Research article Special Issues

Glucose trend prediction model based on improved wavelet transform and gated recurrent unit


  • Received: 30 May 2023 Revised: 07 August 2023 Accepted: 14 August 2023 Published: 29 August 2023
  • Glucose trend prediction based on continuous glucose monitoring (CGM) data is a crucial step in the implementation of an artificial pancreas (AP). A glucose trend prediction model with high accuracy in real-time can greatly improve the glycemic control effect of the artificial pancreas and effectively prevent the occurrence of hyperglycemia and hypoglycemia. In this paper, we propose an improved wavelet transform threshold denoising algorithm for the non-linearity and non-smoothness of the original CGM data. By quantitatively comparing the mean square error (MSE) and signal-to-noise ratio (SNR) before and after the improvement, we prove that the improved wavelet transform threshold denoising algorithm can reduce the degree of distortion after the smoothing of CGM data and improve the extraction effect of CGM data features at the same time. Based on this finding, we propose a glucose trend prediction model (IWT-GRU) based on the improved wavelet transform threshold denoising algorithm and gated recurrent unit. We compared the root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination ($ {\mathrm{R}}^{2} $) of Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Support vector regression (SVR), Gated Recurrent Unit (GRU) and IWT-GRU on the original CGM monitoring data of 80 patients for 7 consecutive days with different prediction horizon (PH). The results showed that the IWT-GRU model outperformed the other four models. At PH = 45 min, the RMSE was 0.5537 mmol/L, MAPE was 2.2147%, $ {\mathrm{R}}^{2} $ was 0.989 and the average runtime was only 37.2 seconds. Finally, we analyze the limitations of this study and provide an outlook on the future direction of blood glucose trend prediction.

    Citation: Tao Yang, Qicheng Yang, Yibo Zhou, Chuanbiao Wen. Glucose trend prediction model based on improved wavelet transform and gated recurrent unit[J]. Mathematical Biosciences and Engineering, 2023, 20(9): 17037-17056. doi: 10.3934/mbe.2023760

    Related Papers:

  • Glucose trend prediction based on continuous glucose monitoring (CGM) data is a crucial step in the implementation of an artificial pancreas (AP). A glucose trend prediction model with high accuracy in real-time can greatly improve the glycemic control effect of the artificial pancreas and effectively prevent the occurrence of hyperglycemia and hypoglycemia. In this paper, we propose an improved wavelet transform threshold denoising algorithm for the non-linearity and non-smoothness of the original CGM data. By quantitatively comparing the mean square error (MSE) and signal-to-noise ratio (SNR) before and after the improvement, we prove that the improved wavelet transform threshold denoising algorithm can reduce the degree of distortion after the smoothing of CGM data and improve the extraction effect of CGM data features at the same time. Based on this finding, we propose a glucose trend prediction model (IWT-GRU) based on the improved wavelet transform threshold denoising algorithm and gated recurrent unit. We compared the root mean square error (RMSE), mean absolute percentage error (MAPE), and coefficient of determination ($ {\mathrm{R}}^{2} $) of Recurrent Neural Networks (RNN), Long Short-Term Memory (LSTM), Support vector regression (SVR), Gated Recurrent Unit (GRU) and IWT-GRU on the original CGM monitoring data of 80 patients for 7 consecutive days with different prediction horizon (PH). The results showed that the IWT-GRU model outperformed the other four models. At PH = 45 min, the RMSE was 0.5537 mmol/L, MAPE was 2.2147%, $ {\mathrm{R}}^{2} $ was 0.989 and the average runtime was only 37.2 seconds. Finally, we analyze the limitations of this study and provide an outlook on the future direction of blood glucose trend prediction.



    加载中


    [1] T. T. Zhou, The Discovery and Mechanism of Anti-T2DM Lead Structure Based on Pancreatic β Cell Function Improvement/Liver Gluconeogenic Inhibition Strategy (in Chinese), Ph.D thesis, University of Chinese Academy of Sciences (Shanghai Institute of Materia Medica, CAS), 2017. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName = 1017820618.nh & DbName = CDFD2018.
    [2] R. Williams, S. Karuranga, B. Malanda, P. Saeedi, A. Basit, S. Besancon, et al., Global and regional estimates and projections of diabetes-related health expenditure: Results from the International Diabetes Federation Diabetes Atlas, 9th edition, Diabetes Res. Clin. Pract., 162 (2020), 108072. https://doi.org/10.1016/j.diabres.2020.108072 doi: 10.1016/j.diabres.2020.108072
    [3] M. Khan, M. J. Hashim, J. K. King, R. D. Govender, H. Mustafa, J. Al Kaabi, Epidemiology of type 2 diabetes - global burden of disease and forecasted trends, J. Epidemiol. Global Health, 10 (2020), 107-111. https://doi.org/10.2991/jegh.k.191028.001 doi: 10.2991/jegh.k.191028.001
    [4] N. H. Cho, J. E. Shaw, S. Karuranga, Y. Huang, R. F. J. Da, A. W. Ohlrogge, et al., IDF diabetes atlas: global estimates of diabetes prevalence for 2017 and projections for 2045, Diabetes Res. Clin. Pract., 138 (2018), 271-281. https://doi.org/10.1016/j.diabres.2018.02.023 doi: 10.1016/j.diabres.2018.02.023
    [5] Z. Luo, G. Fabre, V. G. Rodwin, Meeting the challenge of diabetes in China, Int. J. Health Policy Manage., 9 (2020), 47-52. https://doi.org/10.15171/ijhpm.2019.80 doi: 10.15171/ijhpm.2019.80
    [6] N. A. Elsayed, G. Aleppo, V. R. Aroda, R. R. Bannuru, F. M. Brown, D. Bruemmer, et al., 2. classification and diagnosis of diabetes: standards of care in diabetes-2023, Diabetes Care, 46 (2023), S19-S40. https://doi.org/10.2337/dc23-S002 doi: 10.2337/dc23-S002
    [7] H. Sun, P. Saeedi, S. Karuranga, M. Pinkepank, K. Ogurtsova, B. B. Duncan, et al., IDF Diabetes Atlas: global, regional and country-level diabetes prevalence estimates for 2021 and projections for 2045, Diabetes Res. Clin. Pract., 183 (2022), 109119. https://doi.org/10.1016/j.diabres.2021.109119 doi: 10.1016/j.diabres.2021.109119
    [8] J. Osorio, Severe hypoglycemia associated with risk of vascular events and death, Nat. Rev. Cardiol., 7 (2010), 666. https://doi.org/10.1038/nrcardio.2010.176 doi: 10.1038/nrcardio.2010.176
    [9] S. J. Dicken, R. L. Batterham, The role of diet quality in mediating the association between ultra-processed food intake, obesity and health-related outcomes: a review of prospective cohort studies, Nutrients, 14 (2021). https://doi.org/10.3390/nu14010023
    [10] A. Consoli, G. Formoso, Patient perceptions of insulin therapy in diabetes self-management with insulin injection devices, Acta Diabetol., 60 (2023), 705-710. https://doi.org/10.1007/s00592-023-02054-7 doi: 10.1007/s00592-023-02054-7
    [11] S. Reddy, C. C. Wu, A. Jose, J. L. Hsieh, S. D. Rautela, Personalized virtual care using continuous glucose monitoring in adults with type 2 diabetes treated with less intensive therapies, Clin. Diabetes, 41 (2023), 452-457. https://doi.org/10.2337/cd22-0128 doi: 10.2337/cd22-0128
    [12] A. T. Reenberg, T. K. S. Ritschel, B. Dammann, J. B. Jørgensen, High-performance uncertainty quantification in large-scale virtual clinical trials of closed-loop diabetes treatment, in 2022 American Control Conference (ACC), (2022), 1367-1372. https://doi.org/10.23919/ACC53348.2022.9867234
    [13] J. Huang, A. M. Yeung, A. Y. Dubord, H. Wolpert, P. G. Jacobs, W. A. Lee, et al., Diabetes technology meeting 2022, J. Diabetes Sci. Technol., 17 (2023), 550757959. https://doi.org/10.1177/19322968221148743 doi: 10.1177/19322968221148743
    [14] D. L. Rodriguez-Sarmiento, F. Leon-Vargas, M. Garcia-Jaramillo, Artificial pancreas systems: experiences from concept to commercialisation, Expert Rev. Med. Devices, 19 (2022), 877-894. https://doi.org/10.1080/17434440.2022.2150546 doi: 10.1080/17434440.2022.2150546
    [15] S. L. Kang, Y. N. Hwang, J. Y. Kwon, S. M. Kim, Effectiveness and safety of a model predictive control (MPC) algorithm for an artificial pancreas system in outpatients with type 1 diabetes (T1D): systematic review and meta-analysis, Diabetol. Metab. Syndr., 14 (2022), 187. https://doi.org/10.1186/s13098-022-00962-2 doi: 10.1186/s13098-022-00962-2
    [16] L. N. Zhang, T. Y. Li, L. X. Guo, Q. Pan, Clinical progress and future prospect of continuous glucose monitoring (in Chinese), Chin. J. Clin. Healthcare, 25 (2022), 303-309. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName = LZBJ202203003 & DbName = CJFQ2022.
    [17] J. P. Anderson, J. R. Parikh, D. K. Shenfeld, V. Ivanov, C. Marks, B. W. Church, et al., Reverse engineering and evaluation of prediction models for progression to type 2 diabetes: an application of machine learning using electronic health records, J. Diabetes Sci. Technol., 10 (2015), 6-18. https://doi.org/10.1177/1932296815620200 doi: 10.1177/1932296815620200
    [18] K. Saiti, M. Macas, L. Lhotska, K. Stechova, P. Pithova, Ensemble methods in combination with compartment models for blood glucose level prediction in type 1 diabetes mellitus, Comput. Methods Programs Biomed., 196 (2020), 105628. https://doi.org/10.1016/j.cmpb.2020.105628 doi: 10.1016/j.cmpb.2020.105628
    [19] F. Tena, O. Garnica, J. Lanchares, J. I. Hidalgo, Ensemble models of cutting-edge deep neural networks for blood glucose prediction in patients with diabetes, Sensors, 21 (2021), 7090. https://doi.org/10.3390/s21217090 doi: 10.3390/s21217090
    [20] R. Karim, I. Vassanyi, I. Kosa, Improved methods for mid-term blood glucose level prediction using dietary and insulin logs, Medicina, 57 (2021), 676. https://doi.org/10.3390/medicina57070676 doi: 10.3390/medicina57070676
    [21] H. Xu, S. Bao, X. Zhang, S. Liu, W. Jing, Y. Ji, Blood glucose prediction method based on particle swarm optimization and model fusion, Diagnostics, 12 (2022), 3062. https://doi.org/10.3390/diagnostics12123062 doi: 10.3390/diagnostics12123062
    [22] T. Koutny, M. Mayo, Predicting glucose level with an adapted branch predictor, Comput. Biol. Med., 145 (2022), 105388. https://doi.org/10.1016/j.compbiomed.2022.105388 doi: 10.1016/j.compbiomed.2022.105388
    [23] G. Yang, S. Liu, Y. Li, L. He, Short-term prediction method of blood glucose based on temporal multi-head attention mechanism for diabetic patients, Biomed. Signal Process. Control, 82 (2023), 104552. https://doi.org/10.1016/j.bspc.2022.104552 doi: 10.1016/j.bspc.2022.104552
    [24] Z. Nie, M. Rong, K. Li, Blood glucose prediction based on imaging photoplethysmography in combination with machine learning, Biomed. Signal Process. Control, 79 (2023), 104179. https://doi.org/https://doi.org/10.1016/j.bspc.2022.104179 doi: 10.1016/j.bspc.2022.104179
    [25] S. Oviedo, J. Vehi, R. Calm, J. Armengol, A review of personalized blood glucose prediction strategies for T1DM patients, Int. J. Numer. Methods Biomed. Eng., 33 (2017). https://doi.org/10.1002/cnm.2833
    [26] V. Felizardo, N. M. Garcia, N. Pombo, I. Megdiche, Data-based algorithms and models using diabetics real data for blood glucose and hypoglycaemia prediction - a systematic literature review, Artif. Intell. Med., 118 (2021), 102120. https://doi.org/10.1016/j.artmed.2021.102120 doi: 10.1016/j.artmed.2021.102120
    [27] E. I. Georga, V. C. Protopappas, D. Polyzos, D. I. Fotiadis, Evaluation of short-term predictors of glucose concentration in type 1 diabetes combining feature ranking with regression models, Med. Biol. Eng. Comput., 53 (2015), 1305-1318. https://doi.org/10.1007/s11517-015-1263-1 doi: 10.1007/s11517-015-1263-1
    [28] T. E. Idriss, A. Idri, I. Abnane, Z. Bakkoury, Predicting blood glucose using an LSTM neural network, in 2019 Federated Conference on Computer Science and Information Systems (FedCSIS), (2019), 35-41. https://doi.org/10.15439/2019F159
    [29] J. L. Teng, Z. J. Rong, Y. Xu, B. B. Dan, Study on blood glucose prediction method based on GRU network (in Chinese), Comput. Appl. Software, 37 (2020), 107-112. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName = JYRJ202010018 & DbName = CJFQ2020.
    [30] S. L. Cichosz, T. Kronborg, M. H. Jensen, O. Hejlesen, Penalty weighted glucose prediction models could lead to better clinically usage, Comput. Biol. Med., 138 (2021), 104865. https://doi.org/10.1016/j.compbiomed.2021.104865 doi: 10.1016/j.compbiomed.2021.104865
    [31] S. L. Cichosz, M. H. Jensen, O. Hejlesen, Short-term prediction of future continuous glucose monitoring readings in type 1 diabetes: development and validation of a neural network regression model, Int. J. Med. Inf., 151 (2021), 104472. https://doi.org/10.1016/j.ijmedinf.2021.104472 doi: 10.1016/j.ijmedinf.2021.104472
    [32] M. F. Rabby, Y. Tu, M. I. Hossen, I. Lee, A. S. Maida, X. Hei, Stacked LSTM based deep recurrent neural network with kalman smoothing for blood glucose prediction, BMC Med. Inf. Decis. Making, 21 (2021), 101. https://doi.org/10.1186/s12911-021-01462-5 doi: 10.1186/s12911-021-01462-5
    [33] J. Carrillo-Moreno, C. Pérez-Gandía, R. Sendra-Arranz, G. García-Sáez, M. E. Hernando, Á. Gutiérrez, Long short-term memory neural network for glucose prediction, Neural Comput. Appl., 33 (2021), 4191-4203. https://doi.org/10.1007/s00521-020-05248-0 doi: 10.1007/s00521-020-05248-0
    [34] C. Liang, Study on Methods of Blood Glucose Trend Prediction Based on Time Series Data (in Chinese), Master's thesis, Guilin University of Electronic Technology, 2022. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName = 1022783447.nh & DbName = CMFD2023.
    [35] X. L. Peng, Blood Glucose Prediction and Hypoglycemia Warning Evaluation Based on LSTM-GRU Model (in Chinese), Master's thesis, School of Henan University, 2022. Available from: https://kns.cnki.net/kcms/detail/detail.aspx?FileName = 1022688198.nh & DbName = CMFD2023.
    [36] F. Uesugi, Novel image processing method inspired by wavelet transform, Micron, 168 (2023), 103442. https://doi.org/10.1016/j.micron.2023.103442 doi: 10.1016/j.micron.2023.103442
    [37] J. E. Oh, W. T. Kim, H. J. Sim, A. B. Abu, H. J. Lee, J. Y. Lee, Fault diagnosis using wavelet transform method for random signals, J. Korean Soc. Precis. Eng., 22 (2005), 80-89. Available from: https://www.dbpia.co.kr/Journal/articleDetail?nodeId = NODE00855112.
    [38] J. Zhao, P. Xu, X. Liu, X. Ji, M. Li, D. Sooranna, et al., Application of machine learning methods for the development of antidiabetic drugs, Curr. Pharm. Des., 28 (2022), 260-271. https://doi.org/10.2174/1381612827666210622104428 doi: 10.2174/1381612827666210622104428
    [39] J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, PNAS, 79 (1982), 2554-2558. https://doi.org/10.1073/pnas.79.8.2554 doi: 10.1073/pnas.79.8.2554
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(914) PDF downloads(154) Cited by(0)

Article outline

Figures and Tables

Figures(11)  /  Tables(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog