[1]
|
L. Zhu, Y. Hao, Z. N. Lu, H. Wu, Q. Ran, Do economic activities cause air pollution? Evidence from China's major cities, Sust. Cities Soc., 49 (2019), 1–10. https://doi.org/10.1016/j.scs.2019.101593 doi: 10.1016/j.scs.2019.101593
|
[2]
|
T. C. Li, D. Han, S. Feng, L. Lei, Can Industrial inter-agglomeration between Producer Services and Manufacturing Reduce Carbon Intensity in China?, Sustainability, 11 (2019), 1–15. https://doi.org/10.3390/su11154024 doi: 10.11912/jws.2019.9.1.1-11
|
[3]
|
H. Yang, F. Zhang, Y. He, Exploring the effect of producer services and manufacturing industrial co-agglomeration on the ecological environment pollution control in China, Environ. Dev. Sustain., 23 (2021), 16119–16144. https://doi.org/10.1016/j.jclepro.2020.121320 doi: 10.1007/s10668-021-01339-7
|
[4]
|
D. Z. Zeng, L. X. Zhao, Pollution Havens and Industrial Agglomeration, J. Environ. Econ. Mange., 58 (2009), 141–153. https://doi.org/10.1016/j.jeem.2008.09.003 doi: 10.1016/j.jeem.2008.09.003
|
[5]
|
G. Ellison, E. L. Glaeser, Geographic Concentration in U.S. Manufacturing Industries: A Dartboard Approach, J. Polit. Econ., 105 (1997), 889–927. https://doi.org/10.1086/262098 doi: 10.1086/262098
|
[6]
|
Q. X. Gong, G. X. Guo, S. P. Li, X. D. Liang, Examining the Coupling Coordinated Relationship between Urban Industrial inter-agglomeration and Intensive Land Use, Land, 10 (2021), 1–12. https://doi.org/10.3390/land10050499 doi: 10.3390/land10050499
|
[7]
|
S. Ke, M. He, C. Yuan, Synergy and Co–agglomeration of Producer Services and Manufacturing: A Panel Data Analysis of Chinese Cities, Reg. Stud., 48 (2014), 1829–1841. https://doi.org/10.1080/00343404.2012.756580 doi: 10.1080/00343404.2012.756580
|
[8]
|
S. B. Billings, E. B. Johnson, Agglomeration within an Urban area. J. Urban Econ., 91 (2016), 13–25. https://doi.org/10.1016/j.jue.2015.11.002 doi: 10.1016/j.jue.2015.11.002
|
[9]
|
Z. Cheng, The Spatial Correlation and Interaction between Manufacturing Agglomeration and Environmental Pollution, Ecol. Indic., 61 (2016), 1024–1032. https://doi.org/10.1016/j.ecolind.2015.10.060 doi: 10.1016/j.ecolind.2015.10.060
|
[10]
|
K. Kanemoto, T. Hanaka, S. Kagawa, K. Nansai, Industrial clusters with substantial carbon–reduction potential, Econ. Syst. Res., 31 (2019), 248–266. https://doi.org/10.1080/09535314.2018.1492369 doi: 10.1080/09535314.2018.1492369
|
[11]
|
L. Brandt, T. Tombe, X. Zhu, Factor market distortions across time, space and sectors in China, Rev. Econ. Dyn., 16 (2013), 39–58. https://doi.org/10.1016/j.red.2012.10.002 doi: 10.1016/j.red.2012.10.002
|
[12]
|
W. Chen, X. Huang, Y. H. Liu, L. Xin, Y. Song, The Impact of High-Tech Industry Agglomeration on Green Economy Efficiency-Evidence from the Yangtze River Economic Belt, Sustain., 11 (2019), 1–18. https://doi.org/10.1108/SAMPJ-09-2018-0248 doi: 10.1108/SAMPJ-09-2018-0248
|
[13]
|
M. Song, S. Wang, Can employment structure promote environment-biased technical progress?, Technol. Forecast. Soc. Change., 112 (2016), 285–292. https://doi.org/10.1016/j.techfore.2016.02.016 doi: 10.1016/j.techfore.2016.02.016
|
[14]
|
L. Ning, F. Wang, J. Li, Urban innovation, regional externalities of foreign direct investment and industrial agglomeration: Evidence from Chinese cities, Res. Policy., 45 (2016), 830–843. https://doi.org/10.1016/j.respol.2016.01.014 doi: 10.1016/j.respol.2016.01.014
|
[15]
|
Z. Huang, G. Liao, Z. Li, Loaning scale and government subsidy for promoting green innovation, Technol. Forecast. Soc. Change., 144 (2019), 148–156. https://doi.org/10.1016/j.techfore.2019.04.023 doi: 10.1016/j.techfore.2019.04.023
|
[16]
|
Z. Li, G. Liao, K. Albitar, Does corporate environmental responsibility engagement affect firm value? The mediating role of corporate innovation, Bus. Strateg. Environ., 29 (2020), 1045–1055. https://doi.org/10.1002/bse.2416 doi: 10.1002/bse.2416
|
[17]
|
S. J. Li, B. Sun, D. X. Hou, W. J. Jin, Y. Ji, Does Industrial Agglomeration or Foreign Direct Investment Matter for Environment Pollution of Public Health? Evidence From China, Front. Public Health, 9 (2021), 1–14. https://doi.org/10.3389/fpubh.2021.711033 doi: 10.3389/fpubh.2021.711033
|
[18]
|
M. W. Wang, R. Gu, M. Wang, J. Zhang, Research on the impact of finance on promoting technological innovation based on the state-space model, Green Financ., 3 (2021), 119–137. https://doi.org/10.3934/GF.2021007 doi: 10.3934/GF.2021007
|
[19]
|
X. Sun, L. Loh, Z. Chen, Effect of market fragmentation on ecological efficiency: evidence from environmental pollution in China, Environ. Sci. Pollut. Res., 27 (2020), 4944–4957. https://doi.org/10.1007/s11356-019-06548-2 doi: 10.1007/s11356-019-06548-2
|
[20]
|
B. Zhang, X. Chen, H. Guo, Doez es central supervision enhance local environmental enforcement? Quasi-experimental evidence from China, J. Public. Econ., 164 (2018), 70–90. https://doi.org/10.1016/j.jpubeco.2018.05.009 doi: 10.1016/j.jpubeco.2018.05.009
|
[21]
|
T. Li, X. Li, K. Albitar, Threshold effects of financialization on enterprise R & D innovation: comparison research on heterogeneity, Quant. Financ. Econ., 5 (2021), 496–515. https://doi.org/10.3934/QFE.202102 doi: 10.3934/QFE.2021022
|
[22]
|
X.Y. Li, Study on the impact of energy rebound effect on carbon emission reduction at different stages of urbanization in China, Ecol. Indic., 120 (2021), 1–8. https://doi.org/10.1016/j.ecolind.2020.106983 doi: 10.1016/j.ecolind.2020.106983
|
[23]
|
Z. Li, F. Zou, B. Mo, Does mandatory CSR disclosure affect enterprise total factor productivity? Ekon. Istraz., 35 (2021), 4902–4921. https://doi.org/10.1080/1331677X.2021.2019596 doi: 10.1080/1331677X.2021.2019596
|
[24]
|
G. Liao, P. Hou, X. Shen, K. Albitar, The impact of economic policy uncertainty on stock returns: The role of corporate environmental responsibility engagement, Int. J. Financ. Econ., 26 (2021), 4386–4389. https://doi.org/10.1002/ijfe.2020 doi: 10.1002/ijfe.2020
|
[25]
|
E. L. Glaser, M. E. Kahn, The Greenness of Cites: Carbon Dioxide Emissions and Urban Development, J. Urban Econ., 67 (2010), 404–418. https://doi.org/10.1016/j.jue.2009.11.006 doi: 10.1016/j.jue.2009.11.006
|
[26]
|
S. Brakman, J. H. Garretsen, R. Gigengack, C. V. Marrewijk, R. Wagenvoort, Negative Feedbacks in the Economy and Industrial Location, J. Reg. Sci., 36 (1996), 631–651. https://doi.org/10.1111/j.1467-9787.1996.tb01122.x doi: 10.1111/j.1467-9787.1996.tb01122.x
|
[27]
|
F. de Leeuw, N. Moussiopoulos, P. Sahm, A. Bartonova, Urban Air Quality in Larger Conurbations in the European Union, Environ. Modell. Softw., 16 (2001), 399–414. https://doi.org/10.1016/S1364-8152(01)00007-X doi: 10.1016/S1364-8152(01)00007-X
|
[28]
|
W. Ren, Y. Zhong, J. Meligrana, B. Anderson, W. E. Watt, J. Chen, and H. L. Leung, Urbanization, Land Use, and Water Quality in Shanghai:1947–1996. Environ. Int., 29 (2003), 649–659. https://doi.org/10.1016/S0160-4120(03)00051-5 doi: 10.1016/S0160-4120(03)00051-5
|
[29]
|
T. Li, X. Li, G. Liao, Business cycles and energy intensity. Evidence from emerging economies, Borsa Istanbul Rev., 22 (2022), 560–570. https://doi.org/10.1016/j.bir.2021.07.005 doi: 10.1016/j.bir.2021.07.005
|
[30]
|
B. Wang, X. Nie, Industrial agglomeration and environmental governance: help or resistance--Evidence from quasi natural experiment in development zones, China Ind. Econ., 12 (2016), 75–89. (In Chinese). https://doi.org/10.19581/j.cnki.ciejournal.2016.12.006 doi: 10.19581/j.cnki.ciejournal.2016.12.006
|
[31]
|
S. X. Liu, Y. M. Zhu, K. Q. Du, The impact of industrial agglomeration on industrial pollutant emission: evidence from China under New Normal, Clean Technol. Environ. policy, 19 (2017), 2327–2334. https://doi.org/10.1007/s10098-017-1407-0 doi: 10.1007/s10098-017-1407-0
|
[32]
|
V. Erik, N. Peter, Urban Environmental Externalities, Agglomeration Forces, and the Technological 'Deus ex Machina', Environ. Plan. A., 40 (2008), 928–947. https://doi.org/10.1068/a38434 doi: 10.1068/a38434
|
[33]
|
C. C. Fan, A. J. Scott, Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and a Statistical Analysis of Chinese Regions, Econ. Geogr., 79 (2003), 295–319. https://doi.org/10.1111/j.1944-8287.2003.tb00213.x doi: 10.1111/j.1944-8287.2003.tb00213.x
|
[34]
|
J. Lan, M. Kakinaka, X. Huang, Foreign Direct Investment, Human Capital and Environmental Pollution in China, Environ. Resour. Econ., 51 (2012), 255–275. https://doi.org/10.1007/s10640-011-9498-2 doi: 10.1007/s10640-011-9498-2
|
[35]
|
Y. Zhu, Y. Xia, The Impact of Industrial Agglomeration on Environmental Pollution: Evidence from China under New Urbanization, Energ. Environ., 30 (2018), 1010–1026. https://doi.org/10.1177/0958305X18802784 doi: 10.1177/0958305X18802784
|
[36]
|
Y. L. Ye, S. Ye, H. C. Yu, Can Industrial Collaborative Agglomeration Reduce Haze Pollution? City-Level Empirical Evidence from China, Int. J. Environ. Res. Public Health, 18 (2021), 1566–1585. https://doi.org/10.3390/ijerph18041566 doi: 10.3390/ijerph18041566
|
[37]
|
J. Gorelick, N. Walmsley, The greening of municipal infrastructure investments: technical assistance, instruments, and city champions, Green Financ., 2 (2020), 114–134. https://doi.org/10.3934/GF.2020007 doi: 10.3934/GF.2020007
|
[38]
|
K. Tanaka, S. Managi, Industrial agglomeration effect for energy efficiency in Japanese production plants, Energ. Policy, 156 (2021). https://doi.org/10.1016/j.enpol.2021.112442 doi: 10.1016/j.enpol.2021.112442
|
[39]
|
S. Naik, V. Bagodi, Energy conservation opportunities: evidences from three industrial clusters in India, Int. J. Energy Sect. Manag., 15 (2021), 600–627. https://doi.org/10.1108/IJESM-07-2020-0022 doi: 10.1108/IJESM-07-2020-0022
|
[40]
|
M. Yi, Y.Q. Wang, M. Y. Sheng, B. Sharp, Y. Zhang, Effects of heterogeneous technological progress on haze pollution: Evidence from China, Ecol. Econ., 169 (2020), 106533–106544. https://doi.org/10.1016/j.ecolecon.2019.106533 doi: 10.1016/j.ecolecon.2019.106533
|
[41]
|
R. Tveteras, G. E. Battese, Agglomeration Externalities, Productivity and Technical Inefficiency, J. Reg. Sci., 46 (2006), 605–625. https://doi.org/10.1111/j.1467-9787.2006.00470.x doi: 10.1111/j.1467-9787.2006.00470.x
|
[42]
|
A. Ciccone, R. E. Hall, Productivity and the Density of Economic Activity, Am. Econ. Rev., 86 (1996), 1–39. http://www.jstor.org/stable/2118255
|
[43]
|
J. H. Zhu, Z. H. Li, Can digital financial inclusion effectively stimulate technological Innovation of agricultural enterprises? --A case study on China, Natl. Account. Rev., 3 (2021), 398–421. https://doi.org/10.3934/NAR.2021021 doi: 10.3934/NAR.2021021
|
[44]
|
M. X. Wang, L. Li, H. Y. Lan, The measurement and analysis of technological innovation diffusion in China's manufacturing industry, Natl. Account. Rev., 3 (2021), 452–471. https://doi.org/10.3934/NAR.2021024 doi: 10.3934/NAR.2021024
|
[45]
|
Z. Li, H. Chen, B. Mo, Can digital finance promote urban innovation? Evidence from China, Borsa. Istanbul Rev., 2022, 1–12. https://doi.org/10.1016/j.bir.2022.10.006 doi: 10.1016/j.bir.2022.10.006
|
[46]
|
A. Martin, P. L. Johan, W. Joakim, The economic micro geography of diversity and specialization externalities-firm-level evidence from Swedish cities, Res. Policy, 48 (2019), 1385–1398. https://doi.org/10.1016/j.respol.2019.02.003 doi: 10.1016/j.respol.2019.02.003
|
[47]
|
Q. Y. Zheng, B. Q. Lin, Impact of industrial agglomeration on energy efficiency in China's paper industry, J. Clean. Prod., 184 (2019), 1072–1080. https://doi.org/10.1177/0958305X18802784 doi: 10.1177/0958305X18802784
|
[48]
|
M. Tahir, E. Ahmad, The relationship of energy intensity with economic growth: Evidence for European economies, Energy Strategy Rev., 20 (2018), 90–98. https://doi.org/10.1016/j.esr.2018.02.002 doi: 10.1016/j.esr.2018.02.002
|
[49]
|
M. He, B. Walheer, Technology intensity and ownership in the Chinese manufacturing industry: A labor productivity decomposition approach, Natl. Account. Rev., 2 (2020), 110–137. https://doi.org/10.3934/NAR.2020007 doi: 10.3934/NAR.2020007
|
[50]
|
Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PLoS One, 17 (2022), 1–21. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461
|
[51]
|
X. H. Liu, Dynamic evolution, spatial spillover effect of technological innovation and haze pollution in China, Energy Environ., 29 (2018), 968–988. doi: 10.1177/0958305X18765249
|
[52]
|
L. M. Ma, X. Zhang, Spatial effects of China's haze and its impact on economic and energy structure, China Ind. Econ., 4 (2014), 19–31.
|
[53]
|
C. Hua, J. J. Miao, W. P. Liu, G. Du, X. Wang, The impact mechanism of industrial agglomeration on energy efficiency-Evidence from producer service industry in China, Energ. Sources Part B, 16 (2021), 740–758 doi: 10.1080/15567249.2021.1966132
|
[54]
|
M. M. Rahman, K. Alam, The nexus between health status and health expenditure, energy consumption and environmental pollution: empirical evidence from SAARC-BIMSTEC regions, BMC Public Health, 21 (2021), 1–12. https://doi.org/10.21203/rs.3.rs-68393/v2 doi: 10.1186/s12889-020-10013-y
|
[55]
|
X. Sun, B. K. Zhu, S. Zhang, H. Zeng, K. Li, B. Wang, Z. F. Dong, C. C. Zhou, New indices system for quantifying the nexus between economic-social development, natural resources consumption, and environmental pollution in China during 1978–2018, Sci. Total Environ., 804 (2021), 150180. https://doi.org/10.1016/j.scitotenv.2021.150180 doi: 10.1016/j.scitotenv.2021.150180
|
[56]
|
D. Federica, C. Antonio, B. M. Silvio Servitization and sustainability actions, Evidence from European manufacturing companies, J. Environ. Manage., 234 (2019), 367–378. https://doi.org/10.1016/j.jenvman.2019.01.004 doi: 10.1016/j.jenvman.2019.01.004
|
[57]
|
M. M. Faisal, K. Afra, Energy consumption, carbon emissions and economic growth in Pakistan: Dynamic causality analysis, Renew. Sust. Energ. Rev., 72 (2016), 1233–1240. https://doi.org/10.1016/j.rser.2016.10.081 doi: 10.1016/j.rser.2016.10.081
|
[58]
|
C. Huang, J. W. Wang, C. M. Wang, J. H. Cheng, J. Dai, Does tourism industry agglomeration reduce carbon emissions? Environ. Sci. Pollut. Res., 28 (2021), 30278–30293. https://doi.org/10.1007/s11356-021-12706-2 doi: 10.1007/s11356-021-12706-2
|
[59]
|
Z. Huang, H. Dong, S. Jia, Equilibrium pricing for carbon emission in response to the target of carbon emission peaking, Energy Econ., 112 (2022), 106160–106175. https://doi.org/10.1016/j.eneco.2022.106160 doi: 10.1016/j.eneco.2022.106160
|
[60]
|
X. Y. Li, H. Z. Xu, The Energy-conservation and Emission-reduction Paths of Industrial sectors: Evidence from China's 35 industrial sectors, Energy Econ., 86 (2020), 10462–10476. https://doi.org/10.1016/j.eneco.2019.104628 doi: 10.1016/j.eneco.2019.104628
|
[61]
|
P. G. Saculsan, T. Kanamura, Examining risk and return profiles of renewable energy investment in developing countries: the case of the Philippines, Green Financ., 2 (2019), 135–150. https://doi.org/10.3934/GF.2020008 doi: 10.3934/GF.2020008
|
[62]
|
O. Sukharev, V. Ekaterina, Financial and non-financial investments: comparative econometric analysis of the impact on economic dynamics, Quant. Financ. Econ., 4 (2020), 382–411. https://doi.org/10.3934/QFE.2020018 doi: 10.3934/QFE.2020018
|
[63]
|
G. Carvalho, P. Roberto, S. Joelson, Venture capital backing: financial policies and persistence over time, Quant. Financ. Econ., 5 (2021), 640–663. https://doi.org/10.3934/QFE.2021029 doi: 10.3934/QFE.2021029
|
[64]
|
T. Li, J. Zhong, Z. Huang, Potential Dependence of Financial Cycles between Emerging and Developed Countries: Based on ARIMA-GARCH Copula Model, Emerg. Mark. Finance Trade, 56 (2019), 1237–1250. https://doi.org/10.1080/1540496x.2019.1611559 doi: 10.1080/1540496x.2019.1611559
|
[65]
|
Y. Liu, Z. Li, M. Xu, The influential factors of financial cycle spillover: evidence from China, Emerg. Mark. Financ. Trade, 56 (2020), 1336–1350. https://doi.org/10.1080/1540496x.2019.1658076 doi: 10.1080/1540496X.2019.1658076
|
[66]
|
Z. Li, C. Yang, Z. Huang, How does the fintech sector react to signals from central bank digital currencies?, Finance Res. Lett., 50 (2022), 103308–103313. https://doi.org/10.1016/j.frl.2022.103308 doi: 10.1016/j.frl.2022.103308
|
[67]
|
Y. Wang, S. Yin, X. Fang, W. Chen, Interaction of economic agglomeration, energy conservation and emission reduction: Evidence from three major urban agglomerations in China, Energy, 241 (2022), 122519–122532. https://doi.org/10.1016/j.energy.2021.122519 doi: 10.1016/j.energy.2021.122519
|
[68]
|
H. Baydoun, M, Age, The Effect of Energy Consumption and Economic Growth on Environmental Sustainability in the GCC Countries: Does Financial Development Matter?, Energies, 14 (2021), 5897–5915. https://doi.org/10.3390/en14185897 doi: 10.3390/en14185897
|
[69]
|
H. X. Liu, K. R. Du, J. Li, An improved approach to estimate direct rebound effect by incorporating energy efficiency: A revisit of China's industrial energy demand, Energ. Econ., 80 (2019), 720–730. https://doi.org/10.1016/j.eneco.2019.02.012 doi: 10.1016/j.eneco.2019.02.012
|
[70]
|
Y. J. Zhang, H. R. Peng, B. Su, Energy rebound effect in China's Industry: An aggregate and dis-aggregate analysis, Energ. Econ., 61 (2017), 199–208. https://doi.org/10.1016/j.eneco.2016.11.011 doi: 10.1016/j.eneco.2016.11.011
|
[71]
|
M. M. Xu, B. Q. Lin, S. Q. Wang, Towards energy conservation by improving energy efficiency? Evidence from China's metallurgical industry. Energy, 216 (2021), 119255–119355. https://doi.org/10.1016/j.energy.2020.119255 doi: 10.1016/j.energy.2020.119255
|
[72]
|
Y. Ushifusa, A. Tomohara, Productivity and Labor Density: Agglomeration Effects over Time, Atl. Econ. J., 41 (2013), 123–132. https://doi.org/10.1007/s11293-012-9354-y doi: 10.1007/s11293-012-9354-y
|
[73]
|
P. H. Berkhout, J. C. Muskens, J. W. Velthuijsen, Defining the Rebound Effect, Energy Policy, 28 (2000), 425–432. https://doi.org/10.1016/S0301-4215(00)00022-7 doi: 10.1016/S0301-4215(00)00022-7
|
[74]
|
S. R. Mudakkar, K. Zamank, M. M. Khan, M. Ahmad, Energy for Economic Growth, Industrialization, Environment and Nature Resources: Living Is Just Enough, Renew. Sust. Energ. Rev., 25 (2013), 580–595. https://doi.org/10.1016/j.rser.2013.05.024 doi: 10.1016/j.rser.2013.05.024
|
[75]
|
D. Liu, B. Xiao, Can China achieve its carbon emission peaking? A scenario analysis based on STIRPAT and system dynamics model, Ecol. Indic., 93 (2018), 647–657. https://doi.org/10.1016/j.ecolind.2018.05.049 doi: 10.1016/j.ecolind.2018.05.049
|
[76]
|
Y. L. Chen, Z. Wang, Z. Q. Zhong, CO2 emissions, economic growth, renewable and non-renewable energy production and foreign trade in China, Renew. Energ., 131 (2019), 208–216. https://doi.org/10.1016/j.renene.2018.07.047 doi: 10.1016/j.renene.2018.07.047
|
[77]
|
Q. Zhang, R. Brouwer, Is China Affected by the Resource Curse? A Critical Review of the Chinese Literature, J. Policy Model, 42 (2020), 133–152. https://doi.org/10.1016/j.jpolmod.2019.06.005 doi: 10.1016/j.jpolmod.2019.06.005
|
[78]
|
S. Chen, Y. Wang, K. Albitar, Z. Huang, Does ownership concentration affect corporate environmental responsibility engagement? The mediating role of corporate leverage, Borsa Istanbul Rev., 21 (2021), 13–24. https://doi.org/10.1016/j.bir.2021.02.001 doi: 10.1016/j.bir.2021.02.001
|
[79]
|
J. Hou, Y. Hou, Q. Wang, N. Yue, Can industrial agglomeration improve energy efficiency? Empirical evidence based on China's energy-intensive industries, Environ. Sci. Pollut. Res., 29 (2022), 80297–80311. https://doi.org/10.1007/s11356-022-21429-x doi: 10.1007/s11356-022-21429-x
|
[80]
|
C. Fan, A. J. Scott, Industrial Agglomeration and Development: A Survey of Spatial Economic Issues in East Asia and A Statistical Analysis of Chinese Regions, Econ. Geogr., 79 (2003), 295–319. https://www.tandfonline.com/doi/abs/10.1111/j.19448287.2003.tb00213.x doi: 10.1111/j.19448287.2003.tb00213.x
|
[81]
|
M. E. Porter, C. Linde, Toward a New Conception of the Environment- Competitiveness Relationship, J. Econ. Perspect, 9 (1995), 97–118. https://doi.org/10.1257/jep.9.4.97 doi: 10.1257/jep.9.4.97
|
[82]
|
Y. Su, Z. Li, C. Yang, Spatial interaction spillover effects between digital financial technology and urban ecological efficiency in China: an empirical study based on spatial simultaneous equations, Int. J. Environ. Res. Public Health, 18 (2021), 8535–8561. https://doi.org/10.3390/ijerph18168535 doi: 10.3390/ijerph18168535
|
[83]
|
H. Zhao, B. Lin, Will agglomeration improve the energy efficiency in China's textile industry: Evidence and policy implications. Appl. Energy, 237 (2018), 326–337. https://doi.org/10.1016/j.apenergy.2018.12.068 doi: 10.1016/j.apenergy.2018.12.068
|
[84]
|
J. Wang, J. Ma, Has tourism industry agglomeration improved the total factor productivity of Chinese urban agglomerations?--The moderating effect of public epidemic, Front. Public Health, 525 (2022), 854681–854691. https://doi.org/10.3389/fpubh.2022.854681 doi: 10.3389/fpubh.2022.854681
|
[85]
|
J. He, Pollution haven hypothesis and environmental impacts of foreign direct investment: The case of industrial emission of sulfur dioxide (SO2) in Chinese provinces, Ecol. Econ., 60 (2006), 228–245. https://doi.org/10.1016/j.ecolecon.2005.12.008 doi: 10.1016/j.ecolecon.2005.12.008
|
[86]
|
H. Wu, Y. Hao, S. Ren, How do environmental regulation and environmental decentralization affect green total factor energy efficiency: Evidence from China, Energy Econ., 91 (2020), 104880–104898. https://doi.org/10.1016/j.eneco.2020.104880 doi: 10.1016/j.eneco.2020.104880
|
[87]
|
K. Dong, M. Shahbaz, J. Zhao, How do pollution fees affect environmental quality in China? Energ. Policy, 160 (2022), 112695–112709. https://doi.org/10.1016/j.enpol.2021.112695 doi: 10.1016/j.enpol.2021.112695
|
[88]
|
Z. Yang, Z. Xiong, W. Xue, Y. Zhou, The Impact of Pollution Fee Reform on the Emission of Water Pollutants: Evidence from Manufacturing Enterprises in China, Int. J. Environ. Res. Public Health, 19 (2022), 10660–10677. https://doi.org/10.3390/ijerph191710660 doi: 10.3390/ijerph191710660
|
[89]
|
C. Qu, J. Shao, Z. Shi, Does financial agglomeration promote the increase of energy efficiency in China? Energy Policy, 146 (2020), 111810–111825. https://doi.org/10.1016/j.enpol.2020.111810 doi: 10.1016/j.enpol.2020.111810
|
[90]
|
F. Han, R. Xie, J. Y. Fang, Y. Liu, The effects of urban agglomeration economies on carbon emissions: Evidence from Chinese cities, J. Clean. Prod., 172 (2018), 1096–1110. https://doi.org/10.1016/j.jclepro.2017.09.273 doi: 10.1016/j.jclepro.2017.09.273
|
[91]
|
H. Xie, Q. Chen, F. Lu, W. Wang, G. Yao, J. Yu, Spatial-temporal disparities and influencing factors of total-factor green use efficiency of industrial land in China, J. Clean. Prod., 207 (2019), 1047–1058. https://doi.org/10.1016/j.jclepro.2018.10.087 doi: 10.1016/j.jclepro.2018.10.087
|
[92]
|
X. Li, X. Lai, F. Zhang, Research on green innovation effect of industrial agglomeration from perspective of environmental regulation: Evidence in China, J. Clean. Prod., 288 (2021), 125583–125595. https://doi.org/10.1016/j.jclepro.2020.125583 doi: 10.1016/j.jclepro.2020.125583
|
[93]
|
S. Sorrell, J. Dimitropoulos, The rebound effect: Microeconomic definitions, limitations and extensions, Ecol. Econ., 65 (2008), 636–649. https://doi.org/10.1016/j.ecolecon.2007.08.013 doi: 10.1016/j.ecolecon.2007.08.013
|
[94]
|
S. Shao, K. Zhang, J. M. Dou, Energy conservation and emission reduction effect of economic agglomeration: Theory and Chinese experience, Manage. World, 35 (2019), 36–60. (In Chinese). https://doi.org/10.19744/j.cnki.11-1235/f.2019.0005. doi: 10.19744/j.cnki.11-1235/f.2019.0005
|
[95]
|
T. Jaynes, On the rationale of maximum-entropy methods, Proc. IEEE. Inst. Electr. Electron Eng., 70 (1982), 939–952. https://doi.org/10.1109/PROC.1982.12425 doi: 10.1109/PROC.1982.12425
|
[96]
|
B. Q. Lin, and R. P. Tan, Chinese Economic Cluster and Green Economic Efficiency, Econ. Res., 54 (2019), 119–132. (In Chinese)
|
[97]
|
H. Abdi, L. J. Williams, Principal component analysis, Wiley interdiscip. Rev. comput. Stat., 2 (2010), 433–459. https://doi.org/10.1002/wics.101 doi: 10.1002/wics.101
|
[98]
|
Y. M. Zhu, S. X. Liu, Y. J. Li, Y. Pei, H. Q. Qiao, The mitigation effect of industrial agglomeration on environmental pollution: the theory and the empirical evidence, Environ. Econ. Res., 4 (2019), 86–107. (In Chinese). https://doi.org/10.19511/j.cnki.jee.2019.01.007 doi: 10.19511/j.cnki.jee.2019.01.007
|
[99]
|
T. H. Chang, P. J. Klenow, Misallocation and Manufacturing TFP in China and India, Q. J. Econ., 124 (2009), 1403–1448. https://doi.org/10.1162/qjec.2009.124.4.1403 doi: 10.1162/qjec.2009.124.4.1403
|
[100]
|
H. W. Wen, C. C. Lee, Z. Y. Song, Digitization and environment: how does ICT affect enterprise environmental performance?, Environ. Sci. Pollut. Res., 28 (2021), 54826–54841. https://doi.org/10.1007/s11356-021-14474-5 doi: 10.1007/s11356-021-14474-5
|
[101]
|
X. E. Qu, Empirical Analysis of Comprehensive Evaluation of Environmental Pollution in China, Ind. Econ. Res., 04 (2014), 51–102. (In Chinese). https://doi.org/10.13269/j.cnki.ier.2014.04.006 doi: 10.13269/j.cnki.ier.2014.04.006
|
[102]
|
Y. Sun, Y. Li, T. Yu, X. Zhang, L. Liu, P. Zhuang, Resource extraction, environmental pollution and economic development: Evidence from prefecture-level cities in China, Resour. Policy, 74 (2021), 102330–102342. https://doi.org/10.1016/j.resourpol.2021.102330 doi: 10.1016/j.resourpol.2021.102330
|
[103]
|
Z. H. Li, J. H. Zhu, J. J. He, The effects of digital financial inclusion on innovation and entrepreneurship: A network perspective, Electron. Res. Arch., 30 (2022), 4697–4715. https://doi.org/10.3934/era.2022238 doi: 10.3934/era.2022238
|
[104]
|
T. H. Li, J. Y. Wen, D. W. Zeng, K. Liu, Has enterprise digital transformation improved the efficiency of enterprise technological innovation? A case study on Chinese listed companies, Math. Biosci. Eng., 19 (2022), 12632–12654. https://doi.org/10.3934/mbe.2022590 doi: 10.3934/mbe.2022590
|
[105]
|
Y. Liu, P. Failler, Y. Ding, Enterprise financialization and technological innovation: Mechanism and heterogeneity, PLoS One, 17 (2022), 1–21. https://doi.org/10.1371/journal.pone.0275461 doi: 10.1371/journal.pone.0275461
|
[106]
|
Y. Liu, P. Failler, Z. Y. Liu, Impact of Environmental Regulations on Energy Efficiency: A Case Study of China's Air Pollution Prevention and Control Action Plan, Sustainability, 14 (2022), 1–21. https://doi.org/10.3390/su14063168 doi: 10.3390/su14063168
|