Processing math: 61%
Research article Special Issues

Global existence and stability of three species predator-prey system with prey-taxis


  • In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,

    {ut=dΔu+u(1u)a1uw1+a2u+a3v,in  Ω,t>0,vt=ηdΔv+rv(1v)a4vw1+a2u+a3v,in  Ω,t>0,wt=(wχ1wuχ2wv)μw+a5uw1+a2u+a3v+a6vw1+a2u+a3v,in  Ω,t>0,  

    under homogeneous Neumann boundary conditions in a bounded domain ΩRn(n1) with smooth boundary, where the parameters d,η,r,μ,χ1,χ2,ai>0,i=1,,6. We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.

    Citation: Gurusamy Arumugam. Global existence and stability of three species predator-prey system with prey-taxis[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 8448-8475. doi: 10.3934/mbe.2023371

    Related Papers:

    [1] Tingfu Feng, Leyun Wu . Global dynamics and pattern formation for predator-prey system with density-dependent motion. Mathematical Biosciences and Engineering, 2023, 20(2): 2296-2320. doi: 10.3934/mbe.2023108
    [2] Yong Luo . Global existence and stability of the classical solution to a density-dependent prey-predator model with indirect prey-taxis. Mathematical Biosciences and Engineering, 2021, 18(5): 6672-6699. doi: 10.3934/mbe.2021331
    [3] Paulo Amorim, Bruno Telch, Luis M. Villada . A reaction-diffusion predator-prey model with pursuit, evasion, and nonlocal sensing. Mathematical Biosciences and Engineering, 2019, 16(5): 5114-5145. doi: 10.3934/mbe.2019257
    [4] Yuxuan Zhang, Xinmiao Rong, Jimin Zhang . A diffusive predator-prey system with prey refuge and predator cannibalism. Mathematical Biosciences and Engineering, 2019, 16(3): 1445-1470. doi: 10.3934/mbe.2019070
    [5] Xue Xu, Yibo Wang, Yuwen Wang . Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis. Mathematical Biosciences and Engineering, 2019, 16(4): 1786-1797. doi: 10.3934/mbe.2019086
    [6] Wenbin Lyu . Boundedness and stabilization of a predator-prey model with attraction- repulsion taxis in all dimensions. Mathematical Biosciences and Engineering, 2022, 19(12): 13458-13482. doi: 10.3934/mbe.2022629
    [7] Eric M. Takyi, Charles Ohanian, Margaret Cathcart, Nihal Kumar . Dynamical analysis of a predator-prey system with prey vigilance and hunting cooperation in predators. Mathematical Biosciences and Engineering, 2024, 21(2): 2768-2786. doi: 10.3934/mbe.2024123
    [8] Ilse Domínguez-Alemán, Itzel Domínguez-Alemán, Juan Carlos Hernández-Gómez, Francisco J. Ariza-Hernández . A predator-prey fractional model with disease in the prey species. Mathematical Biosciences and Engineering, 2024, 21(3): 3713-3741. doi: 10.3934/mbe.2024164
    [9] Lazarus Kalvein Beay, Agus Suryanto, Isnani Darti, Trisilowati . Hopf bifurcation and stability analysis of the Rosenzweig-MacArthur predator-prey model with stage-structure in prey. Mathematical Biosciences and Engineering, 2020, 17(4): 4080-4097. doi: 10.3934/mbe.2020226
    [10] Lisha Wang, Jiandong Zhao . A predator-prey model with genetic differentiation both in the predator and prey. Mathematical Biosciences and Engineering, 2020, 17(3): 2616-2635. doi: 10.3934/mbe.2020143
  • In this paper, we study the following initial-boundary value problem of a three species predator-prey system with prey-taxis which describes the indirect prey interactions through a shared predator, i.e.,

    \begin{align*} \begin{cases}     u_t = d\Delta u+u(1-u)-  \frac{a_1uw}{1+a_2u+a_3v}, & \;  \mbox{in}\ \ \Omega, t>0, \\   v_t = \eta d\Delta v+rv(1-v)-  \frac{a_4vw}{1+a_2u+a_3v}, & \;  \mbox{in}\ \ \Omega, t>0, \\      w_t = \nabla\cdot(\nabla w-\chi_1 w\nabla u-\chi_2 w\nabla v)    -\mu w+  \frac{a_5uw}{1+a_2u+a_3v}+\frac{a_6vw}{1+a_2u+a_3v}, &  \mbox{in}\ \ \Omega, t>0, \ \ \label{II} \end{cases} \end{align*}

    under homogeneous Neumann boundary conditions in a bounded domain ΩRn(n1) with smooth boundary, where the parameters d,η,r,μ,χ1,χ2,ai>0,i=1,,6. We first establish the global existence and uniform-in-time boundedness of solutions in any dimensional bounded domain under certain conditions. Moreover, we prove the global stability of the prey-only state and coexistence steady state by using Lyapunov functionals and LaSalle's invariance principle.



    Predator-prey models were developed to describe the dynamics of interactions between prey and predator species. The relationship between prey and predator has been explored in recent years due to its importance in ecology. In addition to the differential operators in the predator-prey system, predators also move toward the higher prey density, which is so-called the prey-taxis, and it plays an important role in pest control and biological control [1,2,3,4]. The first predator-prey model with prey-taxis was derived by Kareiva and Odell [5] to describe the predator aggregation phenomenon:

    {ut=(d(w)u)(uχ(w)w)+F(u,w),wt=dΔw+G(u,w), (1.1)

    where u=u(x,t) and w=w(x,t) denote the predator and prey densities, respectively, and the term (d(w)u) denotes the diffusion of predators with diffusion coefficient d(w). The term (uχ(w)w) represents the prey-taxis with χ(w) as prey-taxis coefficient. The parameter d>0 is the diffusion coefficient of prey. The typical form of the functions F(u,w)=auf(w)+h(u) and G(u,w)=g(w)buf(w), where f(w) represents the functional response, for numerous functional response functions (see [6,7,8]) and the parameters a,bR describe the inter-specific interactions between predator-preys. The intra-specific interactions of predators and prey are described by the functions h(u) and g(w), respectively. The results related to variants of the above prey-taxis system have been studied by many authors, as one can refer to [9,10,11,12,13,14,15,16,17,18], and nonlinear prey-taxis [19,20,21,22,23,24]. Moreover, the predator-prey system with prey-taxis and liquid surroundings was considered in [25], and proved global existence and large time behavior of solutions by using Lp estimates and Lyapunov functionals, respectively.

    In this paper, we consider a PDE model of indirect interactions between two prey species and a shared predator with homogeneous Neumann boundary conditions:

    {ut=d1Δu+α1u(1uKu)c1uw1+c1T1u+c2T2v,in  Ω,t>0,vt=d2Δv+α2v(1vKv)c2vw1+c1T1u+c2T2v,in  Ω,t>0,wt=(d3wχ1wuχ2wv)dw+c1γ1uw1+c1T1u+c2T2v+c2γ2vw1+c1T1u+c2T2v,in  Ω,t>0,νu=νv=νw=0,xΩ,t>0,u(x,0)=u0(x), v(x,0)=v0(x) and  w(x,0)=w0(x),xΩ. (1.2)

    Where, ΩRn(n1) is a bounded domain with smooth boundary Ω and ν represents the derivative with respect to outer normal of Ω, u is the native prey, v denotes the invasive prey and w is the predator species. The parameters d1,d2 denote the random diffusion rates of prey, and d3 and d4 denote the random diffusion rate of predators and the chemical concentration, respectively. Ku and Kv are the carrying capacities for these prey species. The constants α1and α2 are intrinsic growth rate parameters. The parameters T1 and T2 usually represent the handling time required for catching and consuming a unit of prey type u and v, respectively. The constants c1 and c2 are capture rates per unit prey density while the predator is searching. In particular, c1 is the capture rate of prey u and c2 is the capture rate of prey v. In addition, d is an intrinsic growth (death) rate for the predator and η is a self-limiting or crowding coefficient for the predator. κ is the production rate of chemical signal per individual prey u and ξ is the decay rate of the chemical signal. The positive constants γ1 and γ2 denote the transformation rates of the predator.

    The terms (χ1wu) and (χ2wv) denote the tendency of predators moves towards the high density of prey. The parameters χ1 and χ2 are the prey-taxis coefficients. The functions c1u1+c1T1u+c2T2v and c2v1+c1T1u+c2T2v these represent Holling type Ⅱ functional responses for two preys that are consumed in a single habitat, so that handling one prey reduces the time available to capture the other.

    Let ˜u=uKu,˜v=vKv,˜w=dw, d=d1d3,η=d2d1, L=d3α1,T=L2d3=1α1, ˜t=tT,˜x=xL,˜y=yL,r=α2Ta1=c1Td, a2=c1T1Ku,a3=c2T2Kv,a4=c2dT,a5=c1γ1Kud,a6=c2γ2Kvd. Then, substituting these parameters into system (1.2) and dropping the tilde notation, we get a nondimensional system as follows:

    {ut=dΔu+u(1u)a1uw1+a2u+a3v,in  Ω,t>0,vt=ηdΔv+rv(1v)a4vw1+a2u+a3v,in  Ω,t>0,wt=(wχ1wuχ2wv)μw+a5uw1+a2u+a3v+a6vw1+a2u+a3v,in  Ω,t>0,νu=νv=νw=0,xΩ,t>0,u(x,0)=u0(x), v(x,0)=v0(x) and  w(x,0)=w0(x),xΩ. (1.3)

    Let us recall some existing works on three species predator-prey systems with prey-taxis. Very recently, Haskel and Bell [26] proved the existence of positive classical solutions for the two-prey one-predator system with prey competitions and prey taxis. In addition, they also established the pattern formation by using bifurcation analysis. Further, they also studied the bifurcation analysis of two competing prey with one shared predator model by using the theories of Crandall-Rabinowitz and Hopf bifurcation in [27]. The steady-state bifurcation analysis of the two-prey one-predator model with two prey taxis was studied by Xu et al. [28]. Jin et al. [29] considered the three-species food chain model in a two-dimensional bounded domain, and they also proved the global existence of classical solutions and global stability of constant steady states. The traveling wave solutions for a nonlocal dispersal predator-prey system with one predator and two prey was studied in [30]. Amorim et al. [31] studied the boundedness and global well-posedness of the spatio-temporal evolution of two competitive prey, and one predator model with the intra-specific competition. The global existence and boundedness of classical solutions for the two-predators and one-prey with competition in a bounded domain with Neumann boundary conditions were proved by Min et al. in [32]. Recently, the global existence of weak solutions to the two-prey one-predator system with prey-taxis, and competition between prey was proved in any dimension in [33]. For the similar mathematical structure of (1.3), we refer to [34,35,36]. Throughout this paper, we assume the system parameters are positive. To the best of author's knowledge, there is no article that discusses the well-posedness of the considered system (1.3). The main purpose of this article is to discuss the global dynamics of the system (1.3) in any dimension (n1). In particular, we first prove the global existence of a classical solution in all dimensions, and then we investigate the global stability of steady states. Our main result regarding the global existence of classical solutions with uniform-in-time bound is stated below.

    Theorem 1.1. (Global existence) Let ΩRn,n1 be a bounded domain with smooth boundary and let d,η>0,h1,h2>1,k2,ai>0,i=1,,6,μ>0,K0=max{1,u0L} and K1=max{1,v0L}. For any (u0,v0,w0)[W1,p(Ω)]3 with p>n and u0,v0,w00(0), if d>max{5kK0,5kK1η} and χ1 satisfies

    χ1min{d5kK0(d+1),d5kK01,d5kK0(d+1)h2,2(ηd+1)dK1K0(d+1)5kηh2} (1.4)

    and χ2 satisfies

    χ2min{ηd5kK1h1(ηd+1),2η(d+1)dK05kh1(ηd+1)K1,ηd5kK1(ηd+1),ηd5kK11}, (1.5)

    then there exists a unique global classical solution (u,v,w)[C0(¯Ω×[0,))C2,1(¯Ω×(0,))]3 solving the problem (1.3). Moreover, the solution satisfies u,v,w>0 for all t>0 and

    u(x,t)L+v(x,t)L+w(x,t)LC for all t>0,

    where C>0 is a constant independent of t.

    Next, we shall study the large time behaviour of the constant steady states (us,vs,ws) of the system (1.3) solving the following system

    {us[1usa1ws1+a2us+a3vs]=0,vs[r(1vs)a4ws1+a2us+a3vs]=0,ws[a5us1+a2us+a3vs+a6vs1+a2us+a3vsμ]=0.

    If we solve the above system, we will find the following steady states

    (us,vs,ws)={(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0),if  μ>a5+a61+a2+a3,a4<a1r(a5+a3a5a2a6)a3a5a6a2a6,(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0) or E1, if  μ>a5+a61+a2+a3,a4<a1r(a5+a3a5a2a6)a3a5a6a2a6,μ<a51+a2,(0,0,0) or (1,0,0),(0,1,0),(1,1,0),E2, if  μ>a5+a61+a2+a3,a4<a1r(a5+a3a5a2a6)a3a5a6a2a6,μ<a61+a3,(0,0,0) or (1,0,0) or (0,1,0) or (1,1,0) or E1 or E2 or E=(u,v,w)μ<a5+a61+a2+a3,a4>a1r(a5+a3a5a2a6)a3a5a6a2a6, (1.6)

    where

    E1=(μa5a2μ,0,a5(a5(1+a2)μ)a1(a5a2μ)2),E2=(0,μa6a3μ,a6r(a6(1+a3)μ)a4(a6a3μ)2)u=a4(a6a3μ)+a1r(a6+μ+a3μ)a1r(a5a2μ)+a4(a6a3μ)v=a1r(a5a2μ)+a4(a5+μ+a2μ)a1r(a5a2μ)+a4(a6a3μ)w=r[(1+a2)a4a6+a1(a5a2a6)r+a3(a4a5+a1a5r)](a5a6+(1+a2+a3)μ)(a1r(a5a2μ)+a4(a6a3μ))2

    and (0,0,0) is the extinction steady state, (1,0,0) is the prey u only steady state, (0,1,0) is the prey v only steady state. E1 and E2 denote the semi-coexistence steady state. Finally, E denotes the coexistence steady state. Next, we shall explore the following question: which of the above seven homogeneous steady states will be asymptotically stable? As we know that the global stability of the cross-diffusion system is difficult and many techniques are not available, we try to use the Lyapunov functionals to prove the global stability of the homogeneous steady states under some conditions. Next, we state our stability results as in the following theorem:

    Theorem 1.2. (Global stability) Assume the conditions in Theorem 1.1 hold. Let (u,v,w) be the solution of (1.3) obtained in Theorem 1.1 and let K0=max{1,u0L},K1=max{1,v0L},Γ1=a5+(a3a5a2a6)va1(1+a2u+a3v) and Γ2=a5+(a3a5a2a6)ua1(1+a2u+a3v). Then the following results hold true.

    If μ>a5+a61+a2+a3,a4a1r(a5+a3a5a2a6)a3a5a6a2a6, then the steady state (1,1,0) is globally asymptotically stable.

    If μ<a5+a61+a2+a3,a4>a1r(a5+a3a5a2a6)a3a5a6a2a6, the steady state E defined by (1.6) is globally asymptotically stable provided

    Γ1(2a2+a3)2+Γ2a2r2<Γ1+Γ1(2a2+a3)u2+Γ2a2rv2, (1.7)
    Γ2r(2a3+a2)2+Γ1a32<rΓ2+Γ2r(2a3+a2)v2+Γ1a3u2, (1.8)
    4dΓ1Γ2ηuv>Γ1χ22uwv2L+χ21ηΓ2u2Lvw. (1.9)

    where uL and vL depends on d,η,a1,a2,a3 but independent of χ1,χ2.

    The paper is organized as follows: In section 2, we first present some preliminary results, and then we state and prove the local existence of solutions of (1.3). Section 3 deals with the existence of globally bounded classical solutions as stated in Theorem 1.1. In Section 4, we establish the global stability results as stated in Theorem 1.2 by using the Lyapunov functionals and LaSalle's invariance principle.

    In what follows, we shall abbreviate Ωfdx as Ωf for simplicity. In this section, we first prove the local existence of classical solutions to the system (1.3) in any dimension ΩRn,n1 using the Amann's approach (cf. [37,38]). We use the following Gagliardo-Nirenberg interpolation inequality in the sequel.

    Lemma 2.1. ([39]) There exists a constant C4>0, such that for all uW1,q(Ω),

    uLpC4uaW1,qu1aLm, (2.1)

    where p,q1 which satisfies p(nq)<nq,m(0,p) with a=nmnpnm+1nq(0,1).

    Lemma 2.2. ([39]) There exists a constant C5>0, such that for all uW1,q(Ω), we have

    uW1,pC5(uLp+uLq), (2.2)

    where p>1 and q>0.

    Lemma 2.3. ([40]) Let T>0,τ(0,T),σ0,a>0,b0, and suppose that f:[0,T)[0,) is absolutely continuous, and satisfies

    f(t)+af1+σ(t)h(t), tR, (2.3)

    where h0,h(t)L1loc([0,T)) and

    ttτh(s)dsb, for all t[τ,T). (2.4)

    Then,

    supt(0,T)f(t)+asupt(τ,T)ttτf1+σ(s)dsb+2max{f(0)+b+aτ,baτ+1+2b+2aτ}. (2.5)

    Lemma 2.4. ([39]) Assume that m{0,1},p[1,] and q(1,). Then there exists some positive constant C1, such that

    ϕWm,pC1(A+1)θϕLq, (2.6)

    for any ϕD((A+1)θ), where θ(0,1) satisfies

    mnp<2θnq.

    If in addition qp, then there exist constants C2>0 and γ>0, such that for any ϕLp(Ω),

    (A+1)θet(A+1)ϕLqC2tθn2(1p1q)eμtϕLp, (2.7)

    where the semigroup {et(A+1)}t0 maps Lp(Ω) into D((A+1)θ). Moreover, for any p(0,) and ϵ>0, there exist constants C3>0 and γ>0, such that

    (A+1)θetAϕLpC3tθ12ϵeγtϕLp (2.8)

    this is valid for all Rn valued ϕLp(Ω).

    Theorem 2.1. (Local existence) Let the assumptions in Theorem 1.1 hold. Then, there exists a Tmax(0,], such that the problem (1.3) has a unique classical solution

    (u,v,w)(C0(¯Ω×[0,Tmax))C2,1(¯Ω×(0,Tmax)))3,

    which satisfies (u,v,w)>0 for all t>0. Further,

    if  Tmax<, then limtTmaxsup(u(,t)L+v(,t)L+w(,t)L)=. (2.9)

    Proof. Denote ψ=(u,v,w). Then, the problem (1.3) can be written as

    {ψt=(A(ψ)ψ)+F(ψ), xΩ,t>0,νψ=0, xΩ,t>0,ψ(,0)=(u0,v0,w0),  xΩ, (2.10)

    where

    A(ψ)=[d000ηd0χ1wχ2w1]  and  F(ψ)=[a1uw1+a2u+a3va4vw1+a2u+a3va5uw+a6vw1+a2u+a3v]. (2.11)

    Since the eigenvalues of A(ψ) are positive, the system (1.3) is normally parabolic(cf. [37,38]). Then, the application of Theorem 7.3 and Corollary 9.3 in [37] yields a Tmax>0, such that system (1.3) admits a unique solution (u,v,w)[C0(¯×[0,Tmax))C2,1(¯Ω×(0,Tmax))]3. Next, we show the nonnegativity of (u,v,w) by using the maximum principle. To do so, we need to rewrite the third equation of the system (1.3) as follows:

    {wt=Δw+p1(x,t)w+p2(x,t)w=0,  xΩ,t(0,Tmax),νw=0, xΩ,t(0,Tmax),w(x,0)=w00  in xΩ, (2.12)

    where p1(x,t)=χ1u+χ2v and p2(x,t)=χ1Δu+χ2Δva5u+a6v1+a2u+a3v. Hence, we apply the maximum principle for parabolic equation with Neumann boundary condition to (2.12) and we get w0 for all (x,t)Ω×(0,Tmax). In addition, we also obtain w>0 by strong maximum principle since the initial function w00. In the same way, we can obtain that u,v>0 for all (x,t)Ω×(0,Tmax). Because A(ψ) is lower triangular, (2.9) follows from Theorem 5.2 in [41].

    Lemma 2.5. The solution (u,v,w) of the system (1.3) satisfies

    0<u(x,t)K0:=max{u0L(Ω),1}, limtsupu(x,t)1, (2.13)
    0<v(x,t)K1:=max{v0L(Ω),1}, limtsupv(x,t)1, (2.14)
    w(x,t)L1(Ω)K2:=δa1a4, (2.15)

    where K0,K1,K2,δ=max{a4a5u0L1+a1a6v0L1+a1a4w0L1,c2c1} are positive constants independent of t.

    Proof. The proof is similar to Lemma 2.2 in [21] but for reader's convenience, we provide the proof here. We have already proved that the solution (u,v,w) of the system (1.3) is non-negative. Using this fact, we have

    {utdΔu=u(1u)a1uw1+a2u+a3vu(1u),  xΩ,t>0,νu=0, xΩ,t>0,u(x,0)=u0(x),xΩ. (2.16)

    Let u(t) be a solution to the following ODE problem

    {dudt=u(1u), t>0,u(0)=u0L. (2.17)

    The solution of the above ODE satisfies u(t)K0=max{u0L,1}, and in addition, u(t) is a super solution of the following PDE problem

    {UtdΔU=U(1U)  xΩ,t>0,νU=0, xΩ,t>0,U(x,0)=u0(x),xΩ. (2.18)

    Hence, we have U(x,t)u(t) for all (x,t)¯Ω×(0,). Using the strong maximum principle to the problem (2.18), we obtain 0<U(x,t)u(t) for all (x,t)¯Ω×(0,). From (2.16)–(2.18), and using the comparison principle, we conclude that

    0<u(x,t)U(x,t)u(t)K0,for all (x,t)¯Ω×(0,), (2.19)

    which yields (2.13). Similarly, we can also prove (2.14).

    Multiplying the first, second and third equations of (1.3) by a4a5, a1a6 and a1a4, respectively, and adding the resulting equations and then integrating it over Ω, we get

    ddt(Ωa4a5u+a1a6v+a1a4w)=Ωa4a5u(1u)+a1a6rv(1v)a1a4μw=Ωa4a5uΩa4a5u2+a1a6rva1a6rv2a1a4μw. (2.20)

    Using Cauchy-Schwartz inequality, one has

    (Ωu)2(Ωu2)|Ω|

    which implies

    Ωu21|Ω|(Ωu)2. (2.21)

    Using Young's inequality (a2b22ab,a,b>0) yields

    Ωu22Ωu+|Ω|. (2.22)

    Substituting (2.22) into (2.20), we have that

    ddt(Ωa4a5u+a1a6v+a1a4w)Ωa4a5u2Ωa4a5u+a4a5|Ω|+Ωa1a6rv2a1a6rΩv+a1a6|Ω|a1a4μΩwΩa4a5uΩa1a6rvΩa1a4μw+a4a5|Ω|+a1a6|Ω|. (2.23)

    Set y(t)=Ωa4a5u+a1a6v+a1a4w and choose c1=min{1,r,μ} then (2.23) can be written as

    y(t)+c1y(t)c2, (2.24)

    where c2=(a4a5+a1a6)|Ω| and which yields (2.15) with the help of Gronwall's inequality. We further have from (2.17) that limtsupu(x,t)1. The proof of Lemma 2.5 is complete.

    In this subsection, we prove the global existence and boundedness of solutions. In order to prove the global existence, we first derive a uniform bound for w in Ln+1 by using a weight function argument and the proof is inspired from [23], which also concerns the predator-prey taxis with a single prey population. It is worth mentioning that the method was initially developed in [42].

    Lemma 3.1. Assume that χ1 and χ2 satisfy (1.4) and (1.5), respectively, and let (u,v,w) be the solution of (1.3). Then, there exists a positive constant c0>0, such that

    w(,t)Ln+1(Ω)c0  for  t(0,Tmax). (3.1)

    Proof. Let us define the constants and weight functions

    k:=n+1,β1:=(k1)d10k1(d+1)K0,β2:=(k1)ηd10k1(ηd+1)K1, (3.2)
    1φ1(u)e(β1K0)2:=h1>1, 0uK0 and  1φ2(v)e(β2K1)2:=h2>1, 0vK1. (3.3)

    Now, by using the weight function and the first and second equation of (1.3), we obtain

    1kddtΩwkφ1(u)=Ωwk1φ1(u)wt+1kΩwkφ1(u)ut=Ωwk1φ1(u)Δwχ1Ωwk1φ1(u)(wu)χ2Ωwk1φ1(u)(wv)+Ωwkφ1(u)a5u+a6v1+a2u+a3vμΩwkφ1(u)+1kΩwkφ1(u)Δu+1kΩwkφ1(u)u(1u)1kΩwk+1φ1(u)a1u1+a2u+a3v (3.4)
    (k1)Ωwk2φ1(u)|w|2+χ1(k1)Ωwk1wuφ1(u)+χ1Ωwkφ1(u)|u|2+χ2(k1)Ωwk1φ1(u)wv+χ2Ωwkφ1(u)uv+CΩwkφ1(u)dΩwk1φ1(u)wudkΩwkφ1(u)|u|2+1kΩwkuφ1(u)+2β21kΩwkφ1(u)u2, (3.5)

    where we used the boundedness of the functional response, C>0. The above inequality can be written as

    1kddtΩwkφ1(u)+(k1)Ωwk2φ1(u)|w|2+dk+Ωwkφ1(u)|u|2(d+1)Ωwk1φ1(u)uw+χ1(k1)Ωwk1wuφ1(u)+χ1Ωwkφ1(u)|u|2+χ2(k1)Ωwk1φ1(u)wv+χ2Ωwkφ1(u)uv+CΩwkφ1(u)+2β21kΩwkφ1(u)u2. (3.6)

    By using Young's inequality, we get

    (d+1)Ωwk1φ1(u)uwϵ(d+1)2Ωwk2φ1(u)|w|2+(d+1)2ϵΩwkφ21(u)φ1(u)|u|2k14Ωwk2φ1(u)|w|2+(d+1)2k1Ωwkφ21(u)φ1(u)|u|2, (3.7)

    and

    χ1(k1)Ωwk1φ1(u)wuk14Ωwk2φ1(u)|w|2+χ21(k1)Ωwkφ1(u)|u|2, (3.8)
    χ2(k1)Ωwk1φ1(u)wvk14Ωwk2φ1(u)|w|2+χ21(k1)Ωwkφ1(u)|v|2. (3.9)

    Again,

    χ2Ωwkφ1(u)uvϵ2χ2Ωwkφ1(u)|u|2+χ22ϵΩwkφ1(u)|v|2Ωwkφ1(u)|u|2+χ224Ωwkφ1(u)|v|2. (3.10)

    Substituting (3.7)–(3.10) into (3.6), one has

    1kddtΩwkφ1(u)+(k1)4Ωwk2φ1(u)|w|2+dk+Ωwkφ1(u)|u|2(d+1)2k1Ωwkφ21(u)φ1(u)|u|2+χ21(k1)Ωwkφ1(u)|u|2+χ1Ωwkφ1(u)|u|2+χ21(k1)Ωwkφ1(u)|v|2+χ1Ωwkφ1(u)|u|2+χ224χ1Ωwkφ1(u)|v|2+CΩwkφ1(u)+2β21kΩwkφ1(u)u2. (3.11)

    Now, we multiply the third equation of (1.3) by φ2(v), we have

    1kddtΩwkφ2(v)=Ωwk1φ2(v)wt+1kΩwkφ2(v)vtΩwk1φ2(v)Δwχ1Ωwk1φ2(v)(wu)χ2Ωwk1φ2(v)(wv)+CΩwkφ2(v)+ηdkΩwkφ2(v)Δv+rkΩwkφ2(v)v(k1)Ωwk2φ2(u)|w|2(ηd+1)Ωwk1φ2(v)wv+χ1(k1)Ωwk1φ2(v)wu+χ1Ωwkφ2(v)vu+χ2(k1)Ωwk1φ2(v)wv+χ2Ωwkφ2(v)|v|2+B3Ωwkφ2(v)+2rβ22kΩwkφ2(v)v2. (3.12)

    By using Young's inequality, we arrive at

    (ηd+1)Ωwk1φ2(v)wvk14Ωwk2φ2(v)|w|2+(ηd+1)2k1Ωwkφ22(v)φ2(v)|v|2, (3.13)

    and

    χ1(k1)Ωwk1φ2(v)wuk14Ωwk2φ2(v)|w|2+χ21(k1)Ωwkφ2(v)|u|2 (3.14)
    χ2(k1)Ωwk1φ2(v)wvk14Ωwk2φ2(v)|w|2+χ22(k1)Ωwkφ2(v)|v|2 (3.15)
    χ1Ωwkφ2(v)uvϵχ12Ωwkφ2(v)|u|2+χ12ϵwkφ2(v)|v|2Ωwkφ2(v)|v|2+χ214Ωwkφ2(v)|u|2. (3.16)

    Substituting (3.13)–(3.16) into (3.12), we derive that

    1kddtΩwkφ2(v)+(k1)4Ωwk2φ2(u)|w|2+ηdkΩwkφ2(v)|v|2(ηd+1)2k1Ωwkφ22(v)φ2(v)|v|2+χ21(k1)Ωwkφ2(v)|u|2+χ2Ωwkφ2(v)|v|2+χ214χ2Ωwkφ2(v)|u|2+χ22(k1)Ωwkφ2(v)|v|2+χ2Ωwkφ2(v)|v|2+CΩwkφ2(v)+2rβ22kΩwkφ2(v)v2. (3.17)

    Now, adding (3.11) and (3.17), the resulting inequality becomes

    1kddtΩwkφ1(u)+1kddtΩwkφ2(v)+k14Ωwk2φ1(u)|w|2+k14Ωwk2φ2(v)|w|2+dkΩwkφ1(u)|u|2+dkΩwkφ2(v)|v|2(d+1)2k1Ωwkφ21(u)φ1(u)|u|2+χ21(k1)Ωwkφ1(u)|u|2+(1+χ1)Ωwkφ1(u)|u|2+χ22(k1)Ωwkφ1(u)|v|2+χ224Ωwkφ1(u)|v|2+B3Ωwkφ1(u)+2β21kΩwkφ1(u)u2+(ηd+1)2k1Ωwkφ22(v)φ2(v)|v|2+χ21(k1)Ωwkφ2(v)|u|2+χ22(k1)Ωwkφ2(v)|v|2+(1+χ2)Ωwkφ2(v)|v|2+χ214Ωwkφ2(v)|u|2+CΩwkφ2(v)+2rβ22kΩwkφ2(v)v2. (3.18)

    Now, we do some computation to show that the terms involving |u|2 and |v|2 on the right-hand side of above inequality are dominated by Ωwkφ1|u|2 and Ωwkφ2|v|2, respectively. For s0, define

    j1(s)=(d+1)2(k1)φ21(u)φ1(u)=4β41s2φ21(s)k1, j2(s)=χ21(k1)φ1(s),j3(s)=2(1+χ1)β21sφ1(s) (3.19)
    j4(s)=χ21(k1)φ2(s), j5(s)=χ21β22sφ2(s)2,j6(s)=2dkβ21φ1(s)+4dkβ41s2φ1(s) (3.20)

    and

    i1(s)=4(ηd+1)2β42s2φ2(s)(k1), i2(s)=χ22(k1)φ1(s), i3(s)=χ22β21sφ1(s)2 (3.21)
    i4(s)=χ22(k1)φ2(s), i5(s)=2(1+χ2)β22sφ2(s). (3.22)

    Now, combining (3.19) and (3.20), one has

    (d+1)2k1Ωwkφ21(u)φ1(u)|u|2+χ21(k1)Ωwkφ1(u)|u|2+(1+χ1)Ωwkφ1(u)|u|2+χ21(k1)Ωwkφ2(v)|u|2+χ214Ωwkφ2(v)|u|2dkΩwkφ1(u)|u|2. (3.23)

    Similarly, we combine (2.1) and (2.2), we have that

    χ22(k1)Ωwkφ1(u)|v|2+χ224Ωwkφ1(u)|v|2+(ηd+1)2k1Ωwkφ22(v)φ2(v)|v|2+χ22(k1)Ωwkφ2(v)|v|2+(1+χ2)Ωwkφ2(v)|v|2dkΩwkφ2(v)|v|2. (3.24)

    Substituting (2.5) and (3.24) into (3.18), one has

    1kddtΩwkφ1(u)+1kddtΩwkφ2(v)+k14Ωwk2φ1(u)|w|2+k14Ωwk2φ1(v)|w|2B3Ωwkφ1(u)+2β21kΩwkφ1(u)u2+B3Ωwkφ2(v)+2rβ22kΩwkφ2(v)v2(C+2β21K20k)Ωwkφ1(u)+(B3+2rβ22K21k)Ωwkφ2(v)c1Ωwkφ1(u)+c2Ωwkφ2(v) (3.25)

    where c1=C+2β21K20k and c2=C+2rβ22K21k. Using Lemma 2.1, Lemma 2.2, and (3.3), we get the estimate

    Ωwkφ1(u)h1Ωwk=h1wk22L2h1C4wk22aW1,2wk22(1a)L2khC4(C5wk2L2+wk2L2)2awk22(1a)L2kh1C4C5(wk2L2+wk2k2L1)2awk(1a)L1h1C4C5(uk2L2+Kk22)2aKk(1a)2C6(uk22L2+1)a, (3.26)

    where a=kn2n2kn2+1n2(0,1). Now using the fact (3.3) and from (3.26), one can obtain

    Ωwk2φ1(u)|w|2Ωwk2|w|24k2Ω|wk2|24k2[1C1/a6(Ωwkφ1(u))1a1]4k2C1/a6(Ωwkφ1(u))1a4k2. (3.27)

    Similarly, we get

    Ωwk2φ2(v)|w|2Ωwk2|w|24k2C1/a7(Ωwkφ2(v))1a4k2. (3.28)

    From (3.27) and (3.28), we have

    1kddtΩwkφ1(u)+1kddtΩwkφ2(v)(k1)k2C1a6(Ωwkφ1(u))1a(k1)k2C1a7(Ωwkφ2(v))1a+2(k1)k2 (3.29)

    for all t(0,Tmax) and where 1a>1. Set y(t):=1kΩwk(φ1(u)+φ2(v)). By using the inequality xp+ypn1p(x+y)p,p1, we get

    y(t)C8y1a(t)+2(k1)k2    for all t(0,Tmax), (3.30)

    where C8:=min{(k1)k2C1a6,(k1)k2C1a7}n11a and 1a>1. By using Lemma 2.3 and the fact that (3.3), one has

    w(,t)Lk(Ωwk(φ1(u)+φ2(v)))1kC (3.31)

    for all t(0,Tmax), where C(u0,v0,C8,τ)>0. The proof of Lemma 3.1 is complete.

    Lemma 3.2. Let (u,v,w) be a solution of the system (1.3). Then, there exists a positive constant c>0, such that

    w(,t)Lc for all t(0,Tmax). (3.32)

    Proof. To obtain the L bound of w, we use the semigroup estimates. In order to do this, we first obtain that for any τ(0,Tmax), there exists a constant C > 0 , such that

    \begin{align} \|(u(\cdot, t), v(\cdot, t))\|_{W^{1, \infty}} \leqslant C(\tau) \ \mbox{for all}\ t\in(\tau, T_{max}) \end{align} (3.33)

    Let \tau\in (0, T_{max}) be given such that \tau < 1 and also let q: = n+1 and \theta\in \bigg(\frac{1}{2}(1+\frac{n}{q}), 1\bigg). To begin with, we rewrite the first equation of (1.3) as follows:

    \begin{align} u_t = d\Delta u-u+g(x, t), \end{align} (3.34)

    with g(x, t): = u(1-u)- \frac{a_1uw}{1+a_2u+a_3v}+u. Then, by Lemma 3.1 and the fact that 0 < u \leqslant K_0, 0 < v \leqslant K_1 (see Lemma 2.5) and \frac{a_1u}{1+a_2u+a_3v} \leqslant \tilde{K} , \tilde{K} > 0 , we have

    \begin{align} \|g(x, t)\|_{L^q} = &\|u(1-u)- \frac{a_1uw}{1+a_2u+a_3v}+u\|_{L^q}\\ & \leqslant K_0(1+K_0)|\Omega|^{\frac{1}{q}}+a_1\tilde{K}\|w(\cdot, t)\|_{L^q} +K_0|\Omega|^{\frac{1}{q}}\\ & \leqslant [ K_0(1+K_0)+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}\|w(\cdot, t)\|_{L^q}\\ & \leqslant K_0[ 2+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}\|w(\cdot, t)\|_{L^q}\\ & \leqslant K_0[ 2+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}c_0. \end{align} (3.35)

    We apply the variation-of-constants formula to (3.34) and obtain

    \begin{align} u(\cdot, t) = e^{-t(A_d+1)}u_0+\int_0^te^{-(A_d+1)(t-s)}g(\cdot, s)\mathrm{d}s, \end{align} (3.36)

    where A_d = -d\Delta . Then using (2.6), (2.7) and the estimate (3.35) in (3.36), one can derive

    \begin{align} \|u(\cdot, t)\|_{W^{1, \infty}} \leqslant& C_1 \|(A_d+1)^\theta u(\cdot, t)\|_{L^q}\\ \leqslant &C_1 t^{-\theta} e^{-\mu t}\|u_0\|_{L^q}+ C_1\int_0^t (t-s)^{-\theta} e^{-\mu(t-s)}\|g(\cdot, s)\|_{L^q}\mathrm{d}s\\ & \leqslant C_1 t^{-\theta}e^{-\mu t} \|u_0\|_{L^q(\Omega)}+C_1\int_0^t (t-s)^{-\theta} e^{-\mu(t-s)} [K_0[ 2+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}c_0]\mathrm{d}s\\ & \leqslant C_1 t^{-\theta}e^{-\mu t} \|u_0\|_{L^q(\Omega)} +C_1 [K_0[ 2+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}c_0] \int_0^\infty \sigma^{-\theta}e^{-\mu \sigma}\mathrm{d}\sigma\\ & \leqslant C_1 t^{-\theta} \|u_0\|_{L^q(\Omega)} +C_1 [K_0[ 2+K_0]|\Omega|^{\frac{1}{q}}+a_1\tilde{K}c_0] \mu^{\theta}\Gamma(1-\theta)\\ & \leqslant C_1t^{-\theta}+C_1 \end{align} (3.37)

    for all t\in (\tau, T_{max}) , where \Gamma(1-\theta) > 0. From the last inequality (3.37), we get the desired estimate

    \begin{align} \|u(\cdot, t)\|_{W^{1, \infty}} \leqslant C_1 (\tau^{-\theta}+1): = C(\tau)\ \mbox{for all }\ t\in (\tau, T_{max}). \end{align} (3.38)

    where C_1 is a generic constant which may vary line to line. Next, we obtain the bound for \|v(\cdot, t)\|_{W^{1, \infty}}. To this end, we rewrite the second equation of (1.3) as follows:

    \begin{align} v_t = \eta d\Delta v-v+h(x, t), \end{align} (3.39)

    with h(x, t): = rv(1-v)- \frac{a_4vw}{1+a_2u+a_3v}+v. Then, by Lemma 3.1 and the fact that 0 < u \leqslant K_0, 0 < v \leqslant K_1 (see Lemma 2.5) and \frac{a_4v}{1+a_2u+a_3v} \leqslant \overline{K} , \overline{K} > 0 , we have

    \begin{align} \|h(x, t)\|_{L^q} = &\|rv(1-v)- \frac{a_4vw}{1+a_2u+a_3v}+v\|_{L^q}\\ & \leqslant K_1(r(1+K_1)+1)|\Omega|^{\frac{1}{q}}+a_4\overline{K}\|w(\cdot, t)\|_{L^q} \\ & \leqslant K_1(r(1+K_1)+1)|\Omega|^{\frac{1}{q}}+a_4\overline{K} c_0. \end{align} (3.40)

    We apply the variation-of-constants formula to (3.34) and obtain

    \begin{align} v(\cdot, t) = e^{-t(A_{\eta d}+1)}v_0+\int_0^te^{-(A_{\eta d}+1)(t-s)}h(\cdot, s)\mathrm{d}s. \end{align} (3.41)

    Then, using (2.6), (2.7) and the estimate (3.40) in (3.41), we find

    \begin{align} \|v(\cdot, t)\|_{W^{1, \infty}} \leqslant& C_1 \|(A_{\eta d}+1)^\theta v(\cdot, t)\|_{L^q}\\ \leqslant &C_1 t^{-\theta} e^{-\mu t}\|v_0\|_{L^q}+ C_1\int_0^t (t-s)^{-\theta} e^{-\mu(t-s)}\|h(\cdot, s)\|_{L^q}\mathrm{d}s\\ & \leqslant C_1 t^{-\theta}e^{-\mu t} \|v_0\|_{L^q(\Omega)}+C_1\int_0^t (t-s)^{-\theta} e^{-\mu(t-s)} [K_1(r(1+K_1)+1)|\Omega|^{\frac{1}{q}}+a_4\overline{K} c_0]\mathrm{d}s\\ & \leqslant C_1 t^{-\theta}e^{-\mu t} \|v_0\|_{L^q(\Omega)} +C_1 [K_1(r(1+K_1)+1)|\Omega|^{\frac{1}{q}}+a_4\overline{K} c_0] \int_0^\infty \sigma^{-\theta}e^{-\mu \sigma}\mathrm{d}\sigma\\ & \leqslant C_1 t^{-\theta} \|v_0\|_{L^q(\Omega)} +C_1 [K_1(r(1+K_1)+1)|\Omega|^{\frac{1}{q}}+a_4\overline{K} c_0] \mu^{\theta}\Gamma(1-\theta)\\ & \leqslant C_1t^{-\theta}+C_1 \end{align} (3.42)

    for all t\in (\tau, T_{max}) where \Gamma(1-\theta) > 0. From the last inequality (3.42), we obtain

    \begin{align} \|v(\cdot, t)\|_{W^{1, \infty}} \leqslant C_1 (\tau^{-\theta}+1): = C(\tau)\ \mbox{for all }\ t\in (\tau, T_{max}). \end{align} (3.43)

    Next we derive the L^\infty - bound of w(\cdot, t) . We rewrite the third equation of (1.3) as follows:

    \begin{align} w_t = \Delta w-w-\nabla\cdot(\chi_1 w\nabla u+\chi_2w\nabla v)+ \frac{a_5uw}{1+a_2u+a_3v}+\frac{a_6vw}{1+a_2u+a_3v} +w -\mu w. \end{align} (3.44)

    Then, applying the variation-of-constants formula to (3.44), one has

    \begin{align} w(\cdot, t) = &e^{-t(A+1)}w_0-\chi_1\int_0^te^{-(t-s)(A+1)}\nabla\cdot(w\nabla u)\mathrm{d}s-\chi_2\int_0^te^{-(t-s)(A+1)}\nabla\cdot(w\nabla v)\mathrm{d}s\\ &+\int_0^te^{-(t-s)(A+1)}f(u, v, w)\mathrm{d}s: = I_1+I_2+I_3+I_4, \end{align} (3.45)

    where f(u, v, w) = \frac{a_5uw+a_6vw}{1+a_2u+a_3v}+(1-\mu)w. Now, we take the L^\infty -norm on both sides of the above equation, we have

    \begin{align} \|w(\cdot, t)\|_{L^\infty} \leqslant \|I_1\|_{L^\infty}+\|I_2\|_{L^\infty}+\|I_3\|_{L^\infty}+\|I_4\|_{L^\infty}. \end{align} (3.46)

    First, we estimate the term I_1 as follows:

    \begin{align} \|I_1\|_{L^\infty} \leqslant C_2 \tau^{-\theta} e^{-\mu t}\|u_0\|_{L^\infty} \leqslant C_2 \tau^{-\theta} \|u_0\|_{L^\infty} \end{align} (3.47)

    for all t\in (\tau, T_{max}) and \theta\in(\frac{n}{2q}, 1) and \mu > 0. In order to estimate the term I_2 , we set m = 0, q = n+1, p = \infty for (2.8) and we use (3.33) and (3.1), one has

    \begin{align} \|I_2\|_{L^\infty}& \leqslant C_3 \chi_1\int_0^t \|(A+1)^\theta e^{-(t-s)(A+1)}\nabla\cdot(w\nabla u)\|_{L^q}\mathrm{d}s\\ & \leqslant C_3\chi_1 \int_0^t e^{-(t-s)}\|(A+1)^\theta e^{-(t-s)A}\nabla\cdot(w\nabla u)\|_{L^q}\mathrm{d}s\\ & \leqslant C_4 \int_0^t (t-s)^{\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)(t-s)}\|w\nabla u\|_{L^q}\mathrm{d}s\\ & \leqslant C_0C_3C(\tau)\int_0^t (t-s)^{\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)(t-s)}\mathrm{d}s\\ & \leqslant C_4 \int_0^\infty \rho^{-\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)\rho}\mathrm{d}\rho\\ & \leqslant C_5\Gamma(\frac{1}{2}-\theta-\epsilon), \end{align} (3.48)

    where \Gamma(\frac{1}{2}-\theta-\epsilon) is a Gamma function which is positive since \frac{1}{2}-\theta-\epsilon > 0 and \mu, C_5 > 0.

    Next, we obtain the bound for I_3. As in the estimate of I_2, we set m = 0, q = n+1, p = \infty for (2.8) and we use (3.33) and (3.1), one has

    \begin{align} \|I_3\|_{L^\infty}& \leqslant C_3 \chi_1\int_0^t \|(A+1)^\theta e^{-(t-s)(A+1)}\nabla\cdot(w\nabla v)\|_{L^q}\mathrm{d}s\\ & \leqslant C_3\chi_2 \int_0^t e^{-(t-s)}\|(A+1)^\theta e^{-(t-s)A}\nabla\cdot(w\nabla v)\|_{L^q}\mathrm{d}s\\ & \leqslant C_6 \int_0^t (t-s)^{\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)(t-s)}\|w\nabla v\|_{L^q}\mathrm{d}s\\ & \leqslant C_0C_6C(\tau)\int_0^t (t-s)^{\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)(t-s)}\mathrm{d}s\\ & \leqslant C_7 \int_0^\infty \rho^{-\theta-\frac{1}{2}-\epsilon}e^{-(\mu+1)\rho}\mathrm{d}\rho\\ & \leqslant C_8\Gamma(\frac{1}{2}-\theta-\epsilon), \end{align} (3.49)

    where \Gamma(\frac{1}{2}-\theta-\epsilon) is a Gamma function which is positive since \frac{1}{2}-\theta-\epsilon > 0 and \mu, C_8 > 0. Finally, we obtain the bound for I_4 . To this end, we use (2.6) and (2.7) and let m = 1, p = (n, \infty] and q = n+1 . Hence, we can choose \theta\in (\frac{1}{2}(1-\frac{n}{p}+\frac{n}{q}), 1) . Then one has

    \begin{align} \|I_4\|_{W^{1, p}} & \leqslant C_1\|(A+1)^\theta I_4\|_{L^q}\\ & \leqslant C_1C_2\int_0^t (t-s)^{-\theta}e^{-\nu t} \|f(u, v, w)\|_{L^q}\mathrm{d}s. \end{align} (3.50)

    Using the fact that 0 < u \leqslant K_0, 0 < v \leqslant K_1 and(3.1), we can get

    \begin{align} \bigg\| \frac{a_5uw+a_6vw}{1+a_2u+a_3v}+(1-\mu)w\bigg\|_{L^q}& \leqslant \tilde{K}\|w\|_{L^q}+(1+\mu)\|w\|_{L^q}\\ & \leqslant [\tilde{K}+(1+\mu)]\|w\|_{L^q}\\ & \leqslant [\tilde{K}+(1+\mu)] C(\tau) \end{align} (3.51)

    for all t\in (\tau, T_{max}). Hence, we have

    \begin{align} \|I_4\|_{W^{1, p}} & \leqslant C_1C_2[\tilde{K}+(1+\mu)] C(\tau) \int_0^t (t-s)^{-\theta}e^{-\nu t} \mathrm{d}s\\ & \leqslant C_1C_2[\tilde{K}+(1+\mu)] C(\tau) \int_0^\infty \sigma^{-\theta}e^{-\nu t}\mathrm{d}\sigma\\ & \leqslant C_1C_2[\tilde{K}+(1+\mu)] C(\tau) \nu^\theta \Gamma(1-\theta) \end{align} (3.52)

    for all t\in (\tau, T_{max}) and where \Gamma(1-\theta) is a Gamma function and it is positive since 1-\theta > 0 and \nu > 0. Since p > n , Sobolev embedding theorem yields that

    \begin{align} \|I_4\|_{L^{\infty}} \leqslant C_9 \ \mbox{for all}\ \ t\in (\tau, T_{max}). \end{align} (3.53)

    Substituting the estimates (3.47), (3.48), (3.49), (3.53) into (3.46) which yields (3.32). Hence, this completes the proof.

    Proof of Theorem 1.1. From Lemma 2.5, we obtain \|(u(\cdot, t), v(\cdot, t))\|_{L^\infty(\Omega)} \leqslant C . Further, we also obtain the bound for \|w(\cdot, t)\|_{L^\infty} from Lemma 3.2. By noticing these results now, we can conclude that

    \begin{align} \|u(\cdot, t)\|_{L^\infty}+\|v(\cdot, t)\|_{L^\infty}+\|w(\cdot, t)\|_{L^\infty} \leqslant c\ \mbox{for all} \ t\in (0, T_{max}), \end{align} (3.54)

    where c is a positive constant. From the criterion (2.9), we obtain that T_{max} = \infty and hence \|u(\cdot, t)\|_{L^\infty}+\|v(\cdot, t)\|_{L^\infty}+\|w(\cdot, t)\|_{L^\infty} \leqslant c\ \mbox{for all} \ t\in (0, \infty). The proof of Theorem 1.1 is complete.

    In this section, we shall prove the global stability of solutions of (1.3) by constructing some suitable Lyapunov functionals, and then we use the LaSalle's principle.

    Lemma 4.1. Let (u, v, w) be the solution of (1.3) and let \Gamma_1 = \frac{(a_5(1+a_3-a_2a_6))}{a_1(1+a_2+a_3)}, \Gamma_2 = \frac{(a_6(1+a_2)-a_3a_5)}{a_4(1+a_2+a_3)}. Then, if \mu \geqslant \frac{a_5+a_6}{1+a_2+a_3} and a_4 < \frac{a_1r(a_5+a_3a_5-a_2a_6)}{a_3a_5-a_6-a_2a_6} , it holds that

    \begin{align} \lim\limits_{t\rightarrow \infty}(\|u(\cdot, t)-1\|_{L^\infty}+\|v(\cdot, t)-1\|_{L^\infty}+\|w(\cdot, t)\|_{L^\infty}) = 0. \end{align} (4.1)

    Proof. Let us define the energy functional

    \begin{align} \mathcal{E}(t): = \Gamma_1\int_\Omega (u-1-\ln u)+\Gamma_2\int_\Omega (v-1-\ln v)+\int_\Omega w. \end{align} (4.2)

    First we need to prove that \mathcal{E}(t) \geqslant 0 and \mathcal{E}(t) = 0 iff (u, v, w) = (1, 1, 0). To this end, let \psi(x) = x-g_*\ln x and by Taylor's formula, one has

    \begin{align*} g-g_*-g_*\ln\frac{g}{g_*} = &\psi(g)-\psi(g_*) = \psi'(g_*)(g-g_*)+\frac{1}{2}\psi''(\delta)(g-g_*)^2\\ & = \frac{g_*}{2\delta^2}(g-g_*), \end{align*}

    where we choose \delta in between g_* and g. Now putting g = u and g_* = 1 in the last equation, we have

    u-1-\ln u = \frac{1}{2\delta^2}(u-1)^2 \geqslant 0.

    Similarly, we can show that

    v-1-\ln v = \frac{1}{2\delta^2}(v-1)^2 \geqslant 0.

    Therefore, we get \mathcal{E}(u, v, w) = \mathcal{E}(1, 1, 0) = 0 and \mathcal{E}(u, v, w) \geqslant 0 for (u, v, w)\neq (1, 1, 0). Differentiating (4.2) with respect to t , and then substituting equations from (1.3), we have

    \begin{align} \frac{\mathrm{d}\mathcal{E}(t)}{\mathrm{d}t} = &\Gamma_1\int_\Omega \frac{u-1}{u}u_t+\Gamma_2\int_\Omega \frac{v-1}{u}v_t+\int_\Omega w_t\\ = & -\Gamma_1d\int_\Omega \frac{|\nabla u|^2}{u^2}+\Gamma_1\int_\Omega \bigg[1-u-\frac{a_1w}{1+a_2u+a_3v}\bigg](u-1)+\Gamma_2\eta d\int_\Omega \frac{|\nabla v|^2}{v^2}\\ &+\Gamma_2\int_\Omega \bigg[r(1-v)-\frac{a_4w}{1+a_2u+a_3v}\bigg](v-1)+\int_\Omega \bigg[ \frac{a_5u+a_6v}{1+a_2u+a_3v}-\mu\bigg]w\\ \leqslant & -\Gamma_1d\int_\Omega \frac{|\nabla u|^2}{u^2}+\Gamma_1\int_\Omega \bigg[1-u-\frac{a_1w}{1+a_2u+a_3v}\bigg](u-1)-\Gamma_2\eta d\int_\Omega \frac{|\nabla v|^2}{v^2}\\ &+\Gamma_2\int_\Omega \bigg[r(1-v)-\frac{a_4w}{1+a_2u+a_3v}\bigg](v-1)+\int_\Omega \bigg[ \frac{a_5u+a_6v}{1+a_2u+a_3v}-\frac{a_5+a_6}{1+a_2+a_3}\bigg]w\\ \leqslant & -\Gamma_1d\int_\Omega \frac{|\nabla u|^2}{u^2}+\Gamma_1\int_\Omega \bigg[1-u-\frac{a_1w}{1+a_2u+a_3v}\bigg](u-1)-\Gamma_2\eta d\int_\Omega \frac{|\nabla v|^2}{v^2}\\ &+\Gamma_2\int_\Omega \bigg[r(1-v)-\frac{a_4w}{1+a_2u+a_3v}\bigg](v-1)\\ &+\int_\Omega \bigg[ \frac{a_5(u-1)+a_3a_5(u-v)}{(1+a_2u+a_3v)(1+a_2+a_3)}+\frac{a_6(v-1)+a_2a_6(v-u)}{(1+a_2+a_3)(1+a_2u+a_3v)}\bigg]w. \end{align} (4.3)

    By using the assumptions of \Gamma_1 and \Gamma_2 in (4.3), one has

    \begin{align} \frac{\mathrm{d}\mathcal{E}(t)}{\mathrm{d}t} \leqslant -\Gamma_1d\int_\Omega \frac{|\nabla u|^2}{u^2}-\Gamma_2\eta d\int_\Omega \frac{|\nabla v|^2}{v^2}-\Gamma_1\int_\Omega(u-1)^2-\Gamma_2r\int_\Omega(v-1)^2, \end{align} (4.4)

    which yields

    \begin{align} \frac{\mathrm{d}\mathcal{E}(t)}{\mathrm{d}t} \leqslant 0, \end{align} (4.5)

    for all (u, v, w) and also the equality holds when (u, v, w) = (1, 1, 0). At last, the LaSalle's invariance principle (cf. [43], Theorem 3) yields that the solutions (u, v, w) converge to the constant steady state (1, 1, 0) as time t\rightarrow \infty .

    Lemma 4.2. Let \Gamma_1 = \frac{a_5+(a_3a_5-a_2a_6)v_*}{a_1(1+a_2u_*+a_3v_*)} and \Gamma_2 = \frac{a_6+(a_2a_6-a_3a_5)u_*}{a_4(1+a_2u_*+a_3v_*)} be positive constants. Let (u, v, w) be the solution of (1.3). If \mu < \frac{a_5+a_6}{1+a_2+a_3}, a_4 > \frac{a_1r(a_5+a_3a_5-a_2a_6)}{a_3a_5-a_6-a_2a_6} and

    \begin{align} \frac{\Gamma_1(2a_2+a_3)}{2}+\frac{\Gamma_2a_2r}{2} < \Gamma_1+\frac{\Gamma_1(2a_2+a_3)u_*}{2}+\frac{\Gamma_2a_2rv_*}{2}, \end{align} (4.6)
    \begin{align} \frac{\Gamma_2r(2a_3+a_2)}{2}+\frac{\Gamma_1a_3}{2} < r\Gamma_2+\frac{\Gamma_2r(2a_3+a_2)v_*}{2}+\frac{\Gamma_1a_3u_*}{2}, \end{align} (4.7)
    \begin{align} 4d\Gamma_1\Gamma_2\eta u_*v_* > \Gamma_1\chi_2^2u_*w_*K_1^2+\chi_1^2\eta \Gamma_2K_0^2v_*w_*, \end{align} (4.8)

    then it holds that

    \begin{align} \lim\limits_{t\rightarrow \infty} (\|u(\cdot, t)-u_*\|_{L^\infty}+\|v(\cdot, t)-v_*\|_{L^\infty}+\|w(\cdot, t)-w_*\|_{L^\infty}) = 0. \end{align} (4.9)

    Proof. The coexistence steady state (u_*, v_*, w_*) of (1.3) satisfies equations

    \begin{align*} (1- u_*)-\frac{a_1 w_*}{1+a_2 u_*+a_3 v_*} = 0, \\ r(1- v_*)-\frac{a_4 w_*}{1+a_2 u_*+a_3 v_*} = 0, \\ -\mu +\frac{a_5 u_*}{1+a_2 u_*+a_3 v_*}+\frac{a_6 v_*}{1+a_2 u_*+a_3 v_*} = 0.\\ \end{align*}

    Let us define the Lyapunov functional \mathcal{E}(u, v, w) as

    \begin{align} \mathcal{E}(u, v, w): = \Gamma_1\mathcal{F}_1(t)+\Gamma_2\mathcal{F}_2(t)+\mathcal{F}_3(t), \end{align} (4.10)

    where

    \begin{align} \mathcal{F}_1(t) = \int_\Omega u- u_*- u_* \mbox{log}\left(\frac{u}{ u_*}\right), \mathcal{F}_2(t) = \int_\Omega v- v_*- v_* \mbox{log}\left(\frac{v}{ v_*}\right), \mathcal{F}_3(t) = \int_\Omega w- w_*- w_* \mbox{log}\left(\frac{w}{ w_*}\right). \end{align} (4.11)

    Next, we take the derivative of \mathcal{E}(t) with respect to t along the trajectory of the system (1.3) and we obtain

    \begin{align} \frac{ \mathrm{d} \mathcal{E}(t)}{ \mathrm{d} t} = \Gamma_1\frac{ \mathrm{d} \mathcal{F}_1(t)}{ \mathrm{d} t}+\Gamma_2\frac{ \mathrm{d} \mathcal{F}_2(t)}{ \mathrm{d} t}+\frac{ \mathrm{d} \mathcal{F}_3(t)}{ \mathrm{d} t} : = \Gamma_1I_1+\Gamma_2I_2+I_3. \end{align} (4.12)

    Using the definition of \mathcal{F}_1(t) , the first equation of (1.3) and the fact that (1- u_*)-\frac{a_1 w_*}{1+a_2 u_*+a_3 v_*} = 0 , we estimate the term I_1 as follows:

    \begin{align} I_1 = &\int_\Omega \frac{u- u_*}{u}\left(d\Delta u+u(1-u)-\frac{a_1uw}{1+a_2u+a_3v}\right)\\ = &- u_*\int_\Omega\frac{|\nabla u|^2}{u^2}+\int_\Omega (u- u_*)\left(1-u-\frac{a_1w}{1+a_2u+a_3v}-1+ u_*+\frac{a_1 w_*}{1+a_2 u_*+a_3 v_*}\right)\\ = &- u_* d\int_\Omega\frac{|\nabla u|^2}{u^2}+\int_\Omega (u- u_*)\left(-(u- u_*)-\frac{a_1w(1+a_2 u_*+a_3 v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\right.\\ &\left.+\frac{a_1 w_*(1+a_2u+a_3v)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\right)\\ = &- u_* d\int_\Omega\frac{|\nabla u|^2}{u^2}-\int_\Omega (u- u_*)^2+\int_\Omega\frac{[-a_1w(1+a_2 u_*+a_3 v_*)](u- u_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &+\frac{[a_1 w_*(1+a_2u+a_3v)](u- u_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.13)

    Now, let us simplify the numerator in the integrand of the third integral on the R.H.S. of (4.13) as follows:

    \begin{align} [-a_1w(1+a_2 u_*+a_3 v_*)](u- u_*) +&[a_1 w_*(1+a_2u+a_3v)](u- u_*)\\ = &[-a_1(w- w_*)+a_1a_2(u w_*-w u_*) +a_1a_3( w_* v-w v_*)](u- u_*)\\ = &[-a_1(w- w_*)+a_1a_2(u w_*+ u_* w_*- u_* w_*-w u_*)\\ &+a_1a_3( w_* v+ v_* w_*- v_* w_*-w v_*)](u- u_*)\\ = &-a_1(w- w_*)(u- u_*)+a_1a_2\Big( w_*(u- u_*)- u_*(w- w_*)\Big)(u- u_*)\\ &+a_1a_3\Big( w_* (v- v_*)- v_*(w- w_*)\Big)(u- u_*). \end{align} (4.14)

    Substituting (4.14) into the last integral on the R.H.S of (4.13), we obtain

    \begin{align} \int_\Omega\frac{\left[-a_1w(1+a_2 u_*+a_3 v_*)+a_1 w_*(1+a_2u+a_3v)\right](u- u_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)} = \int_\Omega \frac{a_1a_2 w_*(u- u_*)^2}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)} \end{align} (4.15)
    \begin{align} -\int_\Omega\frac{a_1[1+a_2 u_*+a_3 v_*](u- u_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}+\int_\Omega \frac{a_1a_3 w_*(u- u_*)(v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.16)

    Again, inserting (4.16) into (4.13), we end up with

    \begin{align} I_1 = &- u_* d\int_\Omega\frac{|\nabla u|^2}{u^2}-\int_\Omega (u- u_*)^2+\int_\Omega \frac{a_1a_2 w_*(u- u_*)^2}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &-\int_\Omega \frac{a_1[1+a_2 u_*+a_3 v_*](u- u_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}+\int_\Omega \frac{a_1a_3 w_*(u- u_*)(v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\\\ = &- u_* d\int_\Omega\frac{|\nabla u|^2}{u^2}+\int_\Omega \left(\frac{a_1a_2 w_*}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}-1\right)(u- u_*)^2\\ &-\int_\Omega\frac{a_1[1+a_2 u_*+a_3 v_*](u- u_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}+\int_\Omega\frac{a_1a_3 w_*(u- u_*)(v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.17)

    Similarly, we estimate the term I_2. Using the definition of \mathcal{F}_2(t) , the second equation of (1.3) and the fact that r(1- v_*)-\frac{a_4 w_*}{1+a_2 u_*+a_3 v_*} = 0, we estimate I_2 as follows:

    \begin{align} I_2 = &\int_\Omega \frac{v- v_*}{v}\left(\eta d\Delta v+rv(1-v)-\frac{a_4vw}{1+a_2u+a_3v}\right)\\ = &- v_* \eta d\int_\Omega\frac{|\nabla v|^2}{v^2}+\int_\Omega (v- v_*)\left(-rv-\frac{a_4w}{1+a_2u+a_3v}+r v_*+\frac{a_4 w_*}{1+a_2 u_*+a_3 v_*}\right)\\ = &- v_* \eta d\int_\Omega\frac{|\nabla v|^2}{v^2}+\int _\Omega(v- v_*)\left(-r(v- v_*)-\frac{a_4w(1+a_2 u_*+a_3 v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\right.\\ &\left.+\frac{a_4 w_*(1+a_2u+a_3v)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\right)\\ = &- v_* \eta d\int_\Omega\frac{|\nabla v|^2}{v^2}-r\int_\Omega (v- v_*)^2+\int_\Omega \frac{[-a_4w(1+a_2 u_*+a_3 v_*)](v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &+\frac{[a_4 w_*(1+a_2u+a_3v)](v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.18)

    Now, let us simplify the numerator in the integrand of the third integral on the R.H.S. of (4.18) as follows:

    \begin{align} [-a_4w(1+a_2 u_*+a_3 v_*)&+a_4 w_*(1+a_2u+a_3v)](u- u_*) = a_3a_4 w_*(v- v_*)^2\\ &-a_4[1+a_2 u_*+a_3 v_*](v- v_*)(w- w_*)+a_2a_4 w_*(u- u_*)(v- v_*). \end{align} (4.19)

    Substituting (4.19) into (4.18) and simplifying, we obtain

    \begin{align} I_2 = &- v_* \eta d\int_\Omega\frac{|\nabla v|^2}{v^2}-r\int (v- v_*)^2+\int_\Omega \frac{a_2a_3 w_*(v- v_*)^2}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &-\int_\Omega\frac{a_4[1+a_2 u_*+a_3 v_*](v- v_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}+\int_\Omega\frac{a_2a_4 w_*(u- u_*)(v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ = &- v_* \eta d\int_\Omega \frac{|\nabla v|^2}{v^2}+\int_\Omega \left(\frac{a_2a_3 w_*}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}-r\right)(v- v_*)^2\\ &-\int_\Omega\frac{a_4[1+a_2 u_*+a_3 v_*](v- v_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}+\int_\Omega\frac{a_2a_4 w_*(u- u_*)(v- v_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.20)

    Finally, we estimate the term I_3. Using the definition of \mathcal{F}_3(t) , the third equation of (1.3) and the fact that -\mu +\frac{a_5 u_*}{1+a_2 u_*+a_3 v_*}+\frac{a_6 v_*}{1+a_2 u_*+a_3 v_*} = 0 , we find

    \begin{align} I_3 = &\int_\Omega \frac{w- w_*}{w}\left(\Delta w-\chi_1\nabla\cdot(w\nabla u)-\chi_2\nabla\cdot(w\nabla v)\right)\\ &+\int_\Omega (w- w_*)\left(-\mu+\frac{a_5u+a_6v}{1+a_2u+a_3v}\right)\\ = &- w_*\int_\Omega\frac{|\nabla w|^2}{w^2}+\chi_1 w_*\int_\Omega\frac{\nabla u\nabla w}{w}+\chi_2 w_*\int_\Omega\frac{\nabla v\nabla w}{w}\\ &+\int_\Omega (w- w_*)\left(\frac{a_5u+a_6v}{1+a_2u+a_3v} -\frac{a_5 u_*+a_6 v_*}{1+a_2 u_*+a_3 v_*}\right). \end{align} (4.21)

    Further, we simplify the numerator in the integrand of the third integral on the R.H.S. of (4.21), one has that

    \begin{align*} (a_5u+a_6v)&(1+a_2 u_*+a_3 v_*)-(a_5 u_*+a_6 v_*)(1+a_2u+a_3v)\nonumber\\ = &a_5(u- u_*)+a_6(v- v_*)+a_3a_5[ v_*(u- u_*)- u_*(v- v_*)]+a_2a_6[ u_*(v- v_*)- v_*(u- u_*)]\\ = &[a_5+(a_3a_5-a_2a_6) v_*](u- u_*)+[a_6+(a_2a_6-a_3a_5) u_*](v- v_*). \end{align*}

    Now, we rewrite the fourth term in the R.H.S of (4.21) using the above estimate, we obtain

    \begin{align} \int_\Omega (w- w_*)\left(\frac{a_5u+a_6v}{1+a_2u+a_3v}-\frac{a_5 u_*+a_6 v_*}{1+a_2 u_*+a_3 v_*}\right) = &\int_\Omega\frac{[a_5+(a_3a_5-a_2a_6) v_*](u- u_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &+\int_\Omega \frac{[a_6+(a_2a_6-a_3a_5) u_*](v- v_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.22)

    Substituting (4.22) into (4.21), we have

    \begin{align} I_3 = &- w_*\int_\Omega\frac{|\nabla w|^2}{w^2}+\chi_1 w_*\int_\Omega\frac{\nabla u\cdot\nabla w}{w}+\chi_2 w_*\int_\Omega\frac{\nabla v\cdot\nabla w}{w}+\int_\Omega \frac{[a_5+(a_3a_5-a_2a_6) v_*](u- u_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}\\ &+\int_\Omega \frac{[a_6+(a_2a_6-a_3a_5) u_*](v- v_*)(w- w_*)}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}. \end{align} (4.23)

    Furthermore, inserting (4.17), (4.20) and (4.23) into (4.12) and let p(u, v) = \frac{1}{(1+a_2u+a_3v)(1+a_2 u_*+a_3 v_*)}, we arrive at

    \begin{align} \frac{ \mathrm{d} \mathcal{E}(t)}{ \mathrm{d} t} = &- u_* d\Gamma_1\int_\Omega\frac{|\nabla u|^2}{u^2}- v_* \eta d\Gamma_2\int_\Omega\frac{|\nabla v|^2}{v^2}-w_*\int_\Omega\frac{|\nabla w|^2}{w^2} +\chi_1 w_*\int_\Omega\frac{\nabla u\cdot\nabla w}{w} +\chi_2 w_*\int_\Omega\frac{\nabla v\cdot\nabla w}{w}\\ &+\Gamma1\int_\Omega\bigg(\frac{a_1a_2w_*}{p(u, v)}-1\bigg)(u-u_*)^2 +w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)\int_\Omega \frac{(u-u_*)(v-v_*)w_*}{p(u, v)}\\ &+\Gamma_2\int_\Omega\bigg(\frac{a_4a_3w_*}{p(u, v)}-r\bigg)(v-v_*)^2. \end{align} (4.24)

    Applying the Cauchy's inequality, we get

    \begin{align} \int_\Omega \frac{(u-u_*)(v-v_*)}{p(u, v)} \leqslant \frac{1}{2}\int_\Omega \frac{(u-u_*)^2}{p(u, v)}+\frac{1}{2}\int_\Omega \frac{(v-v_*)^2}{p(u, v)}. \end{align} (4.25)

    Inserting the last inequality (4.25) into (4.24), and letting Z = (\frac{|\nabla u|}{u}, \frac{|\nabla v|}{v}, \frac{|\nabla w|}{w}) , we obtain

    \begin{align} \frac{ \mathrm{d} \mathcal{E}(t)}{ \mathrm{d} t} \leqslant &\underbrace{- u_* d\Gamma_1\int_\Omega\frac{|\nabla u|^2}{u^2}- v_* \eta d\Gamma_2\int_\Omega\frac{|\nabla v|^2}{v^2}-w_*\int_\Omega\frac{|\nabla w|^2}{w^2} +\chi_1 w_*\int_\Omega\frac{\nabla u\cdot\nabla w}{w} +\chi_2 w_*\int_\Omega\frac{\nabla v\cdot\nabla w}{w}}_{I_4}\\ &+\Gamma_1\int_\Omega\bigg(\frac{a_1a_2w_*}{p(u, v)}-1\bigg)(u-u_*)^2 +\frac{w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2}\int_\Omega \frac{(u-u_*)^2}{p(u, v)}\\ &+\frac{w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2} \int_\Omega \frac{(v-v_*)^2}{p(u, v)} +\Gamma_2\int_\Omega\bigg(\frac{a_3a_4w_*}{p(u, v)}-r\bigg)(v-v_*)^2\\ & \leqslant I_4+ \int_\Omega \bigg( \frac{2\Gamma_1a_1a_2w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2p(u, v)}-\Gamma_1\bigg)(u-u_*)^2\\ &+\int_\Omega \bigg(\frac{2\Gamma_2a_3a_4w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2p(u, v)}-r\Gamma_2\bigg) (v-v_*)^2, \end{align} (4.26)

    where

    I_4 = -\int_\Omega Z^T BZ,

    and the symmetric matrix is denoted by

    \begin{align} B = \begin{bmatrix} d \Gamma_1 u_*& 0& - \frac{\chi_1 w_* u}{2}\\ 0& \eta d \Gamma_2 v_*& - \frac{\chi_2 w_* v}{2}\\ - \frac{\chi_1 w_* u}{2}& - \frac{\chi_2 w_* v}{2}& w_* \end{bmatrix}. \end{align} (4.27)

    The above matrix B is positive definite if (4.8) holds. Therefore, we check that

    \begin{align} \begin{vmatrix}d d\Gamma_1 u_*& 0& \\ 0& \eta d \Gamma_2 v_* \end{vmatrix} = d^2\eta^2\Gamma^2u_*v_* > 0 \end{align} (4.28)

    and

    \begin{align} |B|& = \frac{dw_*}{4}[ 4d\Gamma_1\Gamma_2\eta u_*v_*-\Gamma_1\chi_2^2u_*w_*v^2-\chi_1^2\eta \Gamma _2u^2v_*w_*] > 0. \end{align} (4.29)

    Hence, there exists a positive constant \alpha , such that

    \begin{align} \frac{ \mathrm{d} \mathcal{E}(t)}{ \mathrm{d} t} \leqslant &-\alpha \int_\Omega \bigg( \frac{|\nabla u|^2}{u^2}+\frac{|\nabla v|^2}{v^2}+\frac{|\nabla w|^2}{w^2}\bigg) +\int_\Omega \bigg( \frac{2\Gamma_1a_1a_2w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2p(u, v)}-\Gamma_1\bigg)(u-u_*)^2\\ &+\int_\Omega \bigg(\frac{2\Gamma_2a_2a_3w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2p(u, v)}-r\Gamma_2\bigg) (v-v_*)^2. \end{align} (4.30)

    Noting the facts that 1-u_*-\frac{a_1w_*}{1+a_2u_*+a_3v_*} = 0 and r(1-v_*)-\frac{a_4w_*}{1+a_2u_*+a_3v_*} = 0 , one has that

    \begin{align*} -\Gamma_1+\frac{2\Gamma_1a_1a_2w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2(1+a_2u+a_3v)(1+a_2u_*+a_3v_*)} & \leqslant -\Gamma_1+\frac{2\Gamma_1a_1a_2w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2(1+a_2u_*+a_3v_*)}\nonumber\\ & = -\Gamma_1+\Gamma_1a_2(1-u_*)+\frac{\Gamma_2a_2r(1-v_*)}{2}+\frac{\Gamma_1a_3(1-u_*)}{2}\\ & \leqslant 0, \end{align*}

    and

    \begin{align*} -r\Gamma_2+\frac{2\Gamma_2a_2a_3w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2 a_2a_4)}{2p(u, v)}& \leqslant -r \Gamma_2+\frac{2\Gamma_2a_2a_3w_*+w_*(\Gamma_1 a_1a_3+\Gamma_2a_2a_4)}{2(1+a_2u_*+a_3v_*)}\nonumber\\ & = -r\Gamma_2+\Gamma_2a_3r(1-v_*)+\frac{\Gamma_1a_3(1-u_*)}{2}+\frac{\Gamma_2a_2r(1-v_*)}{2}\\ & \leqslant 0, \end{align*}

    where we used the assumptions (4.6) and (4.7). Hence, we can conclude that

    \begin{align} \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t) \leqslant& -c \int_\Omega \bigg(\frac{|\nabla u|^2}{u^2}+\frac{|\nabla v|^2}{v^2}+\frac{|\nabla w|^2}{w^2}\bigg), \end{align} (4.31)

    which yields that \frac{\mathrm{d}}{\mathrm{d}t}\mathcal{E}(t) \leqslant 0 for all u, v, w and the equality holds if \nabla u = \nabla v = \nabla w = 0 . Therefore by applying LaSalle's invariance principle (cf. [43], Theorem 3) we can say that the solutions of (1.3) converges to the coexistence steady state (u_*, v_*, w_*) as time t\rightarrow \infty .

    Proof of Theorem 1.2. Theorem 1.2 is a consequence of Lemma 4.1 and Lemma 4.2.

    Remark 4.1. We note that the condition (4.8) is a strong requirement, which implies that \chi_1 and \chi_2 have to be small enough.

    The author is grateful to the referees for insightful comments which largely help improve the exposition of this paper. The author also thanks Prof. Zhi-An Wang from Hong Kong Polytechnic University for the fruitful discussions and valuable suggestions. This work was supported by the Postdoc Matching Fund Schemes of the Hong Kong Polytechnic University (Project ID P0036730 and a/c no. W18M).

    The author declares that there are no conflicts of interest.



    [1] N. Sapoukhina, Y. Tyutyunov, R. Arditi, The role of prey taxis in biological control: A spatial theoretical model, Am. Nat., 162 (2003), 61–76. https://doi.org/10.1086/375297 doi: 10.1086/375297
    [2] A. Mondal, A. K. Pal, P. Dolai, G.P. Samanta, A system of two competitive prey species in presence of predator under the influence of toxic substances, Filomat, 36 (2) (2022), 361–385. https://doi.org/10.2298/FIL2202361M doi: 10.2298/FIL2202361M
    [3] M. A. Ragusa, A. Razani, Existence of a periodic solution for a coupled system of differential equations, in AIP Conference Proceedings, AIP Publishing LLC, 2022, 370004. https://doi.org/10.1063/5.0081381
    [4] J. Tian, P. Liu, Global dynamics of a modified Leslie-Gower predator-prey model with Beddington-DeAngelis functional response and prey-taxis, Elec. Res. Arch., 30 (2022), 929–942. https://doi.org/10.3934/era.2022048 doi: 10.3934/era.2022048
    [5] P. Kareiva, G. T. Odell, Swarms of predators exhibit preytaxis if individual predators use area-restricted search, Am. Nat., 130 (1987), 233–270.
    [6] J. R. Beddington, Mutual interference between parasites or predators and its effect on searching efficiency, J. Anim. Ecol., 44 (1975), 331–340.
    [7] D. L. DeAngelis, R. A. Goldstein, R. V. O'Neill, A model for tropic interaction, Ecology, 56 (1975), 881–892. https://doi.org/10.2307/1936298 doi: 10.2307/1936298
    [8] P. A. Abrams, L. R. Ginzburg, The nature of predation: prey dependent, ratio dependent or neither?, Trends Ecol. Evol., 15 (2000), 337–341. https://doi.org/10.1016/S0169-5347(00)01908-X doi: 10.1016/S0169-5347(00)01908-X
    [9] B. Ainseba, M. Bendahmane, A. Noussair, A reaction-diffusion system modeling predator-prey with prey-taxis, Nonlinear Anal. Real World Appl., 9 (2008), 2086–2105. https://doi.org/10.1016/j.nonrwa.2007.06.017 doi: 10.1016/j.nonrwa.2007.06.017
    [10] M. Bendahmane, Analysis of a reaction-diffusion system modeling predator-prey with prey-taxis, Netw. Heterog. Media, 3 (2008), 863–879. https://doi.org/10.3934/nhm.2008.3.863 doi: 10.3934/nhm.2008.3.863
    [11] Y. Cai, Q. Cao, Z. A. Wang, Asymptotic dynamics and spatial patterns of a ratio-dependent predator-prey system with prey-taxis, Appl. Anal., 101 (2022), 81–99. https://doi.org/10.1080/00036811.2020.1728259 doi: 10.1080/00036811.2020.1728259
    [12] H. Y. Jin, Z. A. Wang, Global dynamics and spatio-temporal patterns of predator-prey systems with density-dependent motion, Eur. J. Appl. Math., 32 (2021), 652–682. https://doi.org/10.1017/S0956792520000248 doi: 10.1017/S0956792520000248
    [13] D. Li, Global stability in a multi-dimensional predator-prey system with prey-taxis, Discrete Contin. Dyn. Syst. Ser., 41 (2021), 1681–1705. https://doi.org/10.3934/dcds.2020337 doi: 10.3934/dcds.2020337
    [14] S. Li, R. Mu, Positive steady-state solutions for predator-prey systems with prey-taxis and Dirichlet conditions, Nonlinear Anal. Real World Appl., 68 (2022), 103669. https://doi.org/10.1016/j.nonrwa.2022.103669 doi: 10.1016/j.nonrwa.2022.103669
    [15] D. Luo, Global bifurcation for a reaction-diffusion predator-prey model with Holling-Ⅱ functional response and prey-taxis, Chaos Soliton. Fract., 147 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
    [16] X. L. Wang, W. D. Wang, G. H. Zhang, Global bifurcation of solutions for a predator-prey model with prey-taxis, Math. Methods Appl. Sci., 3 (2014), 431–443. https://doi.org/10.1002/mma.3079 doi: 10.1002/mma.3079
    [17] T. Xiang, Global dynamics for a diffusive predator-prey model with prey-taxis and classical Lotka-Volterra kinetics, Nonlinear Anal. Real World Appl., 39 (2018) 278–299. https://doi.org/10.1016/j.nonrwa.2017.07.001 doi: 10.1016/j.nonrwa.2017.07.001
    [18] L. Zhang, S. Fu, Global bifurcation for a Holling Tanner predator-prey model, Nonlinear Anal. Real World Appl., 47 (2019), 460–472. https://doi.org/10.1016/j.nonrwa.2018.12.002 doi: 10.1016/j.nonrwa.2018.12.002
    [19] X. He, S. Zheng, Global boundedness of solutions in a reaction-diffusion system of predator-prey model with prey-taxis, Appl. Math. Lett., 49 (2015), 73–77. https://doi.org/10.1016/j.aml.2015.04.017 doi: 10.1016/j.aml.2015.04.017
    [20] W. Choi, I. Ahn, Predator invasion in predator-prey model with prey-taxis in spatially heterogeneous environment, Nonlinear Anal. Real World Appl., 65 (2022), 103495. https://doi.org/10.1016/j.nonrwa.2021.103495 doi: 10.1016/j.nonrwa.2021.103495
    [21] H. Y. Jin, Z. A. Wang, Global stability of prey-taxis systems, J. Differ. Equation, 262 (2017), 1257–1290. https://doi.org/10.1016/j.jde.2016.10.010 doi: 10.1016/j.jde.2016.10.010
    [22] Y. Tao, Global existence of classical solutions to a predator-prey model with nonlinear prey-taxis, Nonlinear Anal. Real World Appl., 11 (2010), 2056–2064. https://doi.org/10.1016/j.nonrwa.2009.05.005 doi: 10.1016/j.nonrwa.2009.05.005
    [23] S. N. Wu, J. P. Shi, B. Y. Wu, Global existence of solutions and uniform persistence of a diffusive predator-prey model with prey-taxis, J. Differ. Equation, 260 (2016), 5847–5874. https://doi.org/10.1016/j.jde.2015.12.024 doi: 10.1016/j.jde.2015.12.024
    [24] J. Wang, M. X. Wang, Boundedness and global stability of the two-predator and one-prey models with nonlinear prey-taxis, Z. Angew. Math. Phys. 69 (2018), 63. https://doi.org/10.1007/s00033-018-0960-7 doi: 10.1007/s00033-018-0960-7
    [25] Z. Feng, M. Zhang, Boundedness and large time behavior of solutions to a prey-taxis system accounting in liquid surrounding, Nonlinear Anal., Real World Appl., 57 (2021), 103197. https://doi.org/10.1016/j.nonrwa.2020.103197 doi: 10.1016/j.nonrwa.2020.103197
    [26] E. C. Haskel, J. Bell, Pattern formation in a predator-mediated coexistence model with prey-taxis, Dis. Cont. Dyn. Sys., 25 (2020), 2895–2921. https://doi.org/10.3934/dcdsb.2020045 doi: 10.3934/dcdsb.2020045
    [27] E. C. Haskel, J. Bell, Bifurcation analysis for a one predator and two prey model with prey-taxis, J. Bio. Sys., 29, 495–524. https://doi.org/10.1142/S0218339021400131
    [28] X. Xu, Y. Wang, Y. Wang, Local bifurcation of a Ronsenzwing-MacArthur predator prey model with two prey-taxis, Math. Bio. Eng., 16 (2019), 1786–1797. https://doi.org/10.3934/mbe.2019086 doi: 10.3934/mbe.2019086
    [29] H. Y. Jin, Z. A. Wang, L. Y. Wu, Global dynamics of a three species spatial food chain model, J. Differ. Equation, 333 (2022), 144–183. https://doi.org/10.1016/j.jde.2022.06.007 doi: 10.1016/j.jde.2022.06.007
    [30] X. D. Zhao, F. Y. Yang, W. T. Li, Traveling waves for a nonlocal dispersal predator-prey model with two preys and one predator, Z. Angew. Math. Phys., 73 (2022), 124. https://doi.org/10.1007/s00033-022-01753-5 doi: 10.1007/s00033-022-01753-5
    [31] P. Amorim, R. B\ddot{u}rger, R. Ordo\tilde{n}ez, L. M. Villada, Global existence in a food chain model consisting of two competitive preys, one predator and chemotaxis, Nonlinear Anal. Real World Appl., 69 (2023), 103703. https://doi.org/10.1016/j.nonrwa.2022.103703 doi: 10.1016/j.nonrwa.2022.103703
    [32] Y. Min, C. Song, Z. Wang, Boundedness and global stability of the predator -prey model with prey-taxis and competition, Nonlinear Anal. Real World Appl., 66 (2022), 103521. https://doi.org/10.1016/j.nonrwa.2022.103521 doi: 10.1016/j.nonrwa.2022.103521
    [33] X. Wang, R. Li, Y. Shi, Global generalized solutions to a three species predator-prey model with prey-taxis, Discrete Contin. Dyn. Syst. Ser.-B, 27 (2022), 7012–7042. https://doi.org/10.3934/dcdsb.2022031 doi: 10.3934/dcdsb.2022031
    [34] H. Y. Jin, Z. A. Wang, Global stabilization of the full attraction-repulsion Keller-Segel system, Discrete Conti. Dyn. Sys., 40 (2020), 3509–3527. https://doi.org/10.3934/dcds.2020027 doi: 10.3934/dcds.2020027
    [35] P. Liu, J. P. Shi, Z. A. Wang, Pattern formation of the attraction-repulsion Keller-Segel system, Discrete Contin. Dyn. Syst-Series B, 18 (10) (2013), 2597–2625. https://doi.org/10.3934/dcdsb.2013.18.2597 doi: 10.3934/dcdsb.2013.18.2597
    [36] M. Luca, A. Chavez-Ross, L. Edelstein, A. Mogilner, Chemotactic signalling, microglia, and Alzheimer's disease senile plaques: is there a connection?, Bull. Math. Biol., 65 (2021), 110975. https://doi.org/10.1016/j.chaos.2021.110975 doi: 10.1016/j.chaos.2021.110975
    [37] H. Amann, Dynamic theory of quasilinear parabolic equations. Ⅱ. Reaction-diffusion systems, Differ. Integral. Equation, 3 (1990), 13–75.
    [38] H. Amann, Nonhomogeneous linear and quasilinear elliptic and parabolic boundary value problems, in Function Spaces, Differential Operators and Nonlinear Analysis, Springer Fachmedien, (1993), 13–75. https://doi.org/10.1007/978-3-663-11336-2_1
    [39] D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equation, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
    [40] C. Jin, Boundedness and global solvability to a chemotaxis-haptotaxis model with slow and fast diffusion, Dis. Cont. Dyn. Sys. B, 23 (2018), 1675–1688. https://doi.org/10.3934/dcdsb.2018069 doi: 10.3934/dcdsb.2018069
    [41] H. Amann, Dynamic theory of quasilinear parabolic systems Ⅲ. Global existence, Math. Z., 202 (1989), 219–250. https://doi.org/10.1007/BF01215256 doi: 10.1007/BF01215256
    [42] M. Winkler, Absence of collapse in parabolic chemotaxis system with signal-dependent sensitivity, Math. Z., 283 (2010), 1664–1673. https://doi.org/10.1002/mana.200810838 doi: 10.1002/mana.200810838
    [43] J. LaSalle, Some extensions of Liapunov's second method, IRE Trans. Circuit Theory, 7 (1960), 520–527. https://doi.org/10.1109/TCT.1960.1086720 doi: 10.1109/TCT.1960.1086720
  • Reader Comments
  • © 2023 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2273) PDF downloads(177) Cited by(0)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog