This paper mainly focuses on the dynamics behavior of a three-component chemotaxis system on alopecia areata
{ut=Δu−χ1∇⋅(u∇w)+w−μ1u2,x∈Ω,t>0,vt=Δv−χ2∇⋅(v∇w)+w+ruv−μ2v2,x∈Ω,t>0,wt=Δw+u+v−w,x∈Ω,t>0,∂u∂ν=∂v∂ν=∂w∂ν=0,x∈∂Ω,t>0,u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x∈Ω,
where Ω⊂Rn (n≥4) is a bounded convex domain with smooth boundary ∂Ω, the parameters χi, μi (i=1,2), and r are positive. We show that this system exists a globally bounded classical solution if μi(i=1,2) is large enough. This result extends the corresponding results which were obtained by Lou and Tao (JDE, 2021) to the higher-dimensional case.
Citation: Wenjie Zhang, Lu Xu, Qiao Xin. Global boundedness of a higher-dimensional chemotaxis system on alopecia areata[J]. Mathematical Biosciences and Engineering, 2023, 20(5): 7922-7942. doi: 10.3934/mbe.2023343
[1] | Maurizio Verri, Giovanna Guidoboni, Lorena Bociu, Riccardo Sacco . The role of structural viscoelasticity in deformable porous media with incompressible constituents: Applications in biomechanics. Mathematical Biosciences and Engineering, 2018, 15(4): 933-959. doi: 10.3934/mbe.2018042 |
[2] | Ziad Khan, Hari Mohan Srivastava, Pshtiwan Othman Mohammed, Muhammad Jawad, Rashid Jan, Kamsing Nonlaopon . Thermal boundary layer analysis of MHD nanofluids across a thin needle using non-linear thermal radiation. Mathematical Biosciences and Engineering, 2022, 19(12): 14116-14141. doi: 10.3934/mbe.2022658 |
[3] | K. Maqbool, S. Shaheen, A. M. Siddiqui . Effect of nano-particles on MHD flow of tangent hyperbolic fluid in a ciliated tube: an application to fallopian tube. Mathematical Biosciences and Engineering, 2019, 16(4): 2927-2941. doi: 10.3934/mbe.2019144 |
[4] | Wei-wei Jiang, Xin-xin Zhong, Guang-quan Zhou, Qiu Guan, Yong-ping Zheng, Sheng-yong Chen . An automatic measurement method of spinal curvature on ultrasound coronal images in adolescent idiopathic scoliosis. Mathematical Biosciences and Engineering, 2020, 17(1): 776-788. doi: 10.3934/mbe.2020040 |
[5] | Bei Liu, Wenbin Tan, Xian Zhang, Ziqi Peng, Jing Cao . Recognition study of denatured biological tissues based on multi-scale rescaled range permutation entropy. Mathematical Biosciences and Engineering, 2022, 19(1): 102-114. doi: 10.3934/mbe.2022005 |
[6] | Wei Lin, Fengshuang Yang . Computational analysis of cutting parameters based on gradient Voronoi model of cancellous bone. Mathematical Biosciences and Engineering, 2022, 19(11): 11657-11674. doi: 10.3934/mbe.2022542 |
[7] | Cornel M. Murea, H. G. E. Hentschel . A finite element method for growth in biological development. Mathematical Biosciences and Engineering, 2007, 4(2): 339-353. doi: 10.3934/mbe.2007.4.339 |
[8] | Jianhua Song, Lei Yuan . Brain tissue segmentation via non-local fuzzy c-means clustering combined with Markov random field. Mathematical Biosciences and Engineering, 2022, 19(2): 1891-1908. doi: 10.3934/mbe.2022089 |
[9] | Ewa Majchrzak, Mikołaj Stryczyński . Dual-phase lag model of heat transfer between blood vessel and biological tissue. Mathematical Biosciences and Engineering, 2021, 18(2): 1573-1589. doi: 10.3934/mbe.2021081 |
[10] | Xu Guo, Yuanming Jing, Haizhou Lou, Qiaonv Lou . Effect and mechanism of long non-coding RNA ZEB2-AS1 in the occurrence and development of colon cancer. Mathematical Biosciences and Engineering, 2019, 16(6): 8109-8120. doi: 10.3934/mbe.2019408 |
This paper mainly focuses on the dynamics behavior of a three-component chemotaxis system on alopecia areata
{ut=Δu−χ1∇⋅(u∇w)+w−μ1u2,x∈Ω,t>0,vt=Δv−χ2∇⋅(v∇w)+w+ruv−μ2v2,x∈Ω,t>0,wt=Δw+u+v−w,x∈Ω,t>0,∂u∂ν=∂v∂ν=∂w∂ν=0,x∈∂Ω,t>0,u(x,0)=u0(x), v(x,0)=v0(x), w(x,0)=w0(x),x∈Ω,
where Ω⊂Rn (n≥4) is a bounded convex domain with smooth boundary ∂Ω, the parameters χi, μi (i=1,2), and r are positive. We show that this system exists a globally bounded classical solution if μi(i=1,2) is large enough. This result extends the corresponding results which were obtained by Lou and Tao (JDE, 2021) to the higher-dimensional case.
In the last several decades, the kinetic theory of polyatomic gases witnessed extensive interest due to its vigorous relation with a wide range of practical applications including spacecraft flights, hypersonic flights and aerodynamics [1], plasma physics [20], thermal sciences [13,23], combustion processes, and chemical reactors. In the context of polyatomic gases, Borgnakke and Larsen proposed a microscopic model [6]. Later on, an entropic kinetic model consistent with [6] has been derived [8]. This model originates from the Boltzmann equation, which was a breakthrough in the kinetic theory, and offered an accurate description of the gas flow.
However, it is usually expensive and cumbersome to solve the Boltzmann equation directly. As an alternative to the Boltzmann equation, kinetic theory provides macroscopic models for not too large Knudsen numbers. These models are derived as approximations to the Boltzmann equation and offer high computational speed and explicit equations for macroscopic variables, which are helpful for understanding and analyzing the flow behavior. Macroscopic models are classically obtained by Chapman-Enskog method [5] and moments method [22,18]. Using the Chapman-Enskog method, Nagnibeda and Kustova [19] studied the strong vibrational nonequilibrium in diatomic gases and reacting mixture of polyatomic gases, and derived the first-order distribution function and governing equations. Cai and Li [10] extended the NRxx model to polyatomic gases using the ES-BGK model of [2] and [9]. In [24], the existence result of the ES-BGK model was achieved in the case where the solution lies close to equilibrium.
Simplified Boltzmann models for mixtures of polyatomic gases have also been proposed in [3,12]. The authors of [4] developed a generalized macroscopic 14 field theory for the polyatomic gases, based on the methods of extended thermodynamics [18]. In the full non-linear Boltzmann equation, Gamba and Pavić-Čolić [15] established existence and uniqueness theory in the space homogeneous setting.
The relation of the kinetic theory with the spectral theory was initiated by Grad [17], who was behind the history of serious investigation of the spectral properties of the linearized Boltzmann operator for monoatomic gases. With his pioneering work, Grad showed that the linearized collision operator
In fact, diatomic gases gain a solid importance due to the fact that in the upper atmosphere of the earth, the diatomic molecules Oxygen (
The plan of the document is the following: In section 2, we give a brief recall on the collision model [8], which describes the microscopic state diatomic gases. In section 3, we define the linearized operator
For the sake of clarity, we present the model in [8] on which our work is mainly based. We start with physical conservation equations and proceed as follows.
Without loss of generality, we first assume that the particle mass equals unity, and we denote as usual by
v+v∗=v′+v′∗ | (1) |
12v2+12v2∗+I+I∗=12v′2+12v′2∗+I′+I′∗. | (2) |
From the above equations, we can deduce the following equation representing the conservation of total energy in the center of mass reference frame:
14(v−v∗)2+I+I∗=14(v′−v′∗)2+I′+I′∗=E, |
with
14(v′−v′∗)2=REI′+I′∗=(1−R)E, |
and
I′=r(1−R)EI′∗=(1−r)(1−R)E. |
Using the above equations, we can express the post-collisional velocities in terms of the other quantities by the following
v′≡v′(v,v∗,I,I∗,ω,R)=v+v∗2+√RETω[v−v∗|v−v∗|]v′∗≡v′∗(v,v∗,I,I∗,ω,R)=v+v∗2−√RETω[v−v∗|v−v∗|], |
where
14(v−v∗)2=R′EI+I∗=(1−R′)E, |
and
I=r′(1−R′)EI∗=(1−r′)(1−R′)E. |
Finally, the post-collisional energies can be given in terms of the pre-collisional energies by the following relation
I′=r(1−R)r′(1−R′)II′∗=(1−r)(1−R)(1−r′)(1−R′)I∗. |
The Boltzmann equation for an interacting single polyatomic gas reads
∂tf+v.∇xf=Q(f,f), | (3) |
where
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗(I′I′∗)α−ff∗(II∗)α)×B×(r(1−r))α(1−R)2α×IαIα∗(1−R)R1/2dRdrdωdI∗dv∗, | (4) |
where we use the standard notations
Q(f,f)(v,I)=∫R3×R+×S2×(0,1)2(f′f′∗−ff∗)×B×(1−R)R1/2dRdrdωdI∗dv∗, | (5) |
The function
B(v,v∗,I,I∗,r,R,ω)=B(v∗,v,I∗,I,1−r,R,−ω),B(v,v∗,I,I∗,r,R,ω)=B(v′,v′∗,I′,I′∗,r′,R′,ω). | (6) |
Main assumptions on
Together with the above assumption (6), we assume the following boundedness assumptions on the collision cross section
C1φ(R)ψ(r)|ω.(v−v∗)|v−v∗||(|v−v∗|γ+Iγ2+Iγ2∗)≤B(v,v∗,I,I∗,r,R,ω), | (7) |
and
B(v,v∗,I,I∗,r,R,ω)≤C2φ˜α(R)ψ˜β(r)(|v−v∗|γ+Iγ2+Iγ2∗), | (8) |
where for any
ψp(r)=(r(1−r))p,and φp(R)=(1−R)p. |
In addition,
φ(R)≤φ˜α(R),and ψ(r)≤ψ˜β(r), | (9) |
and
We remark that the above assumptions (7) and (8) are compatible with Maxwell molecules, hard spheres and hard potentials in the monoatomic case.
We state first the H-theorem for diatomic gases which was initially established for polyatomic gases in [8]. Namely, suppose that the positivity assumption of
D(f)=∫R3∫R+Q(f,f)logfdIdv≤0, |
and the following are equivalent
1. The collision operator
2. The entropy production vanishes, i.e.
3. There exists
f(v,I)=n(2πkT)32kTe−1kT(12(v−u)2+I), | (10) |
where
Mn,u,T(v,I)=n(2πκT)32kTe−1κT(12(v−u)2+I), | (11) |
where
n=∫R3∫R+fdIdv,nu=∫R3∫R+vfdIdv,52nT=∫R3∫R+((v−u)22+I)fdIdv. |
Without loss of generality, we will consider in the sequel a normalized version
M(v,I)=M1,0,1(v,I)=1(2π)32e−12v2−I. |
We look for a solution
f(v,I)=M(v,I)+M12(v,I)g(v,I). | (12) |
The linearization of the Boltzmann operator (5) around
Lg=M−12[Q(M,M12g)+Q(M12g,M)], |
In particular,
Lg=M−12∫Δ[M′M′12∗g′∗−MM12∗g∗+M′12M′∗g′−M12M∗g]B(1−R)R1/2drdRdωdI∗dv∗. | (13) |
Thanks to the conservation of total energy (2) we have
L(g)=−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM∗g(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. |
Here,
L=K−νId, |
where
Kg=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗+∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗−∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (14) |
and
ν(v,I)=∫ΔBM∗(1−R)R1/2drdRdωdI∗dv∗, | (15) |
which represents the collision frequency. We write also
K1=∫ΔBM12M12∗g∗(1−R)R1/2drdRdωdI∗dv∗, | (16) |
K2=∫ΔBM12∗M′12g′∗(1−R)R1/2drdRdωdI∗dv∗, | (17) |
and
K3=∫ΔBM12∗M′12∗g′(1−R)R1/2drdRdωdI∗dv∗. | (18) |
The linearized operator
kerL=M1/2span {1,vi,12v2+I}i=1,⋯,3. |
Since
Dom(ν Id)={g∈L2(R3×R+):νg∈L2(R3×R+)}, |
then
We give now the main result on the linearized Boltzmann operator based on the assumptions of the collision cross section (8) and (7). In particular, using (7) we prove that the multiplication operator by
We state the following theorem, which is the main result of the paper.
Theorem 4.1. The operator
We carry out the proof of the coercivity of
Proof. Throughout the proof, we prove the compactness of each
Compactness of
k1(v,I,v∗,I∗)=1(2π)32∫S2×(0,1)2Be−14v2∗−14v2−12I∗−12I(1−R)R1/2drdRdω, |
and therefore
K1g(v,I)=∫R3×R+g(v∗,I∗)k1(v,I,v∗,I∗)dI∗dv∗∀(v,I)∈R3×R+. |
If
Lemma 4.2. With the assumption (8) on
Proof. Applying Cauchy-Schwarz we get
||k1||2L2≤c∫R3∫R+∫R3∫R+(Iγ+Iγ∗+|v−v∗|2γ)e−12v2∗−12v2−I∗−IdIdvdI∗dv∗≤c∫R3e−12v2∗[∫|v−v∗|≤1e−12v2dv+∫|v−v∗|≥1|v−v∗|⌈2γ⌉e−12v2dv]dv∗≤c∫R3e−12v2∗[∫|v−v∗|≥1⌈2γ⌉∑k=0|v|k|v∗|⌈2γ⌉−ke−12v2dv]dv∗≤c⌈2γ⌉∑k=0∫R3|v∗|⌈2γ⌉−ke−12v2∗[∫R3|v|ke−12v2dv]dv∗<∞, |
where
This implies that
Compactness of
Lemma 4.3. Let
σ=Tω(v−v∗|v−v∗|)=v−v∗|v−v∗|−2v−v∗|v−v∗|.ωω, | (19) |
then the Jacobian of the
dω=dσ2|σ−v−v∗|v−v∗||. |
Proof. It's enough to assume that
dσω:R3⟼R3→ω⟶→σ=−2⟨v−v∗|v−v∗|,→ω⟩ω−2⟨v−v∗|v−v∗|,ω⟩→ω. | (20) |
Let
Gram=|→σ1|2|→σ2|2−⟨→σ1,→σ2⟩2, |
where
|→σ1|2=4(⟨v−v∗|v−v∗|,→ω1⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4|v−v∗|v−v∗||2=4,|→σ2|2=4(⟨v−v∗|v−v∗|,→ω2⟩2+⟨v−v∗|v−v∗|,ω⟩2)=4⟨v−v∗|v−v∗|,ω⟩2, |
and
⟨σ1,σ2⟩=0. |
As a result,
Gram=16⟨v−v∗|v−v∗|,ω⟩2=4|σ−v−v∗|v−v∗||2. |
We thus write
K2g(v,I)=∫Δe−I∗2−12r(1−R)((v−v∗)24+I+I∗)−14v2∗−14(v+v∗2+√R(14(v−v∗)2+I+I∗)σ)2×g(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗])1(2π)32(1−R)R12B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗. | (21) |
We seek first to write
h:R3×R+⟼h(R3×R+)⊂R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2−√R(14(v−v∗)2+I+I∗)σ,(1−R)(1−r)[14(v−v∗)2+I+I∗]), |
for fixed
v∗=2x+2√Rayσ−v,I∗=ay−I−(x−v+√Rayσ)2, |
and
v′=x+2√Rayσ,I′=r1−ry, |
where
J=|∂v∗∂I∗∂x∂y|=8(1−r)(1−R), |
and the positivity of
Hv,IR,r,σ=h(R3×R+)={(x,y)∈R3×R+:ay−I−(x−v+√Rayσ)2>0}. | (22) |
In fact,
Hv,IR,r,σ={(x,y)∈R3×R+:x∈Bv−√Rayσ(√ay−I) and y∈((1−r)(1−R)I,+∞)}. |
Therefore, equation (
K2g=1(2π)32∫(0,1)2×S2∫Hv,IR,r,σ(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR. | (23) |
We now point out the kernel form of
Hv,I:={(y,x,σ,r,R)∈Δ:R∈(0,1),r∈(0,1),σ∈S2,x∈Bv−√Rayσ(√ay−I), and y∈((1−r)(1−R)I,+∞)}. |
We remark that
Hv,I=Hv,Ix,y×R3×R+ which is equivalent to Hv,I=(0,1)×(0,1)×S2×Hv,IR,r,σ. |
In other words,
Hv,Ix,y={(r,R,σ)∈(0,1)×(0,1)×S2:(y,x,σ,r,R)∈Hv,I}. | (24) |
Then by Fubini theorem, it holds that
K2g(v,I)=1(2π)32∫Hv,I(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dydxdσdrdR=1(2π)32∫R3×R+∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1g(x,y)×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdRdydx. | (25) |
The kernel of
Lemma 4.4. With the assumption (8) on
k2(v,I,x,y)=1(2π)32∫Hv,Ix,y(1−R)R12JB|σ−v−x−√Rayσ|v−x−√Rayσ||−1×e−ay−I−(x−v+√Rayσ)22−r2(1−r)y−14(2x+2√Rayσ−v)2−14(x+2√Rayσ)2dσdrdR |
is in
Proof. Rewriting
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2(1−R)2RJ2B2×e−[ay−I−(x−v+√RayTω(v−v∗|v−v∗|))2]−r(1−r)y−12(2x+2√RayTω(v−v∗|v−v∗|)−v)2e−12(x+2√RayTω(v−v∗|v−v∗|))2dωdrdRdydxdIdv. |
Writing back in
‖k2‖2L2≤c∫R3∫R+∫R3∫R+∫(0,1)2×S2e−I∗−12v2∗−r(1−R)((v−v∗)24+I)(1−R)2RJB2(v,v∗,I,I∗,r,R,ω)dωdrdRdI∗dv∗dIdv. |
Assumption (8) on
‖k2‖2L2≤c∫(0,1)2∫R3∫R+∫R3∫R+(1−R)2RJ(|v−v∗|2γ+Iγ+Iγ∗)(r(1−r))2˜β(1−R)2˜α×e−I∗−12v2∗−r(1−R)((v−v∗)24+I)dIdvdI∗dv∗drdR≤c∫(0,1)2r2˜β−52−γ(1−r)2˜β−1R(1−R)2˜α−32−γdrdR<∞. |
with
Remark 1. For any
∫R3∫R+∫R3∫R+IaIb∗|v−v∗|ce−I∗−12v2∗−r(1−R)(v−v∗)24−r(1−R)IdIdvdI∗dv∗≤C(∫R+Iae−r(1−R)IdI)(∫R3[∫R3|v−v∗|ce−r(1−R)(v−v∗)24dv]e−12v2∗dv∗)≤C[r(1−R)]−a−1[r(1−R)]−c+32, |
for some constant
The lemma is thus proved, which implies that
Compactness of
K3g(v,I)=∫Δe−I∗2−12(1−r)(1−R)((v−v∗)24+I+I∗)e−14v2∗−14(v+v∗2−√R(14(v−v∗)2+I+I∗)σ)2g(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗])1(2π)32R12(1−R)B|σ−v−v∗|v−v∗||−1drdRdσdI∗dv∗, |
inherits the same form as
˜h:R3×R+⟼R3×R+(v∗,I∗)⟼(x,y)=(v+v∗2+√R(14(v−v∗)2+I+I∗)σ,r(1−R)[14(v−v∗)2+I+I∗]), |
is calculated to be
˜J=8r(1−R). |
The final requirement for the kernel of
∫(0,1)2(1−r)2˜β−52−γr2˜β−1R(1−R)2˜α−32−γdrdR<∞, |
which holds by the change of variable
To this extent, the perturbation operator
We give in this section some properties of
Proposition 1 (Coercivity of
ν(v,I)≥c(|v|γ+Iγ/2+1), |
for any
Proof. The collision frequency (15) is
ν(v,I)=∫ΔBe−I∗−12v2∗drdRdωdI∗dv∗, |
where by
ν(v,I)≥c∫S2∫R3(|v−v∗|γ+Iγ/2)e−12v2∗dωdv∗≥c(Iγ/2+∫R3||v|−|v∗||γe−12v2∗dv∗), |
where
ν(v,I)≥c(Iγ/2+∫|v∗|≤12|v|(|v|−|v∗|)γe−12v2∗dv∗)≥c(Iγ/2+|v|γ∫|v∗|≤12e−12v2∗dv∗)≥c(|v|γ+Iγ/2+1). |
For
ν(v,I)≥c(Iγ/2+∫|v∗|≥2(|v∗|−|v|)γe−12v2∗dv∗)≥c(Iγ/2+∫|v∗|≥2e−12v2∗dv∗)≥c(1+Iγ/2+|v|γ). |
The result is thus proved. We give now the following proposition, which is a generalization of the work of Grad [17], in which he proved that the collision frequency of monoatomic single gases is monotonic based on the choice of the collision cross section
Proposition 2 (monotony of
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω | (26) |
is increasing (respectively decreasing) in
In particular, for Maxwell molecules, where
B(v,v∗,I,I∗,r,R,ω)=Cφ(r)ψ(R)(|v−v∗|γ+Iγ/2+Iγ/2∗), |
the integral (26) is increasing, and thus
In fact, if
Proof. We remark first that
ν(|v|,I)=1(2π)32∫Δ(1−R)R12B(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, | (27) |
where
The partial derivative of
∂ν∂vi=1(2π)32∫(1−R)R12vi−v∗i|v−v∗|∂B∂|v−v∗|(|v−v∗|,I,I∗,r,R,ω)e−12v2∗−I∗drdRdωdI∗dv∗. | (28) |
Perform the change of variable
∂ν∂vi=1(2π)32∫(1−R)R12Vi|V|∂B∂|V|(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV, |
and thus,
3∑i=1vi∂ν∂vi=1(2π)32∫(1−R)R12v.V|V|∂B∂|V|(|V|,I,I∗,r,R,ω) | (29) |
e−12(v−V)2−I∗drdRdωdI∗dV. | (30) |
Applying Fubini theorem, we write (29) as
3∑i=1vi∂ν∂vi=1(2π)32∫[∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω]v.V|V| | (31) |
e−12(v−V)2−I∗dI∗dV. | (32) |
The partial derivative of
I∂ν∂I=1(2π)32∫(1−R)R12I∂B∂I(|V|,I,I∗,r,R,ω)e−12(v−V)2−I∗drdRdωdI∗dV=1(2π)32I∫[∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω]e−12(v−V)2−I∗dI∗dV. | (33) |
When
∫(1−R)R12∂B∂|V|(|V|,I,I∗,r,R,ω)drdRdω. |
It's clear as well that the partial derivative of
∫(1−R)R12∂B∂I(|V|,I,I∗,r,R,ω)drdRdω. |
As a result, for a collision cross-section
∫(0,1)2×S2(1−R)R12B(|V|,I,I∗,r,R,ω)drdRdω |
is increasing (respectively decreasing) in
[1] |
A. Dobreva, R. Paus, N. Cogan, Toward predicting the spatio-temporal dynamics of alopecia areata lesions using partial differential equation analysis, Bull. Math. Biol., 82 (2020), 1–32. https://doi.org/10.1007/s11538-020-00707-0 doi: 10.1007/s11538-020-00707-0
![]() |
[2] | A. Gilhar, A. Etzioni, R. Paus, Alopecia areata, N. Engl. J. Med., 366 (2012), 1515–1525. https://doi.org/10.1056/NEJMra1103442 |
[3] |
A. Luster, J. Ravetch, Biochemical characterization of a gamma interferon-inducible cytokine (IP-10), J. Exp. Med., 166 (1987), 1084–1097. https://doi.org/10.1084/jem.166.4.1084 doi: 10.1084/jem.166.4.1084
![]() |
[4] |
Y. Lou, Y. Tao, The role of local kinetics in a three-component chemotaxis model for Alopecia Areata, J. Differ. Equation, 305 (2021), 401–427. https://doi.org/10.1016/j.jde.2021.10.020 doi: 10.1016/j.jde.2021.10.020
![]() |
[5] |
Y. Tao, D. Xu, Combined effects of nonlinear proliferation and logistic damping in a three-component chemotaxis system for alopecia areata, Nonlinear Anal. Real World Appl., 66 (2022), 103517. https://doi.org/10.1016/j.nonrwa.2022.103517 doi: 10.1016/j.nonrwa.2022.103517
![]() |
[6] |
E. Keller, L. Segel, Initiation of slime mold aggregation viewed as an instability, J. Theoret. Biol., 26 (1970), 399–415. https://doi.org/10.1016/0022-5193(70)90092-5 doi: 10.1016/0022-5193(70)90092-5
![]() |
[7] |
M. Winkler, Aggregation vs. global diffusive behavior in the higher-dimensional Keller-Segel model, J. Differ. Equation, 248 (2010), 2889–2905. https://doi.org/10.1016/j.jde.2010.02.008 doi: 10.1016/j.jde.2010.02.008
![]() |
[8] |
G. Arumugam, J. Tyagi, Keller-Segel chemotaxis models: A review, Acta Appl. Math., 171 (2021), 1–82. https://doi.org/10.1007/s10440-020-00374-2 doi: 10.1007/s10440-020-00374-2
![]() |
[9] |
M. Winkler, Finite-time blow-up in the higher-dimensional parabolic-parabolic Keller-Segel system, J. Math. Pures Appl., 100 (2013), 748–767. https://doi.org/10.1016/j.matpur.2013.01.020 doi: 10.1016/j.matpur.2013.01.020
![]() |
[10] |
T. Xiang, On effects of sampling radius for the nonlocal Patlak-Keller-Segel chemotaxis model, Discrete Contin. Dyn. Syst., 34 (2014), 4911–4946. https://doi.org/10.3934/dcds.2014.34.4911 doi: 10.3934/dcds.2014.34.4911
![]() |
[11] |
T. Hillen, A. Potapov, The one-dimensional chemotaxis model: global existence and asymptotic profile, Math. Methods Appl. Sci., 27 (2004), 1783–1801. https://doi.org/10.1002/mma.569 doi: 10.1002/mma.569
![]() |
[12] |
H. Jin, T. Xiang, Chemotaxis effect vs. logistic damping on boundedness in the 2-D minimal Keller-Segel model, C. R. Math. Acad. Sci. Paris, 356 (2018), 875–885. https://doi.org/10.13140/RG.2.2.33597.36325 doi: 10.13140/RG.2.2.33597.36325
![]() |
[13] |
K. Osaki, T. Tsujikawa, A. Yagi, M. Mimura, Exponential attractor for a chemotaxis-growth system of equations, Nonlinear Anal., 51 (2002), 119–144. https://doi.org/10.1016/S0362-546X(01)00815-X doi: 10.1016/S0362-546X(01)00815-X
![]() |
[14] |
E. Nakaguchi, K. Osaki, Global solutions and exponential attractors of a parabolic-parabolic system for chemotaxis with subquadratic degradation, Discrete Contin. Dyn. Syst. Ser. B, 18 (2013), 2627–2646. https://doi.org/10.3934/dcdsb.2013.18.2627 doi: 10.3934/dcdsb.2013.18.2627
![]() |
[15] |
K. Lin, C. Mu, Global dynamics in a fully parabolic chemotaxis system with logistic source, Discrete Contin. Dyn. Syst., 36 (2016), 5025–5046. https://doi.org/10.3934/dcds.2016018 doi: 10.3934/dcds.2016018
![]() |
[16] |
T. Xiang, How strong a logistic damping can prevent blow-up for the minimal Keller-Segel chemotaxis system?, J. Math. Anal. Appl., 459 (2018), 1172–1200. https://doi.org/10.1016/j.jmaa.2017.11.022 doi: 10.1016/j.jmaa.2017.11.022
![]() |
[17] |
M. Winkler, Boundedness in the higher-dimensional parabolic-parabolic chemotaxis system with logistic source, Commun. Partial. Differ. Equation, 35 (2010), 1516–1537. https://doi.org/10.1080/03605300903473426 doi: 10.1080/03605300903473426
![]() |
[18] |
M. Winkler, How far do chemotaxis-driven forces influence regularity in the Navier-Stokes system?, Trans. Am. Math. Soc., 369 (2017), 3067–3125. http://dx.doi.org/10.1090/tran/6733 doi: 10.1090/tran/6733
![]() |
[19] |
M. Winkler, Global mass-preserving solutions in a two-dimensional chemotaxis-Stokes system with rotational flux components, J. Evol. Equation, 18 (2018), 1267–1289. https://doi.org/10.1007/s00028-018-0440-8 doi: 10.1007/s00028-018-0440-8
![]() |
[20] |
J. Zheng, An optimal result for global existence and boundedness in a three-dimensional Keller-Segel-Stokes system with nonlinear diffusion, J. Differ. Equation, 267 (2019), 2385–2415. https://doi.org/10.1016/j.jde.2019.03.013 doi: 10.1016/j.jde.2019.03.013
![]() |
[21] |
J. Zheng, A new result for the global existence (and boundedness) and regularity of a three-dimensional Keller-Segel-Navier-Stokes system modeling coral fertilization, J. Differ. Equation, 272 (2021), 164-202. https://doi.org/10.1016/j.jde.2020.09.029 doi: 10.1016/j.jde.2020.09.029
![]() |
[22] |
J. Zheng, Boundedness of solutions to a quasilinear parabolic-elliptic Keller-Segel system with logistic source, J. Differ. Equation, 259 (2015), 120-140. https://doi.org/10.1016/j.jde.2015.02.003 doi: 10.1016/j.jde.2015.02.003
![]() |
[23] |
J. Zheng, Eventual smoothness and stabilization in a three-dimensional Keller-Segel-Navier-Stokes system with rotational flux, Calc. Var. Partial Differ. Equations, 61 (2022), 52. https://doi.org/10.1007/s00526-021-02164-6 doi: 10.1007/s00526-021-02164-6
![]() |
[24] |
Y. Ke, J. Zheng, An optimal result for global existence in a three-dimensional Keller-Segel-Navier-Stokes system involving tensor-valued sensitivity with saturation, Calc. Var. Partial Differ. Equations, 58 (2019), 1–27. https://doi.org/10.1007/s00526-019-1568-2 doi: 10.1007/s00526-019-1568-2
![]() |
[25] |
N. Bellomo, A. Bellouquid, Y. Tao, M. Winkler, Toward a mathematical theory of Keller-Segel models of pattern formation in biological tissues, Math. Models Methods Appl. Sci., 25 (2015), 1663–1763. https://doi.org/10.1142/S021820251550044X doi: 10.1142/S021820251550044X
![]() |
[26] |
Y. Tian, D. Li, C. Mu, Stabilization in three-dimensional chemotaxis-growth model with indirect attractant production, C. R. Math. Acad. Sci. Paris, 357 (2019), 513–519. https://doi.org/10.1016/j.crma.2019.05.010 doi: 10.1016/j.crma.2019.05.010
![]() |
[27] |
C. Mu, W. Tao, Stabilization and pattern formation in chemotaxis models with acceleration and logistic source, Math. Biosci. Eng., 20 (2023), 2011–2038. https://doi.org/10.3934/mbe.2023093 doi: 10.3934/mbe.2023093
![]() |
[28] |
Y. Tao, M. Winkler, Taxis-driven Formation of Singular Hotspots in a May–Nowak Type Model for Virus Infection, SIAM J. Math. Anal., 53 (2021), 1411–1433. https://doi.org/10.1137/20M1362851 doi: 10.1137/20M1362851
![]() |
[29] |
T. Alzahrani, E. Raluca, T. Dumitru, Multiscale modelling of cancer response to oncolytic viral therapy, Math. Biosci., 310 (2019), 76–95. https://doi.org/10.1016/j.mbs.2018.12.018 doi: 10.1016/j.mbs.2018.12.018
![]() |
[30] |
N. Bellomo, K. Painter, Y. Tao, M. Winkler, Occurrence vs. Absence of taxis-driven instabilities in a may-nowak model for virus infection, SIAM J. Appl. Math., 79 (2019), 1990–2010. https://doi.org/10.1137/19M1250261 doi: 10.1137/19M1250261
![]() |
[31] |
Y. Tao, M. Winkler, Boundedness and decay enforced by quadratic degradation in a three-dimensional chemotaxis-fluid system, Z. Angew. Math. Phys., 66 (2015), 2555–2573. https://doi.org/10.1007/s00033-015-0541-y doi: 10.1007/s00033-015-0541-y
![]() |
[32] |
B. Hu, Y. Tao, To the exclusion of blow-up in a three-dimensional chemotaxis-growth model with indirect attractant production, Math. Models Methods Appl. Sci., 26 (2016), 2111–2128. https://doi.org/10.1142/S0218202516400091 doi: 10.1142/S0218202516400091
![]() |
[33] |
Y. Tao, M. Winkler, Large time behavior in a multidimensional chemotaxis-haptotaxis model with slow signal diffusion, SIAM J. Math. Anal., 47 (2015), 4229–4250. https://doi.org/10.1137/15M1014115 doi: 10.1137/15M1014115
![]() |
[34] |
D. Horstmann, M. Winkler, Boundedness vs. blow-up in a chemotaxis system, J. Differ. Equation, 215 (2005), 52–107. https://doi.org/10.1016/j.jde.2004.10.022 doi: 10.1016/j.jde.2004.10.022
![]() |
[35] |
Y. Tao, Z. Wang, Competing effects of attraction vs. repulsion in chemotaxis, Math. Models Methods Appl. Sci., 23 (2013), 1–36. https://doi.org/10.1142/S0218202512500443 doi: 10.1142/S0218202512500443
![]() |
[36] |
K. Fujie, A. Ito, M. Winkler, T. Yokota, Stabilization in a chemotaxis model for tumor invasion, Discrete Contin. Dyn. Syst., 36 (2016), 151-169. https://doi.org/10.3934/dcds.2016.36.151 doi: 10.3934/dcds.2016.36.151
![]() |
[37] |
P. Lions, Résolution de problemes elliptiques quasilinéaires, Arch. Ration. Mech. Anal., 74 (1980), 335–353. https://doi.org/10.1007/BF00249679 doi: 10.1007/BF00249679
![]() |
[38] |
R. Kowalczyk, Z. Szymańska, On the global existence of solutions to an aggregation model, J. Math. Anal. Appl., 343 (2008), 379–398. https://doi.org/10.1016/j.jmaa.2008.01.005 doi: 10.1016/j.jmaa.2008.01.005
![]() |
[39] | X. Bai, M. Winkler, Equilibration in a fully parabolic two-species chemotaxis system with competitive kinetics, Indiana Univ. Math. J., 65 (2016), 553–583. http://www.jstor.org/stable/26318163 |
[40] |
M. Porzio, V. Vespri, Hölder estimates for local solutions of some doubly nonlinear degenerate parabolic equations, J. Differ. Equation, 103 (1993), 146–178. https://doi.org/10.1006/jdeq.1993.1045 doi: 10.1006/jdeq.1993.1045
![]() |
[41] |
Y. Tao, M. Winkler, Boundedness and stabilization in a population model with cross-diffusion for one species, Proc. Lond. Math. Soc., 119 (2019), 1598–1632. https://doi.org/10.1112/plms.12276 doi: 10.1112/plms.12276
![]() |
[42] | G. Lieberman, Second order parabolic differential equations, World Sci., 1996 (1996). https://doi.org/10.1142/3302 |
1. | Shingo Kosuge, Kazuo Aoki, Navier–Stokes Equations and Bulk Viscosity for a Polyatomic Gas with Temperature-Dependent Specific Heats, 2022, 8, 2311-5521, 5, 10.3390/fluids8010005 | |
2. | Niclas Bernhoff, Linearized Boltzmann Collision Operator: I. Polyatomic Molecules Modeled by a Discrete Internal Energy Variable and Multicomponent Mixtures, 2023, 183, 0167-8019, 10.1007/s10440-022-00550-6 | |
3. | Ricardo Alonso, Milana Čolić, Integrability Propagation for a Boltzmann System Describing Polyatomic Gas Mixtures, 2024, 56, 0036-1410, 1459, 10.1137/22M1539897 | |
4. | Niclas Bernhoff, Compactness Property of the Linearized Boltzmann Collision Operator for a Mixture of Monatomic and Polyatomic Species, 2024, 191, 1572-9613, 10.1007/s10955-024-03245-4 | |
5. | Ricardo J. Alonso, Milana Čolić, Irene M. Gamba, The Cauchy Problem for Boltzmann Bi-linear Systems: The Mixing of Monatomic and Polyatomic Gases, 2024, 191, 1572-9613, 10.1007/s10955-023-03221-4 | |
6. | Renjun Duan, Zongguang Li, Global bounded solutions to the Boltzmann equation for a polyatomic gas, 2023, 34, 0129-167X, 10.1142/S0129167X23500362 | |
7. | Gyounghun Ko, Sung-jun Son, Global stability of the Boltzmann equation for a polyatomic gas with initial data allowing large oscillations, 2025, 425, 00220396, 506, 10.1016/j.jde.2025.01.038 | |
8. | Stephane Brull, Annamaria Pollino, An ES-BGK model for non polytropic gases with a general framework, 2025, 0, 1937-5093, 0, 10.3934/krm.2025010 |