqp, $ (3.3)

    where $ A[\delta({{\epsilon}}, \eta)] = F({{\epsilon}}, {s}), A[N(\eta)] = Y({s}) $.

    Step 3: Equation (3.3) takes the following form:

    $ \Psi({{\epsilon}}, {s}) = \sum\limits_{r = 0}^{\infty}\frac{\hbar_r({{\epsilon}})}{{s}^{r{p}+2}}, \ {s} > 0. \\ $

    Step 4: Take the steps listed below:

    $ \hbar_0({{\epsilon}}) = \lim\limits_{{s}\rightarrow \infty}{s}^2 \Psi({{\epsilon}}, {s}) = \eta({{\epsilon}}, 0). \\ $

    Use Theorem 2.6 to obtain this form.

    $ 1(ϵ)=DpΩη(ϵ,0),2(ϵ)=D2pΩη(ϵ,0),w(ϵ)=DwpΩη(ϵ,0). $

    Step 5: The $ K^{th} $ truncated series $ \Psi({{\epsilon}}, {s}) $ can be obtained using the following expression:

    $ \Psi_{K}({{\epsilon}}, {s}) = \sum\limits_{r = 0}^{K}\frac{\hbar_r({{\epsilon}})}{{s}^{r{p}+2}}, \ {s} > 0, $
    $ \Psi_{K}({{\epsilon}}, {s}) = \frac{\hbar_{0}({{\epsilon}})}{{s}^{2}}+\frac{\hbar_{1}({{\epsilon}})}{{s}^{{p}+2}}+\cdots+\frac{\hbar_{w}({{\epsilon}})}{{s}^{w{p}+2}}+\sum\limits_{r = w+1}^{K} \frac{\hbar_r({{\epsilon}})}{{s}^{r{p}+2}}. $

    Step 6: Note that the residual Aboodh function (RAF) (3.3) and the $ K^{th} $-truncated RAF must be considered independently to obtain:

    $ ARes({{\epsilon}}, {s}) = \Psi({{\epsilon}},{s})-\sum\limits_{j = 0}^{q-1}\frac{D_{{{\Omega}}}^{j}\eta({{\epsilon}},0)}{{s}^{j{p}+2}}+\frac{\vartheta({{\epsilon}})Y({s})}{{s}^{j{p}}}-\frac{F({{\epsilon}},{s})}{{s}^{j{p}}}, $

    and

    $ AResK(ϵ,s)=ΨK(ϵ,s)q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp. $ (3.4)

    Step 7: Equation (3.4) may be substituted with $ \Psi_{K}({{\epsilon}}, {s}) $ in place of its expansion form.

    $ AResK(ϵ,s)=(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2)q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp. $ (3.5)

    Step 8: Multifly $ {s}^{K{p}+2} $ on either side of the equation to get the solution to Eq (3.5).

    $ sKp+2AResK(ϵ,s)=sKp+2(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp). $ (3.6)

    Step 9: Take $ \lim_{{s}\rightarrow \infty} $ of Eq (3.6) to obtain:

    $ limssKp+2AResK(ϵ,s)=limssKp+2(0(ϵ)s2+1(ϵ)sp+2++w(ϵ)swp+2+Kr=w+1r(ϵ)srp+2q1j=0DjΩη(ϵ,0)sjp+2+ϑ(ϵ)Y(s)sjpF(ϵ,s)sjp). $

    Step 10: $ \hbar_K({{\epsilon}}) $ values can be obtained using the equation above.

    $ \lim\limits_{{s}\rightarrow \infty}({s}^{K{p}+2}ARes_{K}({{\epsilon}}, {s})) = 0, $

    where $ K = 1+w, 2+w, \cdots. $

    Step 11: Values of $ \hbar_K({{\epsilon}}) $ are then substituted in Eq (3.3).

    Step 12: Taking the inverse AT we obtain the final solution $ \eta_K({{\epsilon}}, {{\Omega}}) $.

    Let's consider the PDE as given below:

    $ DpΩη(ϵ,Ω)=Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω)), 0<p,Ω1. $ (3.7)

    The initial condition is

    $ η()(ϵ,0)=h, =0,1,2,,m1. $ (3.8)

    The function to be determined is $ {{\eta}}({{\epsilon}}, {{\Omega}}) $, while $ \Phi\Big({{\eta}}({{\epsilon}}, {{\Omega}}), D_{{{\epsilon}}}^{\Omega}{{\eta}}({{\epsilon}}, {{\Omega}}), D_{{{\epsilon}}}^{2\Omega}{{\eta}}({{\epsilon}}, {{\Omega}}) D_{{{\epsilon}}}^{3\Omega}{{\eta}}({{\epsilon}}, {{\Omega}})\Big) $ are operators of $ {{\eta}}({{\epsilon}}, {{\Omega}}), D_{{{\epsilon}}}^{\Omega}{{\eta}}({{\epsilon}}, {{\Omega}}), D_{{{\epsilon}}}^{2\Omega}{{\eta}}({{\epsilon}}, {{\Omega}}) $ and $ D_{{{\epsilon}}}^{3\Omega}{{\eta}}({{\epsilon}}, {{\Omega}}) $. The AT is applied on Eq (3.7) to obtain:

    $ A[η(ϵ,Ω)]=1sp(m1=0η()(ϵ,0)s2p++A[Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω))]). $ (3.9)

    The AIT yields the solution to this problem:

    $ η(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p++A[Φ(η(ϵ,Ω),DΩϵη(ϵ,Ω),D2Ωϵη(ϵ,Ω),D3Ωϵη(ϵ,Ω))])]. $ (3.10)

    An infinite series denotes the ATIM-derived solution.

    $ η(ϵ,Ω)=i=0ηi. $ (3.11)

    $ \Phi\Big({{\eta}}, D_{{{\epsilon}}}^{\Omega}{{\eta}}, D_{{{\epsilon}}}^{2\Omega}{{\eta}}, D_{{{\epsilon}}}^{3\Omega}{{\eta}}\Big) $ can be decomposed as:

    $ Φ(η,DΩϵη,D2Ωϵη,D3Ωϵη)=Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)+i=0(Φ(i=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))Φ(i1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))). $ (3.12)

    The subsequent equation is obtained by substituting the values of Eqs (3.11) and (3.12) for the initial equation (3.10).

    $ i=0ηi(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p++A[Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)])]+A1[1sp(A[i=0(Φi=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))])]A1[1sp(A[(Φi1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))])] $ (3.13)
    $ η0(ϵ,Ω)=A1[1sp(m1=0η()(ϵ,0)s2p+)],η1(ϵ,Ω)=A1[1sp(A[Φ(η0,DΩϵη0,D2Ωϵη0,D3Ωϵη0)])],ηm+1(ϵ,Ω)=A1[1sp(A[i=0(Φi=0(η,DΩϵη,D2Ωϵη,D3Ωϵη))])]A1[1sp(A[(Φi1=1(η,DΩϵη,D2Ωϵη,D3Ωϵη))])], m=1,2,. $ (3.14)

    For the m-term of Eq (3.7), the analytically approximate solution may be obtained using the following expression:

    $ η(ϵ,Ω)=m1i=0ηi. $ (3.15)

    Consider Kawahara equation of fractional order as follows:

    $ DpΩη(ϵ,Ω)5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,   where   0<p1, $ (4.1)

    with the initial condition:

    $ η(ϵ,0)=105169sech4(ϵ2213), $ (4.2)

    and exact solution

    $ η(ϵ,Ω)=105169sech4(36Ω169+ϵ2213). $

    Equation (4.2) is used, and {AT} is applied to Eq (4.1) to get

    $ η(ϵ,s)105169sech4(ϵ2213)s21sp[5η(ϵ,s)ϵ5]+1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0. $ (4.3)

    Therefore, the series $ k^{th} $-truncated terms are:

    $ η(ϵ,s)=105169sech4(ϵ2213)s2+kr=1fr(ϵ,s)srp+1,  r=1,2,3,4. $ (4.4)

    Following is the RAF:

    $ AΩRes(ϵ,s)=η(ϵ,s)105169sech4(ϵ2213)s21sp[5η(ϵ,s)ϵ5]+1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0, $ (4.5)

    and the $ {k}^{th} $-RAFs is:

    $ AΩResk(ϵ,s)=ηk(ϵ,s)105169sech4(ϵ2213)s21sp[5ηk(ϵ,s)ϵ5]+1spAΩ[A1Ωηk(ϵ,s)×3A1Ωηk(ϵ,s)ϵ3]+1spAΩ[A1Ωηk(ϵ,s)×A1Ωηk(ϵ,s)ϵ]=0. $ (4.6)

    It takes some calculation to find $ f_{r}({{\epsilon}}, s) $ for $ r = 1, 2, 3, ... $. Using these procedures, we replace the $ r^{th} $-truncated series Eq (4.4) for the $ r^{th} $-RAF Eq (4.6), applying $ \lim_{s\rightarrow \infty}(s^{r{p}+1}) $ and solving $ {A}_{{{\Omega}}}Res_{\eta, r}({{\epsilon}}, s)) = 0 $, for $ r = 1, 2, 3, \cdots $. Some terms that we obtain are given below:

    $ f1(ϵ,s)=105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)), $ (4.7)
    $ f2(ϵ,s)=10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213), $ (4.8)

    and so on.

    For $ r = 1, 2, 3, \cdots, $ replace $ f_{r}({{\epsilon}}, s) $ in Eq (4.4):

    $ η(ϵ,s)=105169sech4(ϵ2213)s2(105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)))/(sp+1)+(10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213))/(s2p+1)+. $ (4.9)

    Apply AIT to obtain:

    $ η(ϵ,Ω)=105169sech4(ϵ2213)Ωp(105594068813(17290sinh(ϵ2213)10029sinh(3(ϵ2)213)2015sinh(5(ϵ2)213)+104sinh(7(ϵ2)213))sech11(ϵ2213)))/(Γ(p+1))+Ω2p(10521718014715904(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+2020967026cosh(4(ϵ2)13)+68039374cosh(5(ϵ2)13)9200529cosh(6(ϵ2)13)+43264cosh(7(ϵ2)13)54264784626)sech18(ϵ2213))/(Γ(2p+1))+. $ (4.10)

    Table 1 presents the ARPSM solution comparison for different values of the parameter $ p $ for $ \Omega = 0.1 $, illustrating how the choice of $ p $ impacts the accuracy and behavior of the solutions. Figure 1 shows a comparison between the approximate solution obtained using ARPSM (a) and the exact solution (b) for Example 1, confirming the high accuracy of the ARPSM approach. Figure 2 visualizes the impact of varying fractional orders on the ARPSM solution for different $ p $ values $ (p = 0.32, 0.52, 0.72) $, showcasing how changes in the fractional order influence the solution structure. Figure 3 extends the comparison in two dimensions, offering a 2D view of the fractional order solutions using ARPSM for the same values of $ p $, further confirming the method's ability to capture the dynamics of fractional systems.

    Table 1.  ARPSM solution comparison for the values of p of Example 1 for $ \Omega = 0.1 $.
    $ \epsilon $ $ ARPSM_{p=0.52} $ $ ARPSM_{p=0.72} $ $ ARPSM_{p=1.00} $ $ Exact $ $ Error_{p=1.00} $
    1.0 0.597480 0.597823 0.597918 0.597923 4.746940$ \times 10^{-6} $
    1.1 0.601882 0.602193 0.602280 0.602284 4.296239$ \times 10^{-6} $
    1.2 0.605857 0.606136 0.606214 0.606217 3.837431$ \times 10^{-6} $
    1.3 0.609395 0.609642 0.609710 0.609713 3.371748$ \times 10^{-6} $
    1.4 0.612487 0.612700 0.612759 0.612762 2.900316$ \times 10^{-6} $
    1.5 0.615125 0.615304 0.615354 0.615356 2.424166$ \times 10^{-6} $
    1.6 0.617301 0.617446 0.617486 0.617488 1.944232$ \times 10^{-6} $
    1.7 0.619010 0.619121 0.619151 0.619152 1.461368$ \times 10^{-6} $
    1.8 0.620248 0.620324 0.620344 0.620345 9.763596$ \times 10^{-7} $
    1.9 0.621010 0.621051 0.621061 0.621062 4.899361$ \times 10^{-7} $
    2.0 0.621296 0.621301 0.621302 0.621302 2.792130$ \times 10^{-8} $

     | Show Table
    DownLoad: CSV
    Figure 1.  (a) ARPSM approximate solution, (b) exact solution.
    Figure 2.  Fractional order comparison using ARPSM for $ p = 0.32, 0.52, 0.72 $.
    Figure 3.  Fractional order 2D comparison using ARPSM for $ p = 0.32, 0.52, 0.72 $.

    Consider the Kawahara equation of fractional order:

    $ DpΩη(ϵ,Ω)=5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ,   where   0<p1, $ (4.11)

    with the initial condition:

    $ η(ϵ,0)=105169sech4(ϵ2213), $ (4.12)

    and exact solution

    $ η(ϵ,Ω)=105169sech4(36Ω169+ϵ2213). $

    Apply AT on both sides of Eq (4.11) to obtain:

    $ A[DpΩη(ϵ,Ω)]=1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]). $ (4.13)

    Apply AIT on Eq (4.13) to obtain:

    $ η(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ])]. $ (4.14)

    Utilize AT iteratively to get:

    $ η0(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k)]=A1[η(ϵ,0)s2]=105169sech4(ϵ2213). $

    Applying the Riemann-Liouville integral on Eq (4.11),

    $ η(ϵ,Ω)=105169sech4(ϵ2213)A[5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]. $ (4.15)

    Using the ATIM technique, we provide the following terms:

    $ η0(ϵ,Ω)=105169sech4(ϵ2213),η1(ϵ,Ω)=105297034413Γ(p+1)Ωp(11940cosh(ϵ213)+1911cosh(2(ϵ2)13)104cosh(3(ϵ2)13)2675)tanh(ϵ2213)sech10(ϵ2213),η2(ϵ,Ω)=105Ω2psech18(ϵ2213)620288218300934144((3513π4pΩpΓ(p+12)(13(9385221sinh(1213(ϵ2))+120132725sinh(11(ϵ2)213)910000sinh(15(ϵ2)213)+14144sinh(17(ϵ2)213))+581521261600sinh(ϵ2213)374464577051sinh(3(ϵ2)213)+130226023125sinh(5(ϵ2)213)12004154204sinh(7(ϵ2)213)7059672300sinh(9(ϵ2)213))sech7(ϵ2213))/(p2Γ(p)Γ(3p))+28561Γ(2p+1)(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+13(155459002cosh(4(ϵ2)13)+5233798cosh(5(ϵ2)13)707733cosh(6(ϵ2)13)+3328cosh(7(ϵ2)13)4174214202))). $ (4.16)

    The final solution that is obtained via ATIM is given as:

    $ η(ϵ,Ω)=η0(ϵ,Ω)+η1(ϵ,Ω)+η2(ϵ,Ω)+. $ (4.17)
    $ η(ϵ,Ω)=105169sech4(ϵ2213)+105297034413Γ(p+1)Ωp(11940cosh(ϵ213)+1911cosh(2(ϵ2)13)104cosh(3(ϵ2)13)2675)tanh(ϵ2213)sech10(ϵ2213)+105Ω2psech18(ϵ2213)620288218300934144((3513π4pΩpΓ(p+12)(13(9385221sinh(1213(ϵ2))+120132725sinh(11(ϵ2)213)910000sinh(15(ϵ2)213)+14144sinh(17(ϵ2)213))+581521261600sinh(ϵ2213)374464577051sinh(3(ϵ2)213)+130226023125sinh(5(ϵ2)213)12004154204sinh(7(ϵ2)213)7059672300sinh(9(ϵ2)213))sech7(ϵ2213))/(p2Γ(p)Γ(3p))+28561Γ(2p+1)(50957301372cosh(ϵ213)+12586770193cosh(2(ϵ2)13)12962735946cosh(3(ϵ2)13)+13(155459002cosh(4(ϵ2)13)+5233798cosh(5(ϵ2)13)707733cosh(6(ϵ2)13)+3328cosh(7(ϵ2)13)4174214202)))+. $ (4.18)

    Table 2 compares ATIM solutions for the same set of parameters, with similar trends observed as in ARPSM, demonstrating the robustness of both methods. Figure 4 juxtaposes the ATIM approximate solution (a) with the exact solution (b), verifying the precision of the ATIM method. Figure 5 compares the fractional order solutions using ATIM for $ (p = 0.32, 0.52, 0.72) $, and Figure 6 presents a 2D version of this comparison, highlighting the impact of the fractional order on the solution dynamics. Table 3 compares the absolute error for ARPSM and ATIM at $ \Omega = 0.1 $, demonstrating that both methods achieve highly accurate solutions with minimal error.

    Table 2.  ATIM solution comparison for the values of p of Example 1 for $ \Omega = 0.1 $.
    $ \epsilon $ $ ATIM_{p=0.52} $ $ ATIM_{p=0.72} $ $ ATIM_{p=1.00} $ $ Exact $ $ Error_{p=1.00} $
    1.0 0.597546 0.597850 0.597917 0.597923 6.195481$ \times 10^{-6} $
    1.1 0.601942 0.602218 0.602278 0.602284 5.609848$ \times 10^{-6} $
    1.2 0.605911 0.606158 0.606212 0.606217 5.012997$ \times 10^{-6} $
    1.3 0.609443 0.609661 0.609709 0.609713 4.406507$ \times 10^{-6} $
    1.4 0.612528 0.612717 0.612758 0.612762 3.791852$ \times 10^{-6} $
    1.5 0.615160 0.615318 0.615353 0.615356 3.170410$ \times 10^{-6} $
    1.6 0.617329 0.617458 0.617485 0.617488 2.543461$ \times 10^{-6} $
    1.7 0.619032 0.619130 0.619150 0.619152 1.912204$ \times 10^{-6} $
    1.8 0.620263 0.620329 0.620343 0.620345 1.277767$ \times 10^{-6} $
    1.9 0.621019 0.621054 0.621061 0.621062 6.412226$ \times 10^{-7} $
    2.0 0.621298 0.621302 0.621302 0.621302 3.606186$ \times 10^{-8} $

     | Show Table
    DownLoad: CSV
    Figure 4.  (a) ATIM approximate solution, (b) exact solution.
    Figure 5.  Fractional order comparison using ATIM for $ p = 0.32, 0.52, 0.72 $.
    Figure 6.  Fractional order 2D comparison using ATIM for $ p = 0.32, 0.52, 0.72 $.
    Table 3.  The comparison of absolute error of Example 1 for $ \Omega = 0.1 $.
    $ \epsilon $ $ ARPSM_{p=1} $ $ ATIM_{p=1} $ $ Exact $ $ Error_{ARPSM} $ $ Error_{ATIM} $
    1.0 0.597918 0.597917 0.597923 4.746940$ \times 10^{-6} $ 6.195481$ \times 10^{-6} $
    1.1 0.602280 0.602278 0.602284 4.296239$ \times 10^{-6} $ 5.609848$ \times 10^{-6} $
    1.2 0.606214 0.606212 0.606217 3.837431$ \times 10^{-6} $ 5.012997$ \times 10^{-6} $
    1.3 0.609710 0.609709 0.609713 3.371748$ \times 10^{-6} $ 4.406507$ \times 10^{-6} $
    1.4 0.612759 0.612758 0.612762 2.900316$ \times 10^{-6} $ 3.791852$ \times 10^{-6} $
    1.5 0.615354 0.615353 0.615356 2.424166$ \times 10^{-6} $ 3.170410$ \times 10^{-6} $
    1.6 0.617486 0.617485 0.617488 1.944232$ \times 10^{-6} $ 2.543461$ \times 10^{-6} $
    1.7 0.619151 0.619150 0.619152 1.461368$ \times 10^{-6} $ 1.912204$ \times 10^{-6} $
    1.8 0.620344 0.620343 0.620345 9.763596$ \times 10^{-7} $ 1.277767$ \times 10^{-6} $
    1.9 0.621061 0.621061 0.621062 4.899361$ \times 10^{-7} $ 6.412226$ \times 10^{-7} $
    2.0 0.621302 0.621302 0.621302 2.792130$ \times 10^{-8} $ 3.606186$ \times 10^{-8} $

     | Show Table
    DownLoad: CSV

    Examine the famous fifth-order KdV equations as follows:

    $ DpΩη(ϵ,Ω)+5η(ϵ,Ω)ϵ5η(ϵ,Ω)3η(ϵ,Ω)ϵ3+η(ϵ,Ω)η(ϵ,Ω)ϵ=0,   where   0<p1, $ (4.19)

    with the initial condition:

    $ η(ϵ,0)=eϵ, $ (4.20)

    and exact solution

    $ η(ϵ,Ω)=eϵΩ. $

    After applying AT to Eq (4.19), Eq (4.20) is used to obtain:

    $ η(ϵ,s)eϵs2+1sp[5η(ϵ,s)ϵ5]1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0. $ (4.21)

    Therefore, the $ k^{th} $-truncated term series is:

    $ η(ϵ,s)=eϵs2+kr=1fr(ϵ,s)srp+1,  r=1,2,3,4. $ (4.22)

    Following is the RAF:

    $ AΩRes(ϵ,s)=η(ϵ,s)eϵs2+1sp[5η(ϵ,s)ϵ5]1spAΩ[A1Ωη(ϵ,s)×3A1Ωη(ϵ,s)ϵ3]+1spAΩ[A1Ωη(ϵ,s)×A1Ωη(ϵ,s)ϵ]=0, $ (4.23)

    and the $ {k}^{th} $-RAFs is:

    $ AΩResk(ϵ,s)=ηk(ϵ,s)eϵs2+1sp[5ηk(ϵ,s)ϵ5]1spAΩ[A1Ωηk(ϵ,s)×3A1Ωηk(ϵ,s)ϵ3]+1spAΩ[A1Ωηk(ϵ,s)×A1Ωηk(ϵ,s)ϵ]=0. $ (4.24)

    It takes some calculation to find $ f_{r}({{\epsilon}}, s) $ for $ r = 1, 2, 3, ... $. Using these procedures, we replace the $ r^{th} $-truncated series Eq (4.22) for the $ r^{th} $-RAF Eq (4.24), applying $ \lim_{s\rightarrow \infty}(s^{r{p}+1}) $ and solving $ {A}_{{{\Omega}}}Res_{\eta, r}({{\epsilon}}, s)) = 0 $, for $ r = 1, 2, 3, \cdots $.

    $ f1(ϵ,s)=eϵ, $ (4.25)
    $ f2(ϵ,s)=eϵ, $ (4.26)
    $ f2(ϵ,s)=eϵ, $ (4.27)

    and so on.

    For $ r = 1, 2, 3, \cdots, $ replace $ f_{r}({{\epsilon}}, s) $ in Eq (4.22):

    $ η(ϵ,s)=eϵseϵsp+1+eϵs2p+1eϵs3p+1+. $ (4.28)

    Apply AIT to obtain:

    $ η(ϵ,Ω)=eϵeϵΩpΓ(p+1)+eϵΩ2pΓ(2p+1)eϵΩ4pΓ(3p+1)+. $ (4.29)

    Figure 7 explores the fractional order comparison using ARPSM for an extended range of $ p $ values $ (p = 0.33, 0.55, 0.77, 1.00) $, providing a more comprehensive analysis of how different orders affect the solution. Figure 8 offers 2D and 3D graphs for ARPSM solutions, further highlighting the changes in solution behavior as the fractional order varies.

    Figure 7.  Fractional order comparison using ARPSM for $ p = 0.33, 0.55, 0.77, 1.00 $.
    Figure 8.  2D and 3D graphs for comparing ARPSM solution for $ p = 0.33, 0.55, 0.77, 1.00 $.

    Examine the famous fifth-order KdV equations as follows:

    $ DpΩη(ϵ,Ω)=5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ,   where   0<p1, $ (4.30)

    with the initial condition:

    $ η(ϵ,0)=eϵ, $ (4.31)

    and exact solution

    $ η(ϵ,Ω)=eϵΩ. $

    Apply AT on either side of Eq (4.30) to obtain:

    $ A[DpΩη(ϵ,Ω)]=1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]). $ (4.32)

    Apply AIT on either side of Eq (4.32) to obtain:

    $ η(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k+A[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ])]. $ (4.33)

    Iteratively apply the AT to obtain:

    $ η0(ϵ,Ω)=A1[1sp(m1k=0η(k)(ϵ,0)s2p+k)]=A1[η(ϵ,0)s2]=eϵ. $

    Applying Riemann-Liouville integral on Eq (4.19),

    $ η(ϵ,Ω)=eϵA[5η(ϵ,Ω)ϵ5+η(ϵ,Ω)3η(ϵ,Ω)ϵ3η(ϵ,Ω)η(ϵ,Ω)ϵ]. $ (4.34)

    The use of the ATIM technique provides the following terms:

    $ η0(ϵ,Ω)=eϵ,η1(ϵ,Ω)=eϵΩpΓ(p+1),η2(ϵ,Ω)=eϵΩ2pΓ(2p+1),η3(ϵ,Ω)=eϵΩ3pΓ(3p+1). $ (4.35)

    The final solution that is obtained via ATIM is given as:

    $ η(ϵ,Ω)=η0(ϵ,Ω)+η1(ϵ,Ω)+η2(ϵ,Ω)+η3(ϵ,Ω)+. $ (4.36)
    $ η(ϵ,Ω)=eϵ(1ΩpΓ(p+1)+Ω2pΓ(2p+1)Ω4pΓ(3p+1)+). $ (4.37)

    Table 4 analyzes the effect of various fractional orders for ARPSM and ATIM, for Example 2, indicating the consistency and accuracy of both methods across different fractional orders. Figures 9 and 10 continue the analysis for ATIM, comparing fractional order solutions and offering 3D and 2D views further to elucidate the complex behavior of fractional wave systems as modeled by the Kawahara and KdV equations. These figures and tables collectively emphasize the efficacy of ARPSM and ATIM in providing accurate and insightful solutions for fractional nonlinear PDEs, especially in the context of nonlinear wave phenomena in applied mathematics and physics. The graphical representations and error comparisons showcase the reliability and precision of these methods in solving complex fractional models.

    Table 4.  Analysis of various fractional order of ARPSM and ATIM of Example 2 for $ \Omega = 0.1 $.
    $ \epsilon $ $ ARPSM\ ATIM $ $ ARPSM\ ATIM $ $ ARPSM\ ATIM $
    $ p=0.55 $ $ p=0.77 $ $ p=1.00 $ $ Exact $ $ Error_{p=1.0} $
    1.0 2.49168 2.63507 2.69123 2.69123 4.473861$ \times 10^{-7} $
    1.1 2.75373 2.91220 2.97427 2.97427 4.944381$ \times 10^{-7} $
    1.2 3.04335 3.21848 3.28708 3.28708 5.464386$ \times 10^{-7} $
    1.3 3.36342 3.55697 3.63279 3.63279 6.039081$ \times 10^{-7} $
    1.4 3.71715 3.93106 4.01485 4.01485 6.674217$ \times 10^{-7} $
    1.5 4.10809 4.34449 4.43710 4.43710 7.376150$ \times 10^{-7} $
    1.6 4.54014 4.80141 4.90375 4.90375 8.151907$ \times 10^{-7} $
    1.7 5.01763 5.30638 5.41948 5.41948 9.009250$ \times 10^{-7} $
    1.8 5.54534 5.86445 5.98945 5.98945 9.956761$ \times 10^{-7} $
    1.9 6.12855 6.48122 6.61937 6.61937 1.100392$ \times 10^{-6} $
    2.0 6.77309 7.16286 7.31553 7.31553 1.216121$ \times 10^{-6} $

     | Show Table
    DownLoad: CSV
    Figure 9.  Fractional order comparison using ATIM for $ p = 0.33, 0.55, 0.77, 1.00 $.
    Figure 10.  Fractional order 3D and 2D comparison using ATIM for $ p = 0.33, 0.55, 0.77, 1.00 $.

    The study utilizes advanced analytical methods, precisely the ARPSM and the ATIM, to investigate the fractional Kawahara and fifth-order KdV equations. The discussion of figures and tables highlights the effectiveness of these methods in providing accurate approximate solutions, comparing their results with exact solutions, and examining the effects of fractional orders on the solutions.

    In conclusion, our analytical investigation into the fractional Kawahara equation and fifth-order KdV equations employing the ARPSM and ATIM has yielded significant insights and advancements in understanding nonlinear wave phenomena. Through rigorous analysis and computational simulations, we have demonstrated the effectiveness of these advanced analytical techniques in providing accurate and insightful solutions to these complex equations governed by fractional calculus under the Caputo operator framework. Our findings contribute to the theoretical understanding of nonlinear wave dynamics and offer practical analytical tools for addressing complex mathematical models in various scientific and engineering domains. Further research in this direction holds promise for exploring additional applications of the Aboodh methods and advancing our understanding of nonlinear wave phenomena in diverse real-world contexts. Future research can extend the ARPSM and ATIM methods to more complex nonlinear fractional PDEs, including those with higher-order fractional operators. Exploring their application to multidimensional systems could provide deeper insights into wave propagation in fields like quantum field theory. Investigating computational efficiency and convergence across different fractional orders may optimize these techniques for broader use. Applying these methods to real-world engineering problems could further validate their utility in practical settings.

    Conceptualization, M.Y.A.; Data curation, H.A.; Formal analysis, M.Y.A; Resources, H.A.; Investigation, M.Y.A.; Project administration, M.Y.A.; Validation, H.A.; Software, H.A.; Validation, M.Y.A.; Visualization, M.Y.A.; Validation, H.A.; Visualization, M.Y.A.; Resources, H.A.; Project administration, H.A.; Writing-review & editing, H.A.; Funding, M.Y.A. All authors have read and agreed to the published version of the manuscript.

    The authors gratefully acknowledge the funding of the Deanship of Graduate Studies and Scientific Research, Jazan University, Saudi Arabia, through project number: RG24-L02.

    The authors declare that they have no conflicts of interest.

    [1] Margis R, Rieder CR (2011) Identification of blood microRNAs associated to Parkinsonis disease. J biotechnol 152: 96-101. doi: 10.1016/j.jbiotec.2011.01.023
    [2] Martins M, Rosa A, Guedes LC, et al. (2011) Convergence of miRNA expression profiling, alpha-synuclein interacton and GWAS in Parkinson's disease. PloS one 6: e25443. doi: 10.1371/journal.pone.0025443
    [3] Khoo SK, Petillo D, Kang UJ, et al. (2012) Plasma-based circulating microRNA biomarkers for Parkinson's disease. J Parkinson Dis 2: 321-331.
    [4] Cardo LF, Coto E, de Mena L, et al. (2013) Profile of microRNAs in the plasma of Parkinson's disease patients and healthy controls. J Neurol 260: 1420-1422. doi: 10.1007/s00415-013-6900-8
    [5] Soreq L, Salomonis N, Bronstein M, et al. (2013) Small RNA sequencing-microarray analyses in Parkinson leukocytes reveal deep brain stimulation-induced splicing changes that classify brain region transcriptomes. Front Mol Neurosci 6: 10.
    [6] Vallelunga A, Ragusa M, Di Mauro S, et al. (2014) Identification of circulating microRNAs for the differential diagnosis of Parkinson's disease and Multiple System Atrophy. Front Cell Neurosci8: 156.
    [7] Botta-Orfila T, Morato X, Compta Y, et al. (2014) Identification of blood serum micro-RNAs associated with idiopathic and LRRK2 Parkinson's disease. J Neurosci Res 92: 1071-1077. doi: 10.1002/jnr.23377
    [8] Burgos K, Malenica I, Metpally R, et al. (2014) Profiles of extracellular miRNA in cerebrospinal fluid and serum from patients with Alzheimer's and Parkinson's diseases correlate with disease status and features of pathology. PLoS One 9: e94839. doi: 10.1371/journal.pone.0094839
    [9] Khoo SK, Neuman LA, Forsgren L, et al. (2013) Could miRNA expression changes be a reliable clinical biomarker for Parkinson's disease? Neurodegener Dis Manag 3: 455-465. doi: 10.2217/nmt.13.53
    [10] Kroh EM, Parkin RK, Mitchell PS, et al. (2010) Analysis of circulating microRNA biomarkers in plasma and serum using quantitative reverse transcription-PCR (qRT-PCR). Methods 50: 298-301. doi: 10.1016/j.ymeth.2010.01.032
    [11] Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25: 402-408. doi: 10.1006/meth.2001.1262
    [12] Warnock DG, Peck CC (2010) A roadmap for biomarker qualification. Nat Biotechnol 28:444-445. doi: 10.1038/nbt0510-444
    [13] Tan AC, Naiman DQ, Xu L, et al. (2005) Simple decision rules for classifying human cancers from gene expression profiles. Bioinformatics 21: 3896-3904. doi: 10.1093/bioinformatics/bti631
    [14] Paulovich AG, Whiteaker JR, Hoofnagle AN, et al. (2008) The interface between biomarker discovery and clinical validation: The tar pit of the protein biomarker pipeline. Proteomics Clin Appl 2: 1386-1402. doi: 10.1002/prca.200780174
  • This article has been cited by:

    1. Aljawhara H. Almuqrin, Sherif M. E. Ismaeel, C. G. L. Tiofack, A. Mohamadou, Badriah Albarzan, Weaam Alhejaili, Samir A. El-Tantawy, Solving fractional physical evolutionary wave equations using advanced techniques, 2025, 2037-4631, 10.1007/s12210-025-01320-w
    2. Samir A. El-Tantawy, Sahibzada I. H. Bacha, Muhammad Khalid, Weaam Alhejaili, Application of the Tantawy Technique for Modeling Fractional Ion-Acoustic Waves in Electronegative Plasmas having Cairns Distributed-Electrons, Part (I): Fractional KdV Solitary Waves, 2025, 55, 0103-9733, 10.1007/s13538-025-01741-w
  • Reader Comments
  • © 2015 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(6710) PDF downloads(1101) Cited by(5)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog