Research article

Parameter assignment for InVEST habitat quality module based on principal component analysis and grey coefficient analysis

  • Received: 08 July 2022 Revised: 29 August 2022 Accepted: 08 September 2022 Published: 21 September 2022
  • The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is a concise approach to evaluate the status of habitat quality for supporting ecosystem management and decision making. Assigning parameters accurately in the InVEST model is the premise for effectively simulating habitat quality. The purpose of this study is to propose an available method for assigning the important parameters in the Habitat Quality module of InVEST. Herein, the methods of principal component analysis (PCA) and grey relational analysis (GRA) were utilized to assign the weights of threat factors and the sensitivity of each habitat type to each threat factor, respectively. Through a case study of the habitat quality of Fuzhou City, we find that using PCA and GRA methods to assign parameters is feasible. Generally, the habitat quality of Fuzhou City in 2015 and 2018 was above the fair suitable level, and the proportion of fair suitable and good suitable habitats was about 83%. The areas with higher habitat quality were mainly concentrated in forest, wetland and grassland ecosystems. The spots with lower habitat quality were scattered all over the main urban areas of districts and counties, and their periphery. GDP per capita and population density were the main factors that affect the habitat quality of Fuzhou City. Narrowing the economic imbalance gap is an important way to reduce population shift and relieve the pressure of the urban environment in economically developed areas. This study is expected to provide an effective method for assigning parameters in the InVEST Habitat Quality Module and support regional ecosystem conservation.

    Citation: Shiyun Wang, Xiaonan Liang, Jiaoyue Wang. Parameter assignment for InVEST habitat quality module based on principal component analysis and grey coefficient analysis[J]. Mathematical Biosciences and Engineering, 2022, 19(12): 13928-13948. doi: 10.3934/mbe.2022649

    Related Papers:

  • The Integrated Valuation of Ecosystem Services and Tradeoffs (InVEST) model is a concise approach to evaluate the status of habitat quality for supporting ecosystem management and decision making. Assigning parameters accurately in the InVEST model is the premise for effectively simulating habitat quality. The purpose of this study is to propose an available method for assigning the important parameters in the Habitat Quality module of InVEST. Herein, the methods of principal component analysis (PCA) and grey relational analysis (GRA) were utilized to assign the weights of threat factors and the sensitivity of each habitat type to each threat factor, respectively. Through a case study of the habitat quality of Fuzhou City, we find that using PCA and GRA methods to assign parameters is feasible. Generally, the habitat quality of Fuzhou City in 2015 and 2018 was above the fair suitable level, and the proportion of fair suitable and good suitable habitats was about 83%. The areas with higher habitat quality were mainly concentrated in forest, wetland and grassland ecosystems. The spots with lower habitat quality were scattered all over the main urban areas of districts and counties, and their periphery. GDP per capita and population density were the main factors that affect the habitat quality of Fuzhou City. Narrowing the economic imbalance gap is an important way to reduce population shift and relieve the pressure of the urban environment in economically developed areas. This study is expected to provide an effective method for assigning parameters in the InVEST Habitat Quality Module and support regional ecosystem conservation.



    加载中


    [1] L. S. Hall, P. R. Krausman, M. L. Morrison, The habitat concept and a Plea for standard terminology, Wildlife. Soc. B., 25 (1997), 173-182.
    [2] W. H. Xu, Y. Xiao, J. J. Zhang, W. Yang, L. Zhang, V. Hull, et al., Strengthening protected areas for biodiversity and ecosystem services in China, P. Natl. Acad. Sci., 114 (2017), 1601-1606. https://doi.org/10.1073/pnas.1620503114 doi: 10.1073/pnas.1620503114
    [3] D. H. Mao, Z. M. Wang, B. F. Wu, Y. Zheng, L. Luo, B. Zhang, Land degradation and restoration in the arid and semiarid zones of China: Quantified evidence and implications from satellites, Land. Degrad. Dev., 29 (2018), 3841-3851. https://doi.org/10.1002/ldr.3135 doi: 10.1002/ldr.3135
    [4] W. X. Chen, G. Q. Chi, J. F. Li, The spatial association of ecosystem services with land use and land cover change at the county level in China, 1995-2015, Sci. Total Environ., 669 (2019), 459-470. https://doi.org/10.1016/j.scitotenv.2019.03.139 doi: 10.1016/j.scitotenv.2019.03.139
    [5] G. S. Cumming, A. Buerkert, E. M. Hoffmann, E. Schlecht, S. V. Gramon-Taubadel, T. Tscharntke, Implication of agricultural transition and urbanization for ecosystem services, Nature, 515 (2014), 50-57. https://doi.org/10.1038/nature13945 doi: 10.1038/nature13945
    [6] M. Y. Li, Y. Zhou, P. N. Xiao, Y. Tian Y, H. Huang, L. Xiao, Evolution of habitat quality and its topographic gradient effect in northwest Hubei province from 2000 to 2020 based on the InVEST model, Land, 10 (2021), 857-857. https://doi.org/10.3390/land10080857 doi: 10.3390/land10080857
    [7] Y. L. Zhang, H. M. Yu, H. Q. Yu, B. D. Xu, C. L. Zhang, Y. P. Ren, et al., Optimization of environmental variables in habitat suitability modeling for mantis shrimp Oratosquilla oratoria in the Haizhou Bay and adjacent waters, Acta. Oceanol. Sinica., 39 (2020), 36-47. https://doi.org/10.1007/s13131-020-1546-8 doi: 10.1007/s13131-020-1546-8
    [8] K. Huang, W. Y. Dai, W. L. Huang, H. Ou, H. X. Hu, Impacts of land use change evaluation on habitat quality based on CA-Markov and InVEST model, Bullet. Soil Water Conserv., 39 (2019), 155-162. https://doi.org/10.13961/j.cnki.stbctb.2019.06.023 doi: 10.13961/j.cnki.stbctb.2019.06.023
    [9] J. H. Goldstein, G. Caldarone, T. K. Duarte, D. Ennaanay, N. Hannahs, G. Mendoza, et al., Integrating ecosystem-service tradeoffs into land-use decisions, P. Natl. Acad. Sci., 109 (2012), 7565-7570. https://doi.org/10.1073/pnas.1201040109 doi: 10.1073/pnas.1201040109
    [10] R. Sharp, H. T. Tallis, T. Ricketts, InVEST 3.3.0 User's Guide, The Natural Capital Project, Stanford University, University of Minnesota, The Nature Conservancy and World Wildlife Fund, Stanford, 2016.
    [11] X. Zhang, Y. X. Li, C. J. Liu, R. T. Bi, L. Xia, Y. S. Guo, et al., Research progress on application of ecosystem service functions based on InVEST model, Ecolog. Sci., 41 (2022), 237-242. https://doi.org/10.14108/j.cnki.1008-8873.2022.01.027 doi: 10.14108/j.cnki.1008-8873.2022.01.027
    [12] H. X. Xiang, Z. M. Wang, D. H. Mao, J. Zhang, Y. B. Xi, B. Zhang, What did China's national wetland conservation program achieve? Observations of changes in land cover and ecosystem services in the Sanjiang Plain, J. Environ. Manage, 267 (2020), 110623. https://doi.org/10.1016/j.jenvman.2020.110623 doi: 10.1016/j.jenvman.2020.110623
    [13] J. Yang, B. P. Xie, D. G. Zhang, Spatiotemporal evolution of habitat quality and its influencing factors in the Yellow River Basin, J. Desert Res., 41 (2021), 12-22.
    [14] M. D. Zhang, F. Zhang, X. Li, Evaluation of habitat quality based on InVEST model: A Case Study of Tongzhou District of Beijing, China, Landscape Archit., 27 (2020), 95-99. https://doi.org/10.14085/j.fjyl.2020.06.0095.05 doi: 10.14085/j.fjyl.2020.06.0095.05
    [15] M. Z. Liu, H. J. Zhang, Y. F. Wang, H. W. Pei, Characteristics of habitat quality in the ago-pastoral ecotone of northern China based on land uses, Soil Water Conserv. Res., 28 (2021), 156-162. https://doi.org/10.13869/j.cnki.rswc.2021.03.018 doi: 10.13869/j.cnki.rswc.2021.03.018
    [16] A. B. Aneseyee, T. Noszczyk, T. Soromessa, E. Elias, The InVEST habitat quality model associated with land use/cover changes: A qualitative case study of the Winike watershed in the Omo-Gibe Basin, Southwest Ethiopia, Remote Sens., 12 (2020), 1103-1103. https://doi.org/10.3390/rs12071103 doi: 10.3390/rs12071103
    [17] Y. C. Xie, Spatiotemporal Change of Ecosystem Services based on InVEST Model in the Bailong River Watershed, Gansu. Doctor, Lanzhou University, 2015.
    [18] H. J. Wang, Habitat quality evaluation of Sanjiangyuan based on InVEST, Value Eng., 35 (2016), 66-70. https://doi.org/10.14018/j.cnki.cn13-1085/n.2016.12.023 doi: 10.14018/j.cnki.cn13-1085/n.2016.12.023
    [19] H. Y. Li, The Evaluation on Ecological Effects of the Project of Returning Farmland to Forest in Liaoning Province, Based on Remote, Sensing and InVEST Model, Doctor, Jilin University, 2019.
    [20] C. M. Zhu, X. L. Zhang, M. M. Zhou, S. He, M. Y. Gan, L. X. Yang, et al., Impacts of urbanization and landscape pattern on habitat quality using OLS and GWR models in Hangzhou, China, Ecol. Indic., 117 (2020), 106654. https://doi.org/10.1016/j.ecolind.2020.106654 doi: 10.1016/j.ecolind.2020.106654
    [21] L. L. Wu, C. G. Sun, F. L. Fan, Estimating the characteristic spatiotemporal variation in habitat quality using the InVEST Model-A case study from Guangdong-Hong Kong-Macao greater bay area, Remote Sens., 13 (2021), 1008-1008. https://doi.org/10.3390/rs13051008 doi: 10.3390/rs13051008
    [22] H. Lotfi, M. Adar, A. Bennouna, D. Izbaim, F. Oumbark, E. H. Ouacha, Silicon Systems Performance Assessment Using the Principal Component Analysis Technique, Mater. Today Proceed., 51 (2021), 1966-1974. https://doi.org/10.1016/j.matpr.2021.04.374 doi: 10.1016/j.matpr.2021.04.374
    [23] Y. Lim, J. Kwon, H. Oh, Principal component analysis in the wavelet domain, Pattern Recogn., 119 (2021). https://doi.org/10.1016/j.patcog.2021.108096 doi: 10.1016/j.patcog.2021.108096
    [24] J. L. Rodríguez-Garciapia, G. Beltrán-Pérez, J. Castillo-Mixcóatl, S. Munoz-Aguirre, Application of the principal components analysis technique to optical fiber sensors for acetone detection, Optics Laster Technol., 143 (2021), 107314. https://doi.org/10.1016/j.optlastec.2021.107314 doi: 10.1016/j.optlastec.2021.107314
    [25] J. F. D. Oliveira, R. Fia, F. R. L. Fia, F. N. R. Rodrigues, M. P. D. Matos, L. A. B. Siniscalchi, Principal component analysis as a criterion for monitoring variable organic load of swine wastewater in integrated biological reactors UASB, SABF and HSSF-CW, J. Environ. Manag., 262 (2020), 110386. https://doi.org/10.1016/j.jenvman.2020.110386 doi: 10.1016/j.jenvman.2020.110386
    [26] Q. Wang, C. Lu, F. Y. Li, Z. P. Fan, River habitat quality assessment based on principal component analysis and entropy weight in Qinghe River as a case, Ecolog. Sci., 36 (2017), 185-193. https://doi.org/10.14108/j.cnki.1008-8873.2017.04.025 doi: 10.14108/j.cnki.1008-8873.2017.04.025
    [27] F. Xie, J. G. Gu, Z. W. Lin, Assessment of aquatic ecosystem health based on principal component analysis with entropy weight: A case study of Wanning reservoir, Chinese J. Appl. Ecol., 25 (2014), 1773-1779. https://doi.org/10.13287/j.1001-9332.20140409.019 doi: 10.13287/j.1001-9332.20140409.019
    [28] S. Salata, C. Grillenzoni, A spatial evaluation of multifunctional Ecosystem Service networks using Principal Component Analysis: A case of study in Turin, Italy, Ecolog. Indicat., 127 (2021), 107758. https://doi.org/10.1016/j.ecolind.2021.107758 doi: 10.1016/j.ecolind.2021.107758
    [29] P. Wang, P. Meng, B. Song, Response surface method using grey relational analysis for decision making in weapon system selection, J. Syst. Eng. Electron., 25 (2014), 265-272. https://doi.org/10.1109/JSEE.2014.00030 doi: 10.1109/JSEE.2014.00030
    [30] L. Zhou, T. H. Mu, M. M. Ma, R. F. Zhang, Q. H. Sun, Y. W. Xu, Nutritional evaluation of different cultivars of potatoes (Solanum tuberosum L.) from China by grey relational analysis (GRA) and its application in potato steamed bread making, J. Integr. Agr., 18 (2019), 231-245. https://doi.org/10.1016/S2095-3119(18)62137-9 doi: 10.1016/S2095-3119(18)62137-9
    [31] X. S. Hu, W. Hong, R. Z. Qiu, T. Hong, C. Chen, C. Z. Wu, Geographic variations of ecosystem service intensity in Fuzhou City, China, Sci. Total. Envoron., 512-513(2015), 215-226. https://doi.org/10.1016/j.scitotenv.2015.01.035 doi: 10.1016/j.scitotenv.2015.01.035
    [32] J. H. He, J. L. Huang, C. Li, The evaluation for the impact of land use change on habitat quality: A joint contribution of cellular automata scenario simulation and habitat quality assessment model, Ecol. Model, 366 (2017), 58-67. https://doi.org/10.1016/j.ecolmodel.2017.10.001 doi: 10.1016/j.ecolmodel.2017.10.001
    [33] J. X. Liu, G. Zhang, Z. Z. Zhuang, Q. W. Cheng, Y. Gao, T. Chen, et al., A new perspective for urban development boundary delineation based on SLEUTH-InVEST model, Habitat Int., 70 (2017), 13-23. https://doi.org/10.1016/j.habitatint.2017.09.009 doi: 10.1016/j.habitatint.2017.09.009
    [34] J. Gong, Y.C. Xie, E. J. Cao, Q. Y. Huang, H. Y. Li, Integration of InVEST-habitat quality model with landscape pattern indexes to assess mountain plant biodiversity change: A case study of Bailongjiang watershed in Gansu Province, J. Geograph. Sci., 29 (2019), 1193-1210. https://doi.org/10.1007/s11442-019-1653-7 doi: 10.1007/s11442-019-1653-7
    [35] L. Chu, T. C. Sun, T. W. Wang, Z. X. Li, C. F. Cai, Evolution and Prediction of Landscape Pattern and Habitat Quality Based on CA-Markov and InVEST Model in Hubei Section of Three Gorges Reservoir Area (TGRA), Sustainability, 10 (2018), 3854-3854. https://doi.org/10.3390/su10113854 doi: 10.3390/su10113854
    [36] Fuzhou Ecological Environment Bureau, Fuzhou Environmental Quality Report 2015.
    [37] Y. Y. Jia, D. M. Yu, M. Y. Wang, B. Liu, L. Ma, Spatio-Temporal evolution and correlation analysis of landscape pattern and habitat quality in Taian city, J. Northwest Forestry Uni., 37 (2022), 229-237. https://kns.cnki.net/kcms/detail/61.1202.S.20211129.1612.002.html
    [38] F. C. Bom, L. A. Colling, Impact of vehicles on benthic macrofauna on a subtropical sand beach, Mar. Ecol., 41 (2020). https://doi.org/10.1111/maec.12595 doi: 10.1111/maec.12595
    [39] S. L. Yu, T. W. Lee, Habitat preference of the stream fish, Sinogastromyzon puliensis (Homalopteridae), Zool. Stud., 41 (2002), 183-187.
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(1772) PDF downloads(175) Cited by(2)

Article outline

Figures and Tables

Figures(6)  /  Tables(7)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog