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Abstract: Glucose trend prediction based on continuous glucose monitoring (CGM) data is a crucial 
step in the implementation of an artificial pancreas (AP). A glucose trend prediction model with high 
accuracy in real-time can greatly improve the glycemic control effect of the artificial pancreas and 
effectively prevent the occurrence of hyperglycemia and hypoglycemia. In this paper, we propose an 
improved wavelet transform threshold denoising algorithm for the non-linearity and non-smoothness of 
the original CGM data. By quantitatively comparing the mean square error (MSE) and signal-to-noise 
ratio (SNR) before and after the improvement, we prove that the improved wavelet transform threshold 
denoising algorithm can reduce the degree of distortion after the smoothing of CGM data and improve 
the extraction effect of CGM data features at the same time. Based on this finding, we propose a glucose 
trend prediction model (IWT-GRU) based on the improved wavelet transform threshold denoising 
algorithm and gated recurrent unit. We compared the root mean square error (RMSE), mean absolute 
percentage error (MAPE), and coefficient of determination (Rଶ) of Recurrent Neural Networks (RNN), 
Long Short-Term Memory (LSTM), Support vector regression (SVR), Gated Recurrent Unit (GRU) and 
IWT-GRU on the original CGM monitoring data of 80 patients for 7 consecutive days with different 
prediction horizon (PH). The results showed that the IWT-GRU model outperformed the other four 
models. At PH = 45 min, the RMSE was 0.5537 mmol/L, MAPE was 2.2147%, Rଶ was 0.989 and the 
average runtime was only 37.2 seconds. Finally, we analyze the limitations of this study and provide an 
outlook on the future direction of blood glucose trend prediction. 
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1. Introduction  

Diabetes mellitus (DM) is an endocrine metabolic disease caused by the interaction of genetic, 
immune and environmental factors that lead to a defect in insulin secretion or a decrease in insulin 
sensitivity of the cells, resulting in disorders of blood glucose, carbohydrate, lipid and protein 
metabolism [1]. According to the World Health Organization, diabetes is one of the leading non-
communicable diseases with the highest mortality rate worldwide [2]. It is one of the most common 
non-communicable diseases worldwide. Over the past 30 years, the prevalence of diabetes has 
increased annually and by 2021, there were approximately 537 million adults with diabetes 
worldwide [3]. According to projections by the International Diabetes Federation in 2021, the total 
number of diabetics worldwide will increase to 643 million by 2030 and to 783 million by 2045 [4]. 
The American Diabetes Association (ADA) classifies DM as type 1 diabetes, type 2 diabetes, 
gestational diabetes and specific types of diabetes [5]. Of these, type 1 diabetes accounts for about 5% 
and type 2 diabetes for 90% to 95% [6]. The main characteristics of DM are high fasting and 
postprandial glucose, and the common clinical manifestations are mainly polyhydramnios, polyuria, 
polyphagia and weight loss. Long-term elevated glucose can damage the body’s cardiovascular and 
nervous systems, which can lead to chronic complications such as diabetic cardiovascular disease, 
diabetic nephropathy, diabetic retinopathy and peripheral neuropathy [7]. Similarly, recurrent episodes 
of hypoglycemia can easily damage the brain function of patients, accelerating the process of 
dementia and even brain death [8]. The disease has not yet been cured. The only way to control the 
progression of diabetes is through early diagnosis and timely treatment, which can be achieved by 
managing diet [9], reasonable insulin injections [10], active monitoring of blood glucose levels [11], 
etc., to maintain blood glucose levels within normal limits [12]. 

The artificial pancreas (also known as the closed-loop insulin delivery system) has been one of 
the breakthroughs pursued in the treatment of diabetes since the 19th century [13]. It consists of three 
main components: a continuous glucose monitoring device (CGM), an insulin pump (IP) and a closed-
loop control algorithm (CA), which automatically monitors the blood glucose level of the diabetic 
patient through the CGM and controls the insulin pump to automatically deliver the right amount of 
insulin to the patient through the closed-loop control algorithm [14]. The closed-loop control algorithm 
is the most central and critical part of the artificial pancreas function [15]. However, most current CGM 
devices monitor glucose levels in interstitial fluid [16], which has a delay in real-time glucose levels 
in the blood, and there is a physiological lag, which requires closed-loop control algorithms to 
accurately predict glucose levels. With the continuous development of glucose prediction technology, 
numerous scholars have started to explore the performance of different types of models in glucose 
prediction [17−24]. Based on the published literature, two types of glucose prediction methods can be 
classified: physiology-based glucose prediction and data-driven glucose prediction [25,26]. The 
physiologically based blood glucose prediction model is a continuous dynamic model that relies on 
the basic physiological mechanism of the human body. However, since the regulation of the human 
body environment is a dynamic process, this prediction method depends on the physiological 
regulation mechanism of the individual. However, the blood glucose changes between different 
patients have significant variability, so it is difficult for the overall physiological model to guarantee 
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the accuracy of different individuals. Moreover, due to the excessive factors to be considered in the 
construction of physiological models, the cost of modeling is high, and the practical application is low 
at present. 

In recent years, with the widespread use of CGM, data-driven blood glucose prediction models 
have become a new hot topic of research, which usually use previous continuous blood glucose 
time series data to predict future blood glucose trends at some prediction horizon (PH), often using 
regression, machine learning and deep learning methods to build prediction models. In 2015, 
Georga et al. [27] used random forest algorithm and RReliefF to rank feature sets to obtain feature sets 
of blood glucose level, insulin dose, dietary intake, and physical activity, which were combined with 
regression models for blood glucose prediction. In 2019, Idriss et al. [28] proposed a deep learning 
neural network model (LSTMNN) based on a Long Short Term Memory Network (LSTM) layer and 
two hidden layers to predict blood glucose levels in diabetic patients, which predicted blood glucose 
levels with a mean RMSE of 12.38 mg/dL. In 2020, Teng et al. [29] proposed a prediction model using 
the GRU method to predict blood glucose time series data with RMSE and MAPE of 0.7612 mmol/L 
and 7.3427%, respectively, for a PH = 60 min. In 2021, Karim et al. [20] trained an artificial neural 
network with the bolus and basal insulin dosing and timing, baseline glucose levels, maximum glucose 
infusion rate and total carbohydrate content as parameters and predicted an RMSE of 1.72 mmol/L at 
PH = 120 min. Cichosz et al. [30,31] proposed that adding penalty weights could improve the clinical 
performance of CGM prediction models. In 2022, Koutny and Mayo [22] proposed a new low-
complexity, interpretable method for blood glucose prediction using Meta-Differential Evolution to 
determine the parameters of the predictor, extending the prediction time by 5 min with a relative error 
of less than 30% for 95.8% of predicted blood glucose levels in all patients. In 2023, Yang et al. [23] 
proposed a short-term prediction method for blood glucose based on the Patients’ Time Multiple 
Attention Mechanism for Diabetes (PBGTAM), with overall root mean square error of prediction, 
prediction accuracy and clinical accuracy of 20.57, 84.35 and 85.18%, respectively. 

Due to the non-linearity and non-smoothness of CGM data, direct use of raw data to build 
prediction models often fails to meet the accuracy requirements. More researchers have applied 
relevant methods of signal analysis to pre-process CGM data in order to reduce its non-stationarity and 
improve the prediction accuracy. Rabby et al. [32] and Xu et al. [21] used Kalman filtering to smooth 
the CGM data in 2021 and 2022, respectively, but the Kalman filtering method can only process linear 
processes and the signal noise must obey a Gaussian distribution, and the smoothing effect of the 
Kalman filtering method on the data will be reduced when the nonlinear characteristics of the actual 
system are slightly stronger or the noise characteristics deviate from the Gaussian distribution. 
Carrillo-Moreno et al. [33] used a sliding average filter to deal with noise in CGM data. The advantage 
of this method is that it is simple to operate, but the size of the sliding window will have a large impact 
on the smoothing effect, and this filtering method will lose some of its accuracy when the real value 
within the sliding window changes a lot, and the filtering result is close to the average expectation of 
the real value. The larger the window is, the more serious the lag phenomenon is. The wavelet 
transform threshold denoising algorithm is not only able to retain more information about the signal at 
high frequencies, but also the signal at low frequencies is almost invisible to noise interference, and 
has a better smoothing effect for non-linear non-smooth signals. In 2022, Liang [34] and Peng [35] 
used the traditional wavelet transform threshold denoising algorithm to smooth CGM data, but did not 
study in depth the way the threshold of wavelet transform was selected and the influence caused by 
the threshold function on the smoothing effect of CGM data. 
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Therefore, in order to further improve the prediction effect of the blood glucose trend prediction 
model, this paper improves the wavelet transform threshold selection method and threshold function, 
improves the data smoothing effect while retaining the original characteristics of CGM data to the 
greatest extent so that the smoothed CGM data can be input to the GRU model to effectively improve 
the accuracy of blood glucose prediction and combines the characteristics of the fast running speed 
of the GRU model to build a blood glucose trend prediction model with high real-time capability and 
high accuracy. The rest of the paper is structured as follows: Section 2 introduces the data sources 
and relevant theoretical background, including the basic principles of wavelet transform and GRU. 
Section 3 describes in detail the improved method of using the wavelet transform threshold denoising 
algorithm and compares the SNR and MSE of the algorithm before and after the improvement applied 
to CGM data. Section 4 provides a detailed description of the data pre-processing steps and the 
parameters of the IWT-GRU model and the remaining control models. Section 5 compares the 
strengths and weaknesses of the IWT-GRU model and the other four models by means of model 
performance measures and verifies the actual performance of the models using Clarke Error Grid 
Analysis (CEGA). Section 6 concludes the research presented in this paper and provides an outlook 
on future developments in the field of glucose trend prediction. 

2. Relevant theories and data sources 

2.1. Wavelet threshold denoising principle and its basic steps 

The wavelet transform inherits the idea of localization of the short-time Fourier transform, while 
overcoming the disadvantage of the window size not varying with frequency, providing a “time-
frequency” window that changes with frequency, making it an ideal tool for time-frequency analysis 
and processing of signals [36]. The wavelet transform is highly de-data-dependent, concentrating the 
energy of the signal on some of the larger wavelet coefficients in the wavelet domain, while the white 
noise contained in the orthogonal basis of the transform is white noise, the wavelet transform 
distributes the noise energy over most of the unfolded coefficients in the wavelet domain. Therefore, 
the wavelet coefficients with larger amplitude after wavelet transform are generally dominated by the 
signal, while the coefficients with smaller amplitude are largely noise. Therefore, the coefficients with 
larger amplitude can be retained and the coefficients with smaller amplitude can be set to zero to obtain 
the estimated wavelet coefficients, and then the signal can be reconstructed to achieve the purpose of 
removing noise. Take the three-layer wavelet transform as an example, as shown in Figure 1 The 
signal is decomposed into three layers to obtain four wavelet coefficients (A3, D3, D2, D1). 
Approximation is the low frequency component of the signal and A1 is the approximate wavelet 
coefficient. Detail is the high frequency component of the signal and D1, D2 and D3 are the detail 
wavelet coefficients. After the three-layer decomposition, the amplitude of the wavelet coefficients 
of the original signal is larger than that of the noise and the number of signal wavelet coefficients is 
much smaller than that of the noise wavelet coefficients [37]. 
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Figure 1. 3-layer wavelet decomposition of the signal. 

The first step of wavelet threshold denoising is to select a suitable wavelet basis function and 
the number of decomposition layers to carry out wavelet decomposition of the noisy signal. The 
commonly used wavelets are mainly dbN wavelet, symN wavelet, coifN wavelet, Haar wavelet, 
biorNr.Nd wavelet, etc. The number of decomposition layers is generally selected as 3−5 layers. The 
second step is to select a suitable threshold 𝜆 and threshold function. If the selected threshold is too 
large, some of the original signal information will be lost, resulting in distortion of the reconstructed 
signal; if the selected threshold is too small, too much noise will be retained, resulting in poor 
denoising effect. The common threshold functions are mainly the hard threshold function (Eq (1)), 
soft threshold function (Eq (2)) and Garrote threshold function (Eq (3)). The third step is to perform 
a discrete wavelet transform on the processed wavelet coefficients to obtain the reconstructed 
denoised signal. 

𝑤௜,௞ = ቊ 𝑤௜,௞  ห𝑤௜,௞ห ൒ 𝜆0      ห𝑤௜,௞ห＜𝜆           (1) 

 𝑤௜,௞ = ቊሾ𝑠𝑔𝑛(𝑤௜,௞)ሿ( ห𝑤௜,௞ห − 𝜆)  ห𝑤௜,௞ห ൒ 𝜆0                                           ห𝑤௜,௞ห＜𝜆        (2) 

  𝑤௜,௞ = ቐ𝑤௜,௞ − ఒమ௪೔,ೖ                         ห𝑤௜,௞ห ൒ 𝜆0                                        ห𝑤௜,௞ห＜𝜆        (3) 

The flow of the wavelet transform threshold denoising algorithm is shown in Figure 2. 
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Figure 2. Flow chart of wavelet transform threshold denoising algorithm. 

2.2. Introduction to GRU theory 

Artificial Neural Networks (ANNs) were inspired by the neural networks in the biological brain. 
ANNs consist of a large number of neural nodes that model the complex relationships between input 
data and output signals through connections between nerves [38]. In general, an ANN consists of an 
input layer, a hidden layer, and an output layer, and the parameters of data modelling are the 
structural information of the nerve and the weight values between the two nodes connected. In 1982, 
Hopfiled [39] first proposed Recurrent Neural Networks (RNNs), which, compared to traditional 
artificial neural networks, also connect neurons in a single layer to form a “loop” structure between 
neurons in a single layer, enabling the sharing of weights between layers, and the recurrent neural 
network transmits information through the “loop” structure, realizing the information sharing between 
layers. It can be used to model sequential data such as text statements, time sequences and biosignal 
sequences. If the input vector is 𝑋 = (𝑥଴, 𝑥ଵ, 𝑥ଶ … , 𝑥௣ିଵ)், then the states of the layers at time t are 

 𝐻௧ = 𝑓௛௛(𝑊௛௛𝐻௧ିଵ + 𝑊௫௛𝑋௧)        (4) 

   𝑌௧ = 𝑓௛௬(𝑊௛௬𝐻௧)          (5) 

Where 𝑓௛௛ and 𝑓௛௬ are the activation functions from the hidden layer to the hidden layer and from 
the hidden layer to the output layer, respectively, and are generally Sigmoid functions or tanh functions; 𝑊௫௛, 𝑊௛௛, and 𝑊௛௬ are connection weight matrices between input layer and hidden layer, hidden 
layer and hidden layer, and hidden layer and output layer, respectively. The structure of the RNN is 
shown in Figure 3(a). 

Since the basic RNN uses the back-propagation through time (BPTT) algorithm for parameter 
tuning, there is the problem of gradient disappearance or gradient explosion, and the basic recurrent 
neural network is unable to remember information with long time steps. Based on this, two variants 
of the basic RNN emerged: the LSTM and the GRU, whose variations are shown schematically in 
Figure 3(d). 

The LSTM uses long and short memory units to replace the activation functions in the basic RNN 
hidden layer. In addition to the original activation functions, the LSTM contains input gates, forgetting 
gates and output gates made up of Sigmoid functions, as well as a series of multiplication and addition 



17043 

Mathematical Biosciences and Engineering  Volume 20, Issue 9, 17037−17056. 

operations. The input gate controls new information, 𝑋௧ , merged into long-term memory, the 
forgetting gate controls the extent to which past unit states 𝐶௧ିଵ. The input gate and the forgetting gate 
together determine the extent to which the cell state (𝐶௧) updates, and the output gate is based on the 
cell state 𝐶௧ and controls the hidden layer of 𝐻௧. The Sigmoid function transforms the data obtained 
from the linear transformation of the hidden layer information at the previous time point and the current 
input information into a numerical output between 0 and 1, which controls the degree of information 
memory on the one hand and solves the gradient disappearance and gradient explosion problems 
caused by the BP algorithm on the other. The internal structure of the LSTM is shown in Figure 3(b). 

LSTM is widely used in the prediction of time series problems because of its good prediction 
performance, but its complex internal structure also leads to the slowdown of model training speed. 
GRU is a variant of LSTM, which does not have an explicit cell state, but uses a reset gate to implement 
the role of the forgetting gate and input gate in LSTM, and an update gate to control the update of the 
hidden layer state. This internal structure of GRU makes it inherit the advantages of LSTM on the one 
hand, and reduce the parameters required for model training on the other hand, thus reducing the model 
training time. The GRU hidden layer output is calculated as follows: 𝑅௧ = 𝜎(𝑊௥௫𝑋௧ + 𝑊௥௛𝐻௧ିଵ)         (6) 𝑍௧ = 𝜎(𝑊௭௫𝑋௧ + 𝑊௭௛𝐻௧ିଵ)         (7) 

  𝐻௧തതത = 𝑡𝑎𝑛ℎ(𝑊௦௛𝑅௧𝐻௧ିଵ + 𝑊௦௫𝑋௧)        (8) 𝐻௧ = (1 − 𝑍௧)𝐻௧ିଵ + 𝑍௧𝐻௧തതത         (9) 

where 𝑋௧ is the input vector at moment t, 𝑅௧ is the reset guys vector at moment t, 𝑍௧ is the update 
gate vector at time t, 𝐻௧ is the hidden layer output vector at time t, 𝐻௧തതത is the updated candidate vector 
and 𝑊௦௛ , 𝑊௦௫ , 𝑊௭௫ , 𝑊௭௛ , 𝑊௥௫  and 𝑊௥௛  are the weight matrices in each connection vector, 
respectively. 𝜎 is the Sigmoid function. The internal structure of the GRU is shown in Figure 3(c). 

 

Figure 3. Schematic diagram of the internal structure and evolution of RNN, LSTM and GRU. 
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2.3. Data sources 

The data for this study was obtained from a silicon-based kinetic glucose monitor that acquired 
patients’ blood glucose data at 5-minute intervals, and raw CGM data from 80 patients were selected 
over 7 consecutive days. Table 1 presents baseline data for patients. Data are represented as means ± 
standard deviation. Figure 4 shows the blood glucose change curve (2016 blood glucose values) for a 
patient over a consecutive 7-day period. 

Table 1. Baseline data of patients. 

Index Sample size (n) Statistic 

Gender Male (54) /
Female (26) /

Age 
Disease duration 
Height (cm) 

80 
80 
80

56.144 ± 8.333 
8.5 ± 5.94 
162.4 ± 8.26 

Weight (kg) 80 63.55 ± 10.82 
BMI (kg·m-2) 80 29.953 ± 3.621 

 

Figure 4. 7-day blood glucose change curve for a patient. 

3. Improved wavelet transform threshold denoising algorithm and validation of the effect 

3.1. Threshold stratification selection method and improvement of traditional threshold function 

The main wavelet denoising thresholds currently in use are based on unbiased likelihood 
estimation (rigsure), fixed thresholds (sqtwolog), heursure thresholds (heursure) and minimaxi 
thresholds (minimaxi). The choice of a suitable threshold is important for subsequent signal processing. 
If the threshold is chosen too small, there is a residual noise removal, and if the threshold is chosen too 
large, part of the signal is filtered out. Since the wavelet coefficient of noise decreases with the increase 
of decomposition layers, the threshold value of different decomposition layers should decrease with 
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the increase of decomposition layers when denoising the signal. In this paper, we propose the threshold 
layer selection method, and the threshold layer selection equation is: 𝜆 = 𝜎௡√2𝑙𝑛𝑁/ln (𝑒 + 2௝).        (10) 

In the above equation, N is the number of corresponding wavelet transform coefficients, j is the 
corresponding number of layers of the wavelet transform and 𝜎௡ is the variance contained in the noise, 
and since the noise variance is not known in practical use, it can be estimated from the wavelet 
decomposition coefficients of the first layer, i.e., 𝜎௡ = 𝑚𝑒𝑑𝑖𝑎𝑛(𝑤௜,௞)/0.6745          (11) 

The three traditional thresholding functions are often used in signal processing, but each of them 
has certain shortcomings. When using hard thresholding, the signal is better marginalized, but the 
function itself is discontinuous and may lead to unwanted oscillations in the reconstructed signal; soft 
thresholding has good continuity and the denoising result is smoother, but when the wavelet 
coefficients are large, there is a fixed deviation between the estimated wavelet coefficients and the 
original coefficients, resulting in a loss of the high frequency part of the signal, leading to the 
approximation degree of the reconstructed signal being poor compared with the original signal, which 
easily produces distortion. The Garrote thresholding function combines the advantages of soft and hard 
thresholding functions, with good signal continuity, and the fixed deviation tends to zero when the 
wavelet coefficients are large, effectively overcoming the shortcomings of soft and hard thresholding 
functions. However, it ignores the characteristics of noise decreases with increasing scale under 
wavelet transform, and for mutating signals, its denoising effect is still insufficient. The three 
traditional thresholding functions are shown in Figure 5. 

 

Figure 5. Three traditional types of threshold function images. 
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As the three types of traditional threshold functions mentioned above all have their own 
shortcomings, a new threshold function is constructed under the premise of fully considering the 
respective advantages of these three types of functions, with the specific expression shown in Eq (12). 
The improved image of the threshold function is shown in Figure 6. By introducing the adjustment 
factors α and β, it retains the continuity of the soft threshold function and can rapidly approximate the 
hard threshold function, and the approximation speed of the function can be reasonably controlled by 
controlling the values of α and β, which is more applicable to different signals. 

𝑤௜,௞ = ൝ሾ𝑠𝑔𝑛(𝑤௜,௞)ሿ( ห𝑤௜,௞ห − 𝜆/ ඥ|𝑤௜,௞|ఈ − |𝜆|ఈ + 1ഁ )  ห𝑤௜,௞ห ൒ 𝜆0                                           ห𝑤௜,௞ห＜𝜆      (12) 

 

Figure 6. Plot of traditional versus improved threshold function (α = 0.5, β = 2). 

3.2. Performance validation of the improved threshold function 

In this paper, the CGM data of a patient was randomly selected from 80 patients, and three 
traditional threshold functions and the improved threshold function were adopted to denoise the signal. 
dB10 wavelets were selected to do 3-layer wavelet decomposition on the CGM signal, and the 
adjustment factors α and β were chosen as 0.5 and 2 respectively. The traditional three threshold 
functions adopt fixed threshold, and the improved threshold function adopts hierarchical threshold 
selection method. The signal-noise ratio (SNR) and mean square error (MSE) are used to quantify and 
compare their denoising effects. The SNR is an important measure of the denoising effect of the signal, 
and the higher the SNR, the better the signal extraction effect. The smaller the MSE between the 
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denoised signal and the original signal, the smaller the distortion, the more complete the signal 
extraction and the better the denoising effect. The equations for SNR and MSE are shown in Eqs (13) 
and (14), where s(i) represents the original signal and y(i) represents the denoised signal. 

 𝑆𝑁𝑅 = 10 log(∑ 𝑠ଶ(𝑖)௡௜ୀଵ / ∑ (𝑦(𝑖) − 𝑠(𝑖)ଶ)௡௜ୀଵ )      (13) 𝑀𝑆𝐸 = ඥ(∑ ((𝑦(𝑖) − 𝑠(𝑖)ଶ))/𝑛௡௜ୀଵ         (14) 

When α and β are selected as 0.5 and 2 respectively, the model SNR and mean square error can 
obtain the best values. The relationship between α and β values and SNR and mean square error is 
shown in Figures 7 and 8. The effect of denoising the CGM data by the four methods is shown in 
Figure 9 and the comparison of SNR and MSE is shown in Table 1. From Table 2, it can be seen that 
the improved wavelet transform threshold denoising algorithm has a SNR of 24.8135 and an MSE 
of 0.2309, and the denoising effect is better than the three traditional methods. 

 

Figure 7. The relationship between α and β values and signal-to-noise ratio. 

 

Figure 8. Plot of α and β values versus mean square error. 
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Figure 9. Comparison of CGM data smoothing effects. 

Table 2. Quantitative comparison of the denoising effect of the four threshold functions. 

 Hard threshold Soft threshold Garrote 
threshold Improved threshold 

SNR 23.3562 24.5873 24.5369 24.8135 
MSE 0.3087 0.2642 0.2955 0.2309 

4. Blood glucose trend prediction model construction 

4.1. Data pre-processing and determination of optimal input sequence length 

As the Dynamic Glucose Monitor from Silicon Motion has a data storage function, it does not 
have individual missing values if not for sensor damage, so there is no need to fill in the data and 
exclude user data that has not been continuously monitored for 7 days. 

Due to the non-linearity and non-smoothness of the raw CGM data, the prediction accuracy of 
the model training directly using the raw data often fails to achieve good results, so the data needs to 
be smoothed. In this paper, the improved wavelet transform threshold denoising algorithm described 
in Section 3 is used to smooth the raw CGM data. 

As the neural network model frameworks all have adapted input data scales, different input 
sequence lengths have a significant impact on the prediction results. Therefore, to better train the model, 
a linear normalization method is first used to scale the data to the (0,1) interval. The normalized data 
is then divided using the data sliding window method, thus converting the dataset into a supervised 
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learning type of data sample and enabling flexible transformation of data lengths. By adjusting the size 
of different windows, the model can use feature time series data with a previous time length of 5*m 
(min) to predict future blood glucose fluctuations with a total time length of 5*n (min). 

4.2. Predictive model and parameter design 

In this paper, the RNN, LSTM, SVR, GRU and IWT-GRU algorithms are selected for modelling 
and training respectively, in which, except for the IWT-GRU model, the data smoothing algorithms of 
all the models adopt the general wavelet threshold denoising algorithm, i.e., the CGM data are 
smoothed using fixed threshold and soft threshold functions and the IWT-GRU model adopts the 
improved wavelet transform proposed in this paper. For the threshold denoising algorithm for data 
smoothing, wavelet basis is selected as sym8 and the number of decomposition layers is 3. In addition, 
the IWT-GRU model chooses MAE as the loss function, the learning rate is 0.0001, the optimizer 
chooses RMSProp, the number of samples included in each training is 64 and the maximum number 
of iterations is 200. The structure and parameters of the RNN, LSTM and GRU models are the same as 
those of IWT-GRU, and the SVR uses radial basis neural network as the kernel, C = 10, gamma = 0.1. 
The overall construction process of the blood glucose trend prediction model in this paper is shown in 
Figure 10. 

 

Figure 10. The overall construction process of the blood glucose trend prediction model. 

5. Results and analysis 

5.1. Model performance evaluation indicators 

In this paper, root mean square error (RMSE), mean absolute percentage error (MAPE), coefficient 
of determination (𝑅ଶ) and running time are used as the evaluation metrics for model performance. 
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The running environment of the code is Windows 10 operating system, and the CPU parameters 
are i5-11260H@2.60GHz. RMSE, MAPE and 𝑅ଶ are calculated as shown in the following equations: 

𝑅𝑀𝑆𝐸 = ටଵ௡ ∑ (𝑥௜ − 𝑥ప෥ )ଶ௡௜ୀଵ         (15) 𝑀𝐴𝑃𝐸 = ଵ଴଴௡ ∑ | ௫೔ି௫ഢ෥௫೔ |௡௜ୀଵ         (16) 

   𝑅ଶ = 1 − ோெௌாమ∑ (௫೔ି௫ഢഥ )మ೙೔సభ           (17) 

where n is the number of samples and 𝑥௜ is the actual value of the ith sample, the 𝑥ప෥  is the predicted 
value of the ith sample and 𝑥పഥ  is the mean value of the original data. In statistics, the smaller the value 
of RMSE and MAPE, the better the model predicts. 𝑅ଶ is the ratio of the total regression sum of 
squares to the total deviation sum of squares, ranging from 0 to 1. Closer to 1 means a more significant 
fit of the model and better model prediction. 

Tables 3−5 show the mean prediction performance of the IWT-GRU model for different 
prediction horizon when the length of the input data sequence is 30, 60 and 90 min, respectively. From 
Tables 3−5, it can be seen that for different input data sequence lengths, the model performance is 
better when the prediction horizon is 45 min than for the other prediction horizon. As the length of the 
input data sequence increases, the performance of the model at PH = 45 min shows a higher and then 
lower state. Overall, the IWT-GRU model performs best when the input sequence data length is 60 
min and the prediction horizon is 45 min. Table 6 shows the comparison of the mean prediction results 
of the five models at an input sequence data length of 60 min and PH = 45 min. From Table 6, it can 
be seen that the GRU model performs best in terms of performance and running time under the same 
pre-processing method, while the performance of the IWT-GRU model processed with the improved 
wavelet transform threshold denoising algorithm has a significant improvement over the 
performance of the conventional GRU model, and the running time is only 0.9 seconds slower than 
that of the GRU model. 

Table 3. Mean values of IWT-GRU model performance for input data sequence length of 30 min. 

PH RMSE (mmol/L) MAPE (%) 𝑅ଶ 
15 min 0.8489 4.1325 0.895 
30 min 
45 min 
60 min 

0.6416 
0.5766 
0.9754 

2.8462 
2.5674 
4.3012

0.905 
0.956 
0.872 

Table 4. Mean values of IWT-GRU model performance for input data sequence length of 60 min. 

PH RMSE (mmol/L) MAPE (%) 𝑅ଶ 
15 min 0.8753 4.1358 0.899 
30 min 
45 min 
60 min 

0.5984 
0.5537 
0.6833 

2.7763 
2.2147 
4.0258

0.924 
0.989 
0.898 
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Table 5. Mean values of IWT-GRU model performance for input data sequence length of 90 min. 

PH RMSE (mmol/L) MAPE (%) 𝑅ଶ
15min 0.8887 4.1401 0.857
30min 
45min 
60min 

0.6529 
0.5896 
0.9824 

2.9563 
2.3411 
4.5986

0.899 
0.966 
0.870

Table 6. Comparison of the performance of the five models for an input data sequence 
length of 60 min and PH = 45 min. 

Model RMSE (mmol/L) MAPE (%) 𝑅ଶ Running time (s)
RNN 1.2126 3.8743 0.854 45.1 
LSTM 
SVR 
GRU 
IWT-GRU 

1.1533 
1.3754 
0.8423 
0.5537 

3.9866 
4.2574 
3.7549 
2.2147

0.833 
0.872 
0.897 
0.989

48.6 
28.9 
36.3 
37.2 

5.2. Clark error grid analysis 

In order to demonstrate the validity and accuracy of the model in a clinical setting, the Clarke 
Error Grid Analysis (CEGA), which is commonly used in clinical practice, was chosen to assess the 
difference between actual and predicted blood glucose values. This method has a target blood glucose 
control value of 3.9−10.0 mmol/L, with interventions required below 3.9 mmol/L or above 13.3 
mmol/L. After converting the blood glucose values to mg/dL, a Clark error analysis grid was drawn 
using the CGM-value (without filtering) and the model predicted values as the horizontal and vertical 
axes of the grid, respectively. Zone A is the clinically accurate zone, representing ± 20% difference 
from the reference value; zone B is the clinically acceptable zone, located above or below zone A, 
representing blood glucose values above 20% of the range relative to the reference value; zones C, D 
and E are the clinically incorrect zones. The data is not desirable. The more blood glucose values 
falling in zones A and B, the closer the model prediction is to the measured value, and the higher the 
prediction accuracy is. Figure 11(a)−(e) is the results of CEGA for predicting the change of blood 
glucose in the next 60 min for a patient using SVR, LSTM, RNN, IWT-GRU and GRU models 
respectively. The prediction results of the five algorithms accounted for 84.38, 92.64, 89.33, 98.69 
and 95.26% in region A, respectively, which shows that the IWT-GRU model proposed in this paper 
also has the best prediction accuracy compared to other models in actual clinical outcomes. 
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Figure 11. Clark error grid analysis diagram. The horizontal axis represents the CGM-
value (without filtering), and the vertical axis represents the model predicted values. 

6. Summary and outlook 

In this paper, an improved wavelet transform threshold denoising algorithm was proposed to 
smooth CGM data for its non-linearity and non-smoothness, and a novel blood glucose trend prediction 
model was constructed by combining GRU. The performance of the algorithm was validated on CGM 
data from 80 diabetic patients, and by comparing the RMSE, MAPE and 𝑅ଶof SVR, RNN, LSTM, 
GRU and IWT-GRU models, the IWT-GRU model proposed in this paper was proved to have the best 
prediction performance under the same parameter conditions. Meanwhile, the clinical performance of 
the model was verified by Clarke Error Grid Analysis (CEGA), which improved the prediction 
accuracy of the model with reduced running time and can provide a reference for the research of 
artificial pancreas closed-loop control algorithm. 

However, there are some limitations in this study, first, the prediction effect of data collected by 
different CGM devices was not compared in this paper, and second, the diabetic patients selected in 
this paper were all type 2 diabetic patients, and the model needs to be optimized by CGM data from 
other types of diabetic patients in the future. For the improved wavelet transform threshold denoising 
algorithm, the values of moderators α and β were selected based on mathematical experience in this 
paper. In the future, we need to further explore in depth what is the relationship between the values of 
different moderators α and β and different prediction horizon, how their combination affects the 
prediction performance of the model, and the IWT-GRU model can be added with features such as 
exercise, diet and medication status for multi-factor prediction. The model's predictive accuracy can 
be further improved. 

In conclusion, all experiments are for practical clinical application, and the future glucose trend 
prediction model based on CGM data will still be optimized in the direction of high performance and 
high efficiency. Meanwhile, with the gradual development of non-contact blood glucose monitoring 
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and non-invasive blood glucose monitoring technologies, the use of a wider range of physiological 
parameters and data assimilation techniques to establish algorithmic models for multimodal sensor 
data fusion will be another new research direction for blood glucose trend prediction in the future. 
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