Short-term wind speed forecasting is essential for enhancing the efficiency and dependability of wind renewable energy installations. Although often used, conventional point predictions generated by machine learning techniques frequently fail to accurately capture the natural uncertainty associated with wind speed variation. Modeling this type of uncertainty is crucial for providing credible information as the level of uncertainty increases. Prediction intervals (PIs) offer a probabilistic framework for quantifying forecast uncertainty. This paper presents a hybrid forecasting methodology that combines support vector regression (SVR) with adaptive kernel density estimation (AKDE) to estimate wind speed prediction intervals over various short-term horizons (10, 30, 60, and 120 minutes). In contrast to standard kernel density estimation (KDE), which employs a uniform bandwidth and may overlook local data attributes, the adaptive KDE approach adjusts the bandwidth in accordance with the local distribution of forecast errors, thereby facilitating more precise and locally tuned uncertainty quantification. The efficacy of the proposed SVR-AKDE model is evaluated against conventional KDE-based interval estimation. Outcomes are assessed by recognized PI quality indicators, including prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width-based criterion (CWC). Simulation findings confirm the efficacy of our approach and demonstrate that the SVR-AKDE-based PI forecasting consistently provides enhanced coverage and narrower widths compared to traditional KDE. This approach provides a comprehensive solution for short-term wind speed forecasting with quantifiable uncertainty, therefore enhancing its application in operational wind energy control.
Citation: Rami Al-Hajj. Probabilistic machine learning-based forecasting of wind speed uncertainty using adaptive kernel density estimation[J]. Mathematical Biosciences and Engineering, 2025, 22(9): 2269-2299. doi: 10.3934/mbe.2025083
Short-term wind speed forecasting is essential for enhancing the efficiency and dependability of wind renewable energy installations. Although often used, conventional point predictions generated by machine learning techniques frequently fail to accurately capture the natural uncertainty associated with wind speed variation. Modeling this type of uncertainty is crucial for providing credible information as the level of uncertainty increases. Prediction intervals (PIs) offer a probabilistic framework for quantifying forecast uncertainty. This paper presents a hybrid forecasting methodology that combines support vector regression (SVR) with adaptive kernel density estimation (AKDE) to estimate wind speed prediction intervals over various short-term horizons (10, 30, 60, and 120 minutes). In contrast to standard kernel density estimation (KDE), which employs a uniform bandwidth and may overlook local data attributes, the adaptive KDE approach adjusts the bandwidth in accordance with the local distribution of forecast errors, thereby facilitating more precise and locally tuned uncertainty quantification. The efficacy of the proposed SVR-AKDE model is evaluated against conventional KDE-based interval estimation. Outcomes are assessed by recognized PI quality indicators, including prediction interval coverage probability (PICP), prediction interval normalized average width (PINAW), and coverage width-based criterion (CWC). Simulation findings confirm the efficacy of our approach and demonstrate that the SVR-AKDE-based PI forecasting consistently provides enhanced coverage and narrower widths compared to traditional KDE. This approach provides a comprehensive solution for short-term wind speed forecasting with quantifiable uncertainty, therefore enhancing its application in operational wind energy control.
| [1] |
S. Roga, S. Bardhan, Y. Kumar, S. K. Dubey, Recent technology and challenges of wind energy generation: A review, Sustainable Energy Technol. Assess., 52 (2022), 102239.https://doi.org/10.1016/j.seta.2022.102239 doi: 10.1016/j.seta.2022.102239
|
| [2] | T. M. Dinku, M. S. Manshahia, K. S. Chahal, Soft computing techniques for maximum power point tracking in wind energy harvesting system: A survey, Artif. Intell. Renewable Energy Climate Change, (2022), 137–170.https://doi.org/10.1002/9781119771524.ch6 |
| [3] |
Y. Zhuo, L. Li, J. Tang, W. Meng, Z. Huang, K. Huang, et al., Optimal real-time power dispatch of power grid with wind energy forecasting under extreme weather, Math. Biosci. Eng., 20 (2023), 14353–14376.https://doi.org/10.3934/mbe.2023642 doi: 10.3934/mbe.2023642
|
| [4] |
E. Zio, R. B. Patil, T. Kara, A. Duransahin, D. Duransahin, Implications of climate change Change on Wind Energy Potential, Sustainability, 15 (2023), 14822.https://doi.org/10.3390/SU152014822F doi: 10.3390/SU152014822F
|
| [5] | S. M. R. H Shawon, M. A. Saaklayen, X. Liang, Wind speed forecasting by conventional statistical methods and machine learning techniques, in 2021 IEEE Electrical Power and Energy Conference (EPEC), (2021), 304–309.https://doi.org/10.1109/EPEC52095.2021.9621686 |
| [6] |
L. Peng, S. X. Lv, L. Wang, Explainable machine learning techniques based on attention gate recurrent unit and local interpretable model‐agnostic explanations for multivariate wind speed forecasting, J. Forecast., 43 (2024), 064–2087.https://doi.org/10.1002/for.3097 doi: 10.1002/for.3097
|
| [7] | Y. Yang, H. Lou, J. Wu, S. Zhang, S. Gao, A survey on wind power forecasting with machine learning approaches, Neural Comput. Appl., (2024), 1–21.https://doi.org/10.1007/s00521-024-09923-4 |
| [8] | Y. Yang, Y. Gao, Z. Wang, X. Li, H. Zhou, J. Wu, Multiscale-integrated deep learning approaches for short-term load forecasting, Int. J. Mach. Learn. Cybern., 15 (2024), 6061–6076. |
| [9] |
J. A. Carta, P. Ramrez, S. Velzquez, A review of wind speed probability distributions used in wind energy analysis: Case studies in the Canary Islands, Renewable Sustainable Energy Rev., 13 (2009), 933–955.https://doi.org/10.1016/j.rser.2008.05.005 doi: 10.1016/j.rser.2008.05.005
|
| [10] |
Y. L. Chen, X. Hu, L. X. Zhang, A review of ultra-short-term forecasting of wind power based on data decomposition-forecasting technology combination model, Energy Rep., 8 (2022), 14200–14219.https://doi.org/10.1016/j.egyr.2022.10.342 doi: 10.1016/j.egyr.2022.10.342
|
| [11] | R. A. Hajj, M. M. Fouad, A. Assi, E. Mabrouk, Ultra-short-term forecasting of wind speed using lightweight features and machine learning models, in 2023 12th International Conference on Renewable Energy Research and Applications (ICRERA), (2023), 93–97.https://doi.org/10.1109/ICRERA59003.2023.10269374 |
| [12] |
Z. Wang, Y. Ying, L. Kou, W. Ke, J. Wan, Z. Yu, et al., Ultra-short-term offshore wind power prediction based on PCA-SSA-VMD and BiLSTM, Sensors, 24 (2024), 444.https://doi.org/10.3390/s24020444 doi: 10.3390/s24020444
|
| [13] |
J. Naik, R. Bisoi, P. K. Dash, Prediction interval forecasting of wind speed and wind power using modes decomposition based low rank multi-kernel ridge regression, Renewable Energy, 129 (2018), 357–383.https://doi.org/10.1016/j.renene.2018.05.031 doi: 10.1016/j.renene.2018.05.031
|
| [14] |
R. Li, Y. Jin, A wind speed interval prediction system based on multi-objective optimization for machine learning method, Appl. Energy, 228 (2018), 2207–2220.https://doi.org/10.1016/j.apenergy.2018.07.032 doi: 10.1016/j.apenergy.2018.07.032
|
| [15] |
W. Ding, F. Meng, Point and interval forecasting for wind speed based on linear component extraction, Appl. Soft Comput., 93 (2020), 106350.https://doi.org/10.1016/j.asoc.2020.106350 doi: 10.1016/j.asoc.2020.106350
|
| [16] |
H. Huang, Y. Hong, H. Wang, Probabilistic prediction intervals of wind speed based on explainable neural network, Front. Energy Res., 10 (2022), 934935.https://doi.org/10.3389/fenrg.2022.934935 doi: 10.3389/fenrg.2022.934935
|
| [17] |
J. Zhang, C. Draxl, T. Hopson, L. Delle Monache, E. Vanvyve, B. M. Hodge, Comparison of numerical weather prediction based deterministic and probabilistic wind resource assessment methods, Appl. Energy, 156 (2015), 528–541.https://doi.org/10.1016/j.apenergy.2015.07.059 doi: 10.1016/j.apenergy.2015.07.059
|
| [18] |
G. Hou, J. Wang, Y. Fan, J. Zhang, C. Huang, A novel wind power deterministic and interval prediction framework based on the critic weight method, improved northern goshawk optimization, and kernel density estimation, Renewable Energy, 226 (2024), 120360.https://doi.org/10.1016/j.renene.2024.120360 doi: 10.1016/j.renene.2024.120360
|
| [19] |
W. Yang, M. Hao, Y. Hao, Innovative ensemble system based on mixed frequency modeling for wind speed point and interval forecasting, Inf. Sci., 622 (2023), 560–586.https://doi.org/10.1016/j.ins.2022.11.145 doi: 10.1016/j.ins.2022.11.145
|
| [20] |
Z. Tian, J. Wang, A novel wind speed interval prediction system based on neural network and multi‐objective grasshopper optimization, Int. Trans. Electr. Energy Syst., 1 (2022), 5823656.https://doi.org/10.1155/2022/5823656 doi: 10.1155/2022/5823656
|
| [21] |
X. Wang, J. Wang, X. Niu, C. Wu, Novel wind-speed prediction system based on dimensionality reduction and nonlinear weighting strategy for point-interval prediction, Expert Syst. Appl., 241 (2024), 122477.https://doi.org/10.1016/j.eswa.2023.122477 doi: 10.1016/j.eswa.2023.122477
|
| [22] |
Y. Zhang, Y. Zhao, X. Shen, J. Zhang, A comprehensive wind speed prediction system based on Monte Carlo and artificial intelligence algorithms, Appl. Energy, 305 (2022), 117815.https://doi.org/10.1016/j.apenergy.2021.117815 doi: 10.1016/j.apenergy.2021.117815
|
| [23] |
J. Wang, S. Wang, B. Zeng, H. Lu, A novel ensemble probabilistic forecasting system for uncertainty in wind speed, Appl. Energy, 313 (2022), 118796.https://doi.org/10.1016/j.apenergy.2022.118796 doi: 10.1016/j.apenergy.2022.118796
|
| [24] | Q. Zhu, Y. Xu, Q. Lin, Z. Ming, K. C. Tan, Clustering-based short-term wind speed interval prediction with multi-objective ensemble learning, IEEE Trans. Emerging Top. Comput. Intell., 2024.https://doi.org/10.1109/TETCI.2024.3400852 |
| [25] |
P. Sun, Z. Liu, J. Wang, W. Zhao, Interval forecasting for wind speed using a combination model based on multi-objective artificial hummingbird algorithm, Appl. Soft Comput., 150 (2024), 111090.https://doi.org/10.1016/j.asoc.2023.111090 doi: 10.1016/j.asoc.2023.111090
|
| [26] |
G. Tang, Y. Wu, C. Li, P. K. Wong, Z. Xiao, X. An, A novel wind speed interval prediction based on error prediction method, IEEE Trans. Ind. Inf., 16 (2020), 6806–6815.https://doi.org/10.1109/TII.2020.2973413 doi: 10.1109/TII.2020.2973413
|
| [27] |
A. Saeed, C. Li, M. Danish, S. Rubaiee, G. Tang, Z. Gan, et al., Hybrid bidirectional LSTM model for short-term wind speed interval prediction, IEEE Access, 8 (2020), 182283–182294.https://doi.org/10.1109/ACCESS.2020.3027977 doi: 10.1109/ACCESS.2020.3027977
|
| [28] |
Y. Zhang, G. Pan, Y. Zhao, Q. Li, F. Wang, Short-term wind speed interval prediction based on artificial intelligence methods and error probability distribution, Energy Convers. Manage., 224 (2020), 113346.https://doi.org/10.1016/j.enconman.2020.113346 doi: 10.1016/j.enconman.2020.113346
|
| [29] |
J. Wang, S. Wang, Z. Li, Wind speed deterministic forecasting and probabilistic interval forecasting approach based on deep learning, modified tunicate swarm algorithm, and quantile regression, Renewable Energy, 179 (2021), 1246–1261.https://doi.org/10.1016/j.renene.2021.07.113 doi: 10.1016/j.renene.2021.07.113
|
| [30] |
Z. Gan, C. Li, J. Zhou, G. Tang, Temporal convolutional networks interval prediction model for wind speed forecasting, Electr. Power Syst. Res., 191 (2021), 106865.https://doi.org/10.1016/j.epsr.2020.106865 doi: 10.1016/j.epsr.2020.106865
|
| [31] |
C. Li, G. Tang, X. Xue, X. Chen, R. Wang, C. Zhang, The short-term interval prediction of wind power using the deep learning model with gradient descend optimization, Renewable Energy, 155 (2020), 197–211.https://doi.org/10.1016/j.renene.2020.03.098 doi: 10.1016/j.renene.2020.03.098
|
| [32] | Z. Cui, T. Li, Z. Ding, X. A. Li, J. Wu, Probabilistic oil price forecasting with a variational mode decomposition-gated recurrent unit model incorporating pinball loss, Data Sci. Manage., 2024.https://doi.org/10.1016/j.dsm.2024.10.003 |
| [33] | Y. Yang, Y. Gao, H. Zhou, J. Wu, S. Gao, Y. G. Wang, Multi-Granularity Autoformer for long-term deterministic and probabilistic power load forecasting, Neural Networks, (2025), 107493.https://doi.org/10.1016/j.neunet.2025.107493 |
| [34] | S. Liu, J. Deng, J. Yuan, W. Li, X. A. Li, J. Xu, et al., Wang, Probabilistic quantile multiple fourrier feature network for lake temperature forecasting: incorporating pinball loss for uncertainty estimation, Earth Sci. Inf., (2024), 1–14.https://doi.org/10.1007/s12145-024-01448-7 |
| [35] | S. Althoff, J. H. Szabadvary, J. Anderson, L. Carlsson, Evaluation of conformal-based probabilistic forecasting methods for short-term wind speed forecasting, in Proceedings of the Twelfth Symposium on Conformal and Probabilistic Prediction with Applications, (2023), 100–115. |
| [36] |
L. de Azevedo Takara, A. Teixeira, H. Yazdanpanah, V. C. Mariani, L. dos Santos Coelho, Optimizing multi-step wind power forecasting: Integrating advanced deep neural networks with stacking-based probabilistic learning, Appl. Energy, 369 (2024), 123487.https://doi.org/10.1016/j.apenergy.2024.123487 doi: 10.1016/j.apenergy.2024.123487
|
| [37] | B. W. Silverman, Density estimation: for statistics and data analysis, in Density Estimation: For Statistics and Data, (2018), 1–175.https://doi.org/10.1201/9781315140919 |
| [38] |
J. Zhang, S. Chowdhury, A. Messac, L. Castillo, A multivariate and multimodal wind distribution model, Renewable Energy, 51 (2013), 436–447.https://doi.org/10.1016/j.renene.2012.09.026 doi: 10.1016/j.renene.2012.09.026
|
| [39] | A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects, Cham, Switzerland: Springer International Publishing, 37 (2018).https://doi.org/10.1007/978-3-319-71688-6 |
| [40] |
W. Ding, F. Meng, Point and interval forecasting for wind speed based on linear component extraction, Appl. Soft Comput., 93 (2020), 106350.https://doi.org/10.1016/j.asoc.2020.106350 doi: 10.1016/j.asoc.2020.106350
|
| [41] | M. Awad, R. Khanna, M. Awad, R. Khanna, Support vector regression, in Efficient Learning Machines, Springer, (2015), 67–80.https://doi.org/10.1007/978-1-4302-5990-9_4 |
| [42] |
B. Kumar, O. P. Vyas, R. A. Vyas, Comprehensive review on the variants of support vector machines, Modern Phys. Lett. B, 33 (2019), 1950303.https://doi.org/10.1142/S0217984919503032 doi: 10.1142/S0217984919503032
|
| [43] |
J. Wu, Y. G. Wang, H. Zhang, Augmented support vector regression with an autoregressive process via an iterative procedure, Appl. Soft Comput., 158 (2024), 111549.https://doi.org/10.1016/j.asoc.2024.111549 doi: 10.1016/j.asoc.2024.111549
|
| [44] |
Y. C. Chen, A tutorial on kernel density estimation and recent advances, Biostat. Epidemiol., 1 (2017), 161–187.https://doi.org/10.1080/24709360.2017.1396742 doi: 10.1080/24709360.2017.1396742
|
| [45] | S. Węglarczyk, Kernel density estimation and its application, in ITM Web of Conferences, 23 (2018), 00037.https://doi.org/10.1051/itmconf/20182300037 |
| [46] | S. J. Sheather, Density estimation, Stat. Sci., 19 (2004), 588–597. |
| [47] |
M. C. Jones, J. S. Marron, S. J. Sheather, A brief survey of bandwidth selection for density estimation, J. Am. Stat. Assoc., 91 (1996), 401–407.https://doi.org/10.1080/01621459.1996.10476701 doi: 10.1080/01621459.1996.10476701
|
| [48] | M. Rudemo, Empirical choice of histograms and kernel density estimators, Scand. J. Stat, 9 (1982), 65–78. |
| [49] | Y. Jin, Y. He, D. Huang, An improved variable kernel density estimator based on L2 regularization, Mathematics, 9 (2021).https://doi.org/10.3390/math9162004 |
| [50] |
Y. Ziane, S. Adjabi, N. Zougab, Adaptive Bayesian bandwidth selection in asymmetric kernel density estimation for nonnegative heavy-tailed data, J. Appl. Stat., 42 (2015), 1645–1658. http://doi.org/10.1080/02664763.2015.1004626 doi: 10.1080/02664763.2015.1004626
|
| [51] |
H. Wang, Z. Lei, X. Zhang, B. Zhou, J. Peng, A review of deep learning for renewable energy forecasting, Energy Convers. Manage., 198 (2019), 111799.https://doi.org/10.1016/j.enconman.2019.111799 doi: 10.1016/j.enconman.2019.111799
|
| [52] | T. T. Chau, T. T. H. Nguyen, L. Nguyen, T. D. Do, Wind speed probability distribution based on adaptive bandwidth kernel density estimation model for wind farm application, Wind Energy, 28 (2025), e2970. http://doi.org/10.1002.we.2970 |
| [53] | I. S. Abramson, On bandwidth variation in kernel estimates-a square root law, Ann. Stat., 10 (1982), 1217–1223. |
| [54] |
R. Al-Hajj, G. Oskrochi, M. M. Fouad, A. Assi, Probabilistic prediction intervals of short-term wind speed using selected features and time shift dependent machine learning models, Math. Biosci. Eng., 22 (2025), 23–51. http://doi.org/10.3934/mbe.2025002 doi: 10.3934/mbe.2025002
|
| [55] | F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, et al., Scikit-learn: machine learning in Python, J. Mach. Learn. Res., 12 (2011), 2825–2830. |