Research article Special Issues

Identification of drug side effects with a path-based method


  • Received: 10 January 2022 Revised: 20 February 2022 Accepted: 07 March 2022 Published: 06 April 2022
  • The study of drug side effects is a significant task in drug discovery. Candidate drugs with unaccepted side effects must be eliminated to prevent risks for both patients and pharmaceutical companies. Thus, all side effects for any candidate drug should be determined. However, this task, which is carried out through traditional experiments, is time-consuming and expensive. Building computational methods has been increasingly used for the identification of drug side effects. In the present study, a new path-based method was proposed to determine drug side effects. A heterogeneous network was built to perform such method, which defined drugs and side effects as nodes. For any drug and side effect, the proposed path-based method determined all paths with limited length that connects them and further evaluated the association between them based on these paths. The strong association indicates that the drug has a side effect with a high probability. By using two types of jackknife test, the method yielded good performance and was superior to some other network-based methods. Furthermore, the effects of one parameter in the method and heterogeneous network was analyzed.

    Citation: Meng Jiang, Bo Zhou, Lei Chen. Identification of drug side effects with a path-based method[J]. Mathematical Biosciences and Engineering, 2022, 19(6): 5754-5771. doi: 10.3934/mbe.2022269

    Related Papers:

    [1] Usman Babar, Haidar Ali, Shahid Hussain Arshad, Umber Sheikh . Multiplicative topological properties of graphs derived from honeycomb structure. AIMS Mathematics, 2020, 5(2): 1562-1587. doi: 10.3934/math.2020107
    [2] Ali Al Khabyah . Mathematical aspects and topological properties of two chemical networks. AIMS Mathematics, 2023, 8(2): 4666-4681. doi: 10.3934/math.2023230
    [3] R. Aguilar-Sánchez, J. A. Mendez-Bermudez, José M. Rodríguez, José M. Sigarreta . Multiplicative topological indices: Analytical properties and application to random networks. AIMS Mathematics, 2024, 9(2): 3646-3670. doi: 10.3934/math.2024179
    [4] Fei Yu, Hifza Iqbal, Saira Munir, Jia Bao Liu . M-polynomial and topological indices of some transformed networks. AIMS Mathematics, 2021, 6(12): 13887-13906. doi: 10.3934/math.2021804
    [5] Ali Al Khabyah, Haseeb Ahmad, Ali Ahmad, Ali N. A. Koam . A uniform interval-valued intuitionistic fuzzy environment: topological descriptors and their application in neural networks. AIMS Mathematics, 2024, 9(10): 28792-28812. doi: 10.3934/math.20241397
    [6] Sumiya Nasir, Nadeem ul Hassan Awan, Fozia Bashir Farooq, Saima Parveen . Topological indices of novel drugs used in blood cancer treatment and its QSPR modeling. AIMS Mathematics, 2022, 7(7): 11829-11850. doi: 10.3934/math.2022660
    [7] Fozia Bashir Farooq . Implementation of multi-criteria decision making for the ranking of drugs used to treat bone-cancer. AIMS Mathematics, 2024, 9(6): 15119-15131. doi: 10.3934/math.2024733
    [8] Jung-Chao Ban, Chih-Hung Chang . Entropy dimension of shifts of finite type on free groups. AIMS Mathematics, 2020, 5(5): 5121-5139. doi: 10.3934/math.2020329
    [9] Ali N. A. Koam, Ali Ahmad, Azeem Haider, Moin A. Ansari . Computation of eccentric topological indices of zero-divisor graphs based on their edges. AIMS Mathematics, 2022, 7(7): 11509-11518. doi: 10.3934/math.2022641
    [10] Yanjie Wang, Beibei Zhang, Bo Cao . On the number of zeros of Abelian integrals for a kind of quadratic reversible centers. AIMS Mathematics, 2023, 8(10): 23756-23770. doi: 10.3934/math.20231209
  • The study of drug side effects is a significant task in drug discovery. Candidate drugs with unaccepted side effects must be eliminated to prevent risks for both patients and pharmaceutical companies. Thus, all side effects for any candidate drug should be determined. However, this task, which is carried out through traditional experiments, is time-consuming and expensive. Building computational methods has been increasingly used for the identification of drug side effects. In the present study, a new path-based method was proposed to determine drug side effects. A heterogeneous network was built to perform such method, which defined drugs and side effects as nodes. For any drug and side effect, the proposed path-based method determined all paths with limited length that connects them and further evaluated the association between them based on these paths. The strong association indicates that the drug has a side effect with a high probability. By using two types of jackknife test, the method yielded good performance and was superior to some other network-based methods. Furthermore, the effects of one parameter in the method and heterogeneous network was analyzed.



    Graph theory has provided the researcher with various useful tools, such as graph labeling, locating numbers and topological indices. Graph theory subject has many applications and implementations in different research subjects like chemistry, medicine and engineering. A graph can be recognized by a numeric value, a polynomial, a sequence of numbers or a matrix. The representation of the chemical compound in terms of diagram, known as its molecular graph, in which its atoms and the chemical bonding between them represent the nodes and edges, respectively. Recently, a new subject caught attention of the researchers was introduced, which is the combination of chemistry, information science and mathematics is called Cheminformatics, which studies QSAR/QSPR relationship, bioactivity and characterization of chemical compounds [1].

    The topological index is a numeric value related with chemical compositions maintaining the correlation of chemical structures with many physico-chemical properties, chemical reactivity or biological activity. Topological indices are prepared on the grounds of the transformation of a chemical network into a number that describes the topology of the chemical network. Some of the main types of topological indices of graphs are distance-based topological indices, degree-based topological indices, and counting-related topological indices. Recently, numerous researchers have found topological indices for the study of fundamental properties of molecular graph or network. These networks have very motivating topological properties which have been considered in different characteristics in [2,3,4,5,6,7,8,9].

    Let G=(V,E) be a simple connected graph, with V be the vertex set and E be the edge set of graph G, with order |V|=p, size |E|=q. The number of edges incident with a vertex ω is known as the degree of ω, denoted by ζ(ω). The reverse vertex degree (R(ω)) was introduced by Kulli [10] defined as: R(ω)=1ζ(ω)+Δ, where Δ denoted the maximum degree of the given graph. Let ER(ω),R(μ) represents the edge partition of the given graph based on reverse degree of end vertices of an edge ωμE and |ER(ω),R(μ)| represents its cardinality. There are detailed variations of topological indices mainly distance-based and degree-based indices, see [11,12,13,14,15,16]. Milan Randic [30] was the first who defined the degree-based indices and its reverse Randic index is defined as:

    RRα(G)=ωμE(G)(R(ω)×R(μ))α,α=12,12,1,1. (1.1)

    Estrada et al. presented the atom bond connectivity (ABC) index in [18] and the reverse atom bond connectivity (RABC) is defined as:

    RABC(G)=ωμE(G)R(ω)+R(μ)2R(ω)×R(μ) (1.2)

    Vukicevic and Furtula defined the geometric arithmetic (GA) index in [19] and the reverse geometric arithmetic (RGA) is presented as:

    RGA(G)=ωμE(G)2R(ω)×R(μ)R(ω)+R(μ) (1.3)

    Gutman et al. [20,21] defined the first and second Zagreb and its reverse indices as:

    RM1(G)=ωμE(G)(R(ω)+R(μ)) (1.4)
    RM2(G)=ωμE(G)(R(ω)×R(μ)) (1.5)

    Shirdel et al. [22] introduced hyper Zagreb index. We defined the reverse hyper Zagreb index as:

    RHM(G)=ωμE(G)(R(ω)+R(μ))2 (1.6)

    Furtula and Gutman [23] accomplished the forgotten index and its reverse forgotten index as:

    RF(G)=ωμE(G)((R(ω))2+(R(μ))2) (1.7)

    Augmented Zagreb index was introduced by Furtula et al. [24] and the reverse augmented Zagreb index as:

    RAZI(G)=ωμE(G)(R(ω)×R(μ)R(ω)+R(μ)2)3 (1.8)

    Ranjini et al. [25] introduced the first redefined, second redefined and third redefined Zagreb indices. The reverse first redefined, second redefined and third redefined Zagreb indices are defined as:

    RReZ1(G)=ωμE(G)R(ω)+R(μ)R(ω)×R(μ) (1.9)
    RReZ2(G)=ωμE(G)R(ω)×R(μ)R(ω)+R(μ) (1.10)
    RReZ3(G)=ωμE(G)(R(ω)+R(μ))(R(ω)×R(μ)) (1.11)

    For latest results on topological indices see [26,27,28,29,31,32,33,34,35]. In this paper, we compute the exact results for all the above reverse indices.

    With the help of complete graphs of order 3 (K3), Chen et al. [36] assembled a hexagonal mesh. In terms of chemistry, these K3 graphs are also called oxide graphs. The Figure 1 is obtained by joining these K3 graphs. Two dimensional mesh graph HX(2) (see Figure 1 (a)), is obtained by joining six K3 graphs and three dimensional mesh graph HX(3) (see Figure 1 (b)) is obtained by putting K3 graphs around all side of HX(2). Furthermore, repeating the same process by putting the t K3 graph around each hexagon, we obtained the tth hexagonal mesh. To be noted that the one dimensional hexagonal mesh graph does not exist.

    Figure 1.  Hexagonal meshes: (a) HX(2) and (b) HX(3).

    Simonraj et al. [37] created the new network which is named as third type of hex-derived networks. The graphically construction algorithm for third type of hexagonal hex-derived network HHDN3(t) (see Figure 2), triangular hex-derived network THDN3(t) (see Figure 3) and rectangular hex-derived network RHDN3(t) (see Figure 4) are defined in [38,39] and they determined some topological indices of these new derived networks. Some networks such as hexagonal, honeycomb, and grid networks, for instance, endure closeness to atomic or molecular lattice configurations. Related research that applies this theory and which could get additional advantages from the visions of the new research is found in [40,41,42,43,44,45,46].

    Figure 2.  Third type of hexagonal hex-derived network HHDN3(t) for t=4.
    Figure 3.  Third type of triangular hex-derived network THDN3(t) for t=7.
    Figure 4.  Third type of rectangular hex-derived network RHDN3(t) for t=4.

    Let Γ1=HHDN3(t) be the third type of hexagonal hex-derived network which is shown in Figure 2, where t4. The graph Γ1 has 21t239t+19 vertices from which 18t236t+18 vertices of reverse degree 15, 4 vertices of reverse degree 12, 6t12 vertices of reverse degree 9 and 3t29t+9 vertices of reverse degree 1. There are 63t2123t+60 number of edges of Γ1 is partitioned into nine classes based on their reverse degrees which are given in Eq (3.1).

    |ER(ω),R(μ)(Γ1)|={9t233t+30,for; R(ω)=1,R(μ)=112t24,for; R(ω)=9,R(μ)=16t18,for; R(ω)=9,R(μ)=96,for; R(ω)=12,R(μ)=112,for; R(ω)=12,R(μ)=936t2108t+84,for; R(ω)=15,R(μ)=136t72,for; R(ω)=15,R(μ)=924,for; R(ω)=15,R(μ)=1218t236t+18,for; R(ω)=15,R(μ)=15 (3.1)

    In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ1 graph.

    Theorem 3.1. Let Γ1 be the third type of hexagonal hex-derived network, then

    RRα(Γ1)=[9+36(15)α+18(225)α]t2+[33+12(9)α+6(81)α108(15)α+36(135)α36(225)α]t+3024(9)α18(81)α+6(12)α+12(108)α+84(15)α72(135)α+24(180)α+18(225)α

    RM1(Γ1)=1134t21782t+630

    RM2(Γ1)=4599t24299t366

    RHM(Γ1)=25452t236300t+11922

    RF(Γ1)=16254t227702t+12654

    Proof. Let Γ1 be the third type of hexagonal hex-derived network which is shown in Figure 2. The order of hexagonal hex derived network Γ1 is p=|Γ1|=21t239t+19 and size is q=63t2123t+60. The edge partitioned of Γ1 based on their reverse degrees are shown in Eq (3.1). Reverse Randic index can be calculated by using Eq (3.1). Thus, from Eq (1.1), it follows,

    RRα(Γ1)=(1)α|E1,1(Γ1)|+(9)α|E9,1(Γ1)|+(81)α|E9,9(Γ1)|+(12)α|E12,1(Γ1)|+(108)α|E12,9(Γ1)|+(15)α|E15,1(Γ1)|+(135)α|E15,9(Γ1)|+(180)α|E15,12(Γ1)|+(225)α|E15,15(Γ1)|.

    =(9t233t+30)+(9)α(12t24)+(81)α(6t18)+(12)α(6)+(108)α(12)+(15)α(36t2108t+84)+(135)α(36t72)+(180)α(24)+(225)α(18t236t+18).

    =[9+36(15)α+18(225)α]t2+[33+12(9)α+6(81)α108(15)α+36(135)α36(225)α]t+3024(9)α18(81)α+6(12)α+12(108)α+84(15)α72(135)α+24(180)α+18(225)α. Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ1) as:

    RM2(Γ1)=4599t24299t366. (3.2)

    Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ1) as:

    RM1(Γ1)=2×|E1,1(Γ1)|+10×|E9,1(Γ1)|+18×|E9,9(Γ1)|+13×|E12,1(Γ1)|+21×|E12,9(Γ1)|+16×|E15,1(Γ1)|+24×|E15,9(Γ1)|+27×|E15,12(Γ1)|+30×|E15,15(Γ1)|.

    By putting the values of from equation (3.1) and after simplification, we obtain:

    RM1(Γ1)=1134t21782t+630. (3.3)

    Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ1) as:

    RHM(Γ1)=4×|E1,1(Γ1)|+100×|E9,1(Γ1)|+324×|E9,9(Γ1)|+169×|E12,1(Γ1)|+441×|E12,9(Γ1)|+256×|E15,1(Γ1)|+576×|E15,9(Γ1)|+729×|E15,12(Γ1)|+900×|E15,15(Γ1)|.

    After simplification, we get

    RHM(Γ1)=25452t236300t+11922

    Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ1)) as:

    RF(Γ1))=2×|E1,1(Γ1)|+82×|E9,1(Γ1)|+162×|E9,9(Γ1)|+145×|E12,1(Γ1)|+225×|E12,9(Γ1)|+226×|E15,1(Γ1)|+306×|E15,9(Γ1)|+369×|E15,12(Γ1)|+450×|E15,15(Γ1)|.

    After simplification, we get

    RF(Γ1)=16254t227702t+12654

    In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ1 graph.

    Theorem 3.2. Let Γ1 be the third type of hexagonal hex-derived network, then

    RABC(Γ1)=(122105+1275)t2+(82+83362105+433052475)t8162+33+2573+28210583305+45+1275

    RGA(Γ1)=(27+9152)t2+(27959152)t+785+79239115152+3253.

    Proof. The reverse atom bond connectivity (RABC(Γ1)), can be determined by using Eq (1.2) and Eq (3.1), as follows:

    RABC(Γ1)=0×|E1,1(Γ1)|+89×|E9,1(Γ1)|+1681×|E9,9(Γ1)|+1112×|E12,1(Γ1)|+19108×|E12,9(Γ1)|+1415×|E15,1(Γ1)|+22135×|E15,9(Γ1)|+25180×|E15,12(Γ1)|+28225×|E15,15(Γ1)|.

    After some simplification, we get

    RABC(Γ1)=(122105+1275)t2+(82+83362105+433052475)t8162+33+2573+28210583305+45+1275.

    The reverse geometric arithmetic (RGA(Γ1)), can be determined by using Eq (1.3) and Eq (3.1), as follows:

    RGA(Γ1)=|E1,1(Γ1)|+2910×|E9,1(Γ1)|+28118×|E9,9(Γ1)|+21213×|E12,1(Γ1)|+210821×|E12,9(Γ1)|+21516×|E15,1(Γ1)|+213524×|E15,9(Γ1)|+218027×|E15,12(Γ1)|+222530×|E15,15(Γ1)|.

    After some simplification, we get

    RGA(Γ1)=(27+9152)t2+(27959152)t+785+79239115152+3253. In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ1 graph.

    Theorem 3.3. Let Γ1 be the third type of hexagonal hex-derived network, then

    RReZ1(Γ1)=294t252474t15+362930

    RReZ2(Γ1)=693t242949t20939071820

    RReZ3(Γ1)=130158t2142518t+24828

    Proof. Reverse redefined Zagreb indices can be calculated by using Eq (3.1), the RReZ1(Γ1) by using Eq (1.9) as follows:

    RReZ1(Γ1)=2×|E1,1(Γ1)|+109×|E9,1(Γ1)|+1881×|E9,9(Γ1)|+1312×|E12,1(Γ1)|+21108×|E12,9(Γ1)|+1615×|E15,1(Γ1)|+24135×|E15,9(Γ1)|+27108×|E15,12(Γ1)|+30225×|E15,15(Γ1)|.

    After some simplification, we get

    RReZ1(Γ1)=294t252474t15+362930.

    The RReZ2(Γ1) can be determined by using Eq (1.10) as follows:

    RReZ2(Γ1)=12×|E1,1(Γ1)|+910×|E9,1(Γ1)|+8118×|E9,9(Γ1)|+1213×|E12,1(Γ1)|+10821×|E12,9(Γ1)|+1516×|E15,1(Γ1)|+13524×|E15,9(Γ1)|+10827×|E15,12(Γ1)|+22530×|E15,15(Γ1)|.

    After some simplification, we get

    RReZ2(Γ1)=693t242949t20939071820.

    The RReZ3(Γ1) can be calculated by using Eq (1.11) as follows:

    RReZ3(Γ1)=2×|E1,1(Γ1)|+90×|E9,1(Γ1)|+1458×|E9,9(Γ1)|+156×|E12,1(Γ1)|+2268×|E12,9(Γ1)|+240×|E15,1(Γ1)|+3240×|E15,9(Γ1)|+2916×|E15,12(Γ1)|+6750×|E15,15(Γ1)|.

    After some simplification, we get

    RReZ3(Γ1)=130158t2142518t+24828.

    Let Γ2=THDN3(t) be the third type of triangular hex-derived network which is shown in Figure 3, where t4. The graph Γ2 has 7t211t+62 vertices. There are 21t239t+182 number of edges of Γ2 is partitioned into six classes based on their reverse degrees which are given in Eq (4.1). Now we calculated reverse degree based indices such as: reverse Randic index RRα, reverse atom bond connectivity index RABC, reverse geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index RM2, reverse forgotten index RF, reverse hyper Zagreb index RHM and reverse redefined Zagreb indices for Γ2 graph.

    |ER(ω),R(μ)(Γ2)|={3t2221t2+18,for; R(ω)=1,R(μ)=16t18,for; R(ω)=9,R(μ)=13t6,for; R(ω)=9,R(μ)=96t230t+36,for; R(ω)=15,R(μ)=118t30,for; R(ω)=15,R(μ)=93t26t+9,for; R(ω)=15,R(μ)=15 (4.1)

    In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ2 graph.

    Theorem 4.1. Let Γ2 be the third type of triangular hex-derived network, then

    RRα(Γ2)=(32+6(15)α+3(225)α)t2+(212+6(9)α+3(81)α30(15)α+18(135)α6(225)α)t+1818(9)α6(81)α+36(15)α30(135)α+9(225)α.

    RM1(Γ2)=189t2135t126

    RM2(Γ2)=1533t22+1833t22115

    RHM(Γ2)=4242t21182t3636

    RF(Γ2)=2709t23015t+594

    Proof. Let Γ2 be the third type of triangular hex-derived network which is shown in Figure 3. The order of triangular hex derived network Γ2 is p=|Γ2|=7t211t+62 and size is q=21t239t+182. The edge partitioned of Γ2 based on their reverse degrees are shown in Eq (4.1). Reverse Randic index can be calculated by using Eq (4.1). Thus, from Eq (1.1), it follows,

    RRα(Γ2)=(1)α|E1,1(Γ2)|+(9)α|E9,1(Γ2)|+(81)α|E9,9(Γ2)|+(15)α|E15,1(Γ2)|+(135)α|E15,9(Γ2)|+(225)α|E15,15(Γ2)|.

    After simplification, we get

    RRα(Γ2)=(32+6(15)α+3(225)α)t2+(212+6(9)α+3(81)α30(15)α+18(135)α6(225)α)t+1818(9)α6(81)α+36(15)α30(135)α+9(225)α.

    Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ2) as:

    RM2(Γ2)=1533t22+1833t22115 (4.2)

    Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ2) as:

    RM1(Γ2)=2×|E1,1(Γ1)|+10×|E9,1(Γ1)|+18×|E9,9(Γ1)|+16×|E15,1(Γ1)|+24×|E15,9(Γ1)|+30×|E15,15(Γ1)|.

    By putting the values of from Eq (4.1) and after simplification, we obtain:

    RM1(Γ2)=189t2135t126 (4.3)

    Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ2) as:

    RHM(Γ2)=4×|E1,1(Γ2)|+100×|E9,1(Γ2)|+324×|E9,9(Γ2)|+256×|E15,1(Γ2)|+576×|E15,9(Γ2)|+900×|E15,15(Γ2)|.

    After simplification, we get

    RHM(Γ2)=4242t21182t3636.

    Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ2)) as:

    RF(Γ2))=2×|E1,1(Γ2)|+82×|E9,1(Γ2)|+162×|E9,9(Γ2)|+226×|E15,1(Γ2)|+306×|E15,9(Γ2)|+450×|E15,15(Γ2)|.

    After simplification, we get

    RF(Γ2)=2709t23015t+594.

    In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ2 graph.

    Theorem 4.2. Let Γ2 be the third type of triangular hex-derived network, then

    RABC(Γ2)=(22105+275)t2+(42+432210+23305475)t83122+12210523303+675

    RGA(Γ2)=(92+3154)t2+(9910+3154)t+515315.

    Proof. The reverse atom bond connectivity (RABC(Γ2)), can be determined by using Eq (1.2) and Eq (4.1), as follows:

    RABC(Γ2)=0×|E1,1(Γ2)|+89×|E9,1(Γ2)|+1681×|E9,9(Γ2)|+1415×|E15,1(Γ2)|+22135×|E15,9(Γ2)|+28225×|E15,15(Γ2)|.

    After some simplification, we get

    RABC(Γ2)=(22105+275)t2+(42+432210+23305475)t83122+12210523303+675.

    The reverse geometric arithmetic (RGA(Γ2)), can be determined by using Eq (1.3) and Eq (4.1), as follows:

    RGA(Γ2)=|E1,1(Γ2)|+2910×|E9,1(Γ2)|+28118×|E9,9(Γ2)|+21516×|E15,1(Γ2)|+213524×|E15,9(Γ2)|+222530×|E15,15(Γ2)|.

    After some simplification, we get

    RGA(Γ2)=(92+3154)t2+(9910+3154)t+515315.

    In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ2 graph.

    Theorem 4.3. Let Γ2 be the third type of triangular hex-derived network, then

    RReZ1(Γ2)=49t25649t15+73415

    RReZ2(Γ2)=231t28+1671t40101710

    RReZ3(Γ2)=21693t2+15513t38142.

    Proof. Reverse redefined Zagreb indices can be calculated by using Eq (4.1), the RReZ1(Γ2) by using Eq (1.9) as follows:

    RReZ1(Γ2)=2×|E1,1(Γ2)|+109×|E9,1(Γ2)|+1881×|E9,9(Γ2)|+1615×|E15,1(Γ2)|+24135×|E15,9(Γ2)|+30225×|E15,15(Γ2)|.

    After some simplification, we get

    RReZ1(Γ2)=49t25649t15+73415.

    The RReZ2(Γ2) can be determined by using Eq (1.10) as follows:

    RReZ2(Γ2)=12×|E1,1(Γ2)|+910×|E9,1(Γ2)|+8118×|E9,9(Γ2)|+1516×|E15,1(Γ2)|+13524×|E15,9(Γ2)|+22530×|E15,15(Γ2)|.

    After some simplification, we get

    RReZ2(Γ2)=231t28+1671t40101710.

    The RReZ3(Γ2) can be calculated by using Eq (1.11) as follows:

    RReZ3(Γ2)=2×|E1,1(Γ2)|+90×|E9,1(Γ2)|+1458×|E9,9(Γ2)|+240×|E15,1(Γ2)|+3240×|E15,9(Γ2)|+6750×|E15,15(Γ2)|.

    After some simplification, we get

    RReZ3(Γ2)=21693t2+15513t38142.

    In this section, we calculate certain reverse degree based topological indices of the third type of rectangular hex-derived network, RHDN3(t,w) of dimension t=w. Now we calculated reverse degree based indices such as: reverse Randic index RRα, reverse atom bond connectivity index RABC, reverse geometric arithmetic index RGA, first reverse Zagreb index RM1, second reverse Zagreb index RM2, reverse forgotten index RF, reverse augmented Zagreb index RAZI, reverse hyper Zagreb index RHM and reverse redefined Zagreb indices for Γ3 graph.

    |ER(ω),R(μ)(Γ3)|={3t216t+21,for; R(ω)=1,R(μ)=18t20,for; R(ω)=9,R(μ)=14t10,for; R(ω)=9,R(μ)=92,for; R(ω)=12,R(μ)=14,for; R(ω)=12,R(μ)=912t248t+48,for; R(ω)=15,R(μ)=124t44,for; R(ω)=15,R(μ)=98,for; R(ω)=15,R(μ)=126t212t+10,for; R(ω)=15,R(μ)=15 (5.1)

    In the next theorem, we will calculate the reverse Randic index, reverse Zagreb indices, reverse forgotten index for Γ3 graph.

    Theorem 5.1. Let Γ3 be the third type of rectangular hex-derived network, then

    RRα(Γ3)=(3+12(15)α+6(225)α)t2+(16+8(9)α+4(81)α48(15)α+24(135)α12(225)α)t+2120(9)α10(81)α+2(12)α+4(108)α+48(15)α44(135)α+8(180)α+10(225)α

    RM1(Γ3)=378t2432t

    RM2(Γ3)=1533t2+200t2043

    RHM(Γ3)=8484t27232t1278

    RF(Γ3)=5418t27632t+2808.

    Proof. Let Γ3 be the third type of rectangular hex-derived network which is shown in Figure 4. The order of hexagonal hex derived network Γ3 is p=|Γ1|=7t212t+6 and size is q=21t240t+19. The edge partitioned of Γ3 based on their reverse degrees are shown in Eq (5.1). Reverse Randic index can be calculated by using Eq (5.1). Thus, from Eq (1.1), it follows,

    RRα(Γ3)=(1)α|E1,1(Γ3)|+(9)α|E9,1(Γ3)|+(81)α|E9,9(Γ3)|+(12)α|E12,1(Γ3)|+(108)α|E12,9(Γ3)|+(15)α|E15,1(Γ3)|+(135)α|E15,9(Γ3)|+(180)α|E15,12(Γ3)|+(225)α|E15,15(Γ3)|.

    After Simplification, we get

    RRα(Γ3)=(3+12(15)α+6(225)α)t2+(16+8(9)α+4(81)α48(15)α+24(135)α12(225)α)t+2120(9)α10(81)α+2(12)α+4(108)α+48(15)α44(135)α+8(180)α+10(225)α.

    Put α=1 and after some calculation, we get reverse second Zagreb index RM2(Γ3) as:

    RM2(Γ3)=1533t2+200t2043. (5.2)

    Using the Eq (1.4), we can determine the reverse first Zagreb index RM1(Γ3) as:

    RM1(Γ3)=2×|E1,1(Γ3)|+10×|E9,1(Γ3)|+18×|E9,9(Γ3)|+13×|E12,1(Γ3)|+21×|E12,9(Γ3)|+16×|E15,1(Γ3)|+24×|E15,9(Γ3)|+27×|E15,12(Γ3)|+30×|E15,15(Γ3)|.

    By putting the values of from Eq (5.1) and after simplification, we obtain:

    RM1(Γ3)=378t2432t. (5.3)

    Using the Eq (1.6), we can determine the reverse hyper Zagreb index RHM(Γ3) as:

    RHM(Γ3)=4×|E1,1(Γ3)|+100×|E9,1(Γ3)|+324×|E9,9(Γ3)|+169×|E12,1(Γ3)|+441×|E12,9(Γ3)|+256×|E15,1(Γ3)|+576×|E15,9(Γ3)|+729×|E15,12(Γ3)|+900×|E15,15(Γ3)|.

    After simplification, we get

    RHM(Γ3)=8484t27232t1278.

    Using the Eq (1.7), we can determine the reverse forgotten index RF(Γ3)) as:

    RF(Γ3))=2×|E1,1(Γ3)|+82×|E9,1(Γ3)|+162×|E9,9(Γ3)|+145×|E12,1(Γ3)|+225×|E12,9(Γ3)|+226×|E15,1(Γ3)|+306×|E15,9(Γ3)|+369×|E15,12(Γ3)|+450×|E15,15(Γ3)|.

    After simplification, we get

    RF(Γ3)=5418t27632t+2808.

    In the next theorem, we will calculate the reverse atom bond connectivity index, reverse geometric arithmetic index for Γ3 graph.

    Theorem 5.2. Let Γ3 be the third type of rectangular hex-derived network, then

    RABC(Γ3)=(42105+475)t2+(1623+169162105+833015875)t4094023+333+2579+1621054433045+453+473.

    RGA(Γ3)=(9+3152)t296t5+9+264391515+3259.

    Proof. The reverse atom bond connectivity (RABC(Γ3)), can be determined by using Eq (1.2) and Eq (5.1), as follows:

    RABC(Γ3)=0×|E1,1(Γ3)|+89×|E9,1(Γ3)|+1681×|E9,9(Γ3)|+1112×|E12,1(Γ3)|+19108×|E12,9(Γ3)|+1415×|E15,1(Γ3)|+22135×|E15,9(Γ3)|+25180×|E15,12(Γ3)|+28225×|E15,15(Γ3)|.

    After some simplification, we get

    RABC(Γ3)=(42105+475)t2+(1623+169162105+833015875)t4094023+333+2579+1621054433045+453+473.

    The reverse geometric arithmetic (RGA(Γ3)), can be determined by using Eq (1.3) and Eq (5.1), as follows:

    RGA(Γ3)=|E1,1(Γ3)|+2910×|E9,1(Γ3)|+28118×|E9,9(Γ3)|+21213×|E12,1(Γ3)|+210821×|E12,9(Γ3)|+21516×|E15,1(Γ3)|+213524×|E15,9(Γ3)|+218027×|E15,12(Γ3)|+222530×|E15,15(Γ3)|.

    After some simplification, we get

    RGA(Γ3)=(9+3152)t296t5+9+264391515+3259.

    In the next theorems, we will calculate the reverse redefined Zagreb indices for Γ3 graph.

    Theorem 5.3. Let Γ3 be the third type of rectangular hex-derived network, then

    RReZ1(Γ3)=98t253184t45+597790

    RReZ2(Γ3)=231t24+86t528460273

    RReZ3(Γ3)=43386t28240t31614.

    Proof. Reverse redefined Zagreb indices can be calculated by using Eq (5.1), the RReZ1(Γ3) by using Eq (1.9) as follows:

    RReZ1(Γ3)=2×|E1,1(Γ3)|+109×|E9,1(Γ3)|+1881×|E9,9(Γ3)|+1312×|E12,1(Γ3)|+21108×|E12,9(Γ3)|+1615×|E15,1(Γ3)|+24135×|E15,9(Γ3)|+27108×|E15,12(Γ3)|+30225×|E15,15(Γ3)|.

    After some simplification, we get

    RReZ1(Γ3)=98t253184t45+597790.

    The RReZ2(Γ1) can be determined by using equation (1.10) as follows:

    RReZ2(Γ3)=12×|E1,1(Γ3)|+910×|E9,1(Γ3)|+8118×|E9,9(Γ3)|+1213×|E12,1(Γ3)|+10821×|E12,9(Γ3)|+1516×|E15,1(Γ3)|+13524×|E15,9(Γ3)|+10827×|E15,12(Γ3)|+22530×|E15,15(Γ3)|.

    After some simplification, we get

    RReZ2(Γ3)=231t24+86t528460273.

    The RReZ3(Γ3) can be calculated by using Eq (1.11) as follows:

    RReZ3(Γ3)=2×|E1,1(Γ3)|+90×|E9,1(Γ3)|+1458×|E9,9(Γ3)|+156×|E12,1(Γ3)|+2268×|E12,9(Γ3)|+240×|E15,1(Γ3)|+3240×|E15,9(Γ3)|+2916×|E15,12(Γ3)|+6750×|E15,15(Γ3)|.

    After some simplification, we get

    RReZ3(Γ3)=43386t28240t31614.

    In this article, we have calculated the exact solutions of reverse degree-based topological descriptors for hex-derived networks of third type. Hex-derived network has a variety of useful applications in pharmacy, electronics, and networking. We obtained the reverse degree-based indices such as reverse Randic index, reverse atom bond connectivity index, reverse geometric arithmetic index, reverse Zagreb indices, reverse redefined Zagreb indices for hex derived networks. These results may be helpful for people working in computer science and chemistry who encounter hex-derived networks.

    The authors declare that there is no conflict of financial interests regarding the publication of this paper.



    [1] S. Shabani-Mashcool, S. A. Marashi, S. Gharaghani, NDDSA: A network- and domain-based method for predicting drug-side effect associations, Inform. Process. Manag., 57 (2020), 102357. https://doi.org/10.1016/j.ipm.2020.102357 doi: 10.1016/j.ipm.2020.102357
    [2] Y. J. Ding, J. J. Tang, F. Guo, Identification of drug-side effect association via multiple information integration with centered kernel alignment, Neurocomputing, 325 (2019), 211–224. https://doi.org/10.1016/j.neucom.2018.10.028 doi: 10.1016/j.neucom.2018.10.028
    [3] A. Lakizadeh, S. M. H. Mir-Ashrafi, Drug repurposing improvement using a novel data integration framework based on the drug side effect, Inform. Med. Unlocked, 23 (2021), 100523. https://doi.org/10.1016/j.imu.2021.100523 doi: 10.1016/j.imu.2021.100523
    [4] E. Pauwels, V. Stoven, Y. Yamanishi, Predicting drug side-effect profiles: a chemical fragment-based approach, BMC Bioinformatics, 12 (2011), 169. https://doi.org/10.1186/1471-2105-12-169 doi: 10.1186/1471-2105-12-169
    [5] S. Jamal, S. Goyal, A. Shanker, A. Grover, Predicting neurological adverse drug reactions based on biological, chemical and phenotypic properties of drugs using machine learning models, Sci. Rep., 7 (2017), 872. https://doi.org/10.1038/s41598-017-00908-z doi: 10.1038/s41598-017-00908-z
    [6] Y. Zheng, H. Peng, S. Ghosh, C. Lan, J. Li, Inverse similarity and reliable negative samples for drug side-effect prediction, BMC Bioinformatics, 19 (2019), 554. https://doi.org/10.1186/s12859-018-2563-x doi: 10.1186/s12859-018-2563-x
    [7] M. Liu, Y. Wu, Y. Chen, J. Sun, Z. Zhao, X. W. Chen, et al., Large-scale prediction of adverse drug reactions using chemical, biological, and phenotypic properties of drugs, J. Am. Med. Inform. Assoc., 19 (2012), e28–35. https://doi.org/10.1136/amiajnl-2011-000699 doi: 10.1136/amiajnl-2011-000699
    [8] S. Dey, H. Luo, A. Fokoue, J. Hu, P. Zhang, Predicting adverse drug reactions through interpretable deep learning framework, BMC Bioinformatics, 19 (2018), 476. https://doi.org/10.1186/s12859-018-2544-0 doi: 10.1186/s12859-018-2544-0
    [9] L. Chen, T. Huang, J. Zhang, M. Y. Zheng, K. Y. Feng, Y. D. Cai, et al., Predicting drugs side effects based on chemical-chemical interactions and protein-chemical interactions, BioMed Res. Int., 2013 (2013), 485034. https://doi.org/10.1155/2013/485034 doi: 10.1155/2013/485034
    [10] W. Zhang, F. Liu, L. Luo, J. Zhang, Predicting drug side effects by multi-label learning and ensemble learning, BMC Bioinformatics, 16 (2015), 365. https://doi.org/10.1186/s12859-015-0774-y doi: 10.1186/s12859-015-0774-y
    [11] N. Atias, R. Sharan, An algorithmic framework for predicting side effects of drugs, J. Comput. Biol., 18 (2011), 207–218. https://doi.org/10.1089/cmb.2010.0255 doi: 10.1089/cmb.2010.0255
    [12] E. Muñoz, V. Novácek, P. Y. Vandenbussche, Facilitating prediction of adverse drug reactions by using knowledge graphs and multi-label learning models, Brief. Bioinform., 20 (2017), 190–202. https://doi.org/10.1093/bib/bbx099 doi: 10.1093/bib/bbx099
    [13] W. Zhang, Y. Chen, S. Tu, F. Liu, Q. Qu, Drug side effect prediction through linear neighborhoods and multiple data source integration, in IEEE International Conference on Bioinformatics and Biomedicine, (2016), 427–434. https://doi.org/10.1109/BIBM.2016.7822555
    [14] E. Munoz, V. Novacek, P. Y. Vandenbussche, Using drug similarities for discovery of possible adverse reactions, AMIA Annu. Symp. Proc., 2016 (2016), 924–933.
    [15] X. Zhao, L. Chen, J. Lu, A similarity-based method for prediction of drug side effects with heterogeneous information, Math. Biosci., 306 (2018), 136–144. https://doi.org/10.1016/j.mbs.2018.09.010 doi: 10.1016/j.mbs.2018.09.010
    [16] H. Liang, L. Chen, X. Zhao, X. Zhang, Prediction of drug side effects with a refined negative sample selection strategy, Comput. Math. Method. M., 2020 (2020), 1573543. https://doi.org/10.1155/2020/1573543 doi: 10.1155/2020/1573543
    [17] X. Zhao, L. Chen, Z. H. Guo, T. Liu, Predicting drug side effects with compact integration of heterogeneous networks, Curr. Bioinform., 14 (2019), 709–720. https://doi.org/10.2174/1574893614666190220114644 doi: 10.2174/1574893614666190220114644
    [18] X. Guo, W. Zhou, Y. Yu, Y. Ding, J. Tang, F. Guo, A novel triple matrix factorization method for detecting drug-side effect association based on kernel target alignment, BioMed Res. Int., 2020 (2020), 4675395. https://doi.org/10.1155/2020/4675395 doi: 10.1155/2020/4675395
    [19] Y. Ding, J. Tang, F. Guo, Identification of drug-side effect association via semi-supervised model and multiple kernel learning, IEEE J. Biomed. Health, 23 (2019), 2619–2632. https://doi.org/10.1109/JBHI.2018.2883834 doi: 10.1109/JBHI.2018.2883834
    [20] H. Tong, C. Faloutsos, J. Pan, Fast random walk with restart and its applications, in Sixth International Conference on Data Mining, (2006), 613–622. https://doi.org/10.1109/ICDM.2006.70
    [21] D. E. Carlin, B. Demchak, D. Pratt, E. Sage, T. Ideker, Network propagation in the cytoscape cyberinfrastructure, PLoS Comput. Biol., 13 (2017), e1005598. https://doi.org/10.1371/journal.pcbi.1005598 doi: 10.1371/journal.pcbi.1005598
    [22] M. Kuhn, M. Campillos, I. Letunic, L. J. Jensen, P. Bork, A side effect resource to capture phenotypic effects of drugs, Mol. Syst. Biol., 6 (2010), 343. https://doi.org/10.1038/msb.2009.98 doi: 10.1038/msb.2009.98
    [23] M. Kuhn, D. Szklarczyk, S. Pletscher-Frankild, T. H. Blicher, C. von Mering, L. J. Jensen, et al., STITCH 4: integration of protein–chemical interactions with user data, Nucleic Acids Res., 42 (2014), D401–D407. https://doi.org/10.1093/nar/gkt1207 doi: 10.1093/nar/gkt1207
    [24] D. Weininger, SMILES, a chemical language and information system. 1. Introduction to methodology and encoding rules, J. Chem. Inf. Comput. Sci., 28 (1988), 31–36. https://doi.org/10.1021/ci00057a005 doi: 10.1021/ci00057a005
    [25] X. Xiao, W. Zhu, B. Liao, J. Xu, C. Gu, B. Ji, et al., BPLLDA: predicting lncRNA-Disease associations based on simple paths with limited lengths in a heterogeneous network, Front. Genet., 9 (2018), 411. https://doi.org/10.3389/fgene.2018.00411 doi: 10.3389/fgene.2018.00411
    [26] W. Ba-Alawi, O. Soufan, M. Essack, P. Kalnis, V. B. Bajic, DASPfind: new efficient method to predict drug-target interactions, J. Cheminformatics, 8 (2016), 15. https://doi.org/10.1186/s13321-016-0128-4 doi: 10.1186/s13321-016-0128-4
    [27] Z. H. You, Z. A. Huang, Z. Zhu, G. Y. Yan, Z. W. Li, Z. Wen, et al., PBMDA: a novel and effective path-based computational model for miRNA-disease association prediction, PLoS Comput. Biol., 13 (2017), e1005455. https://doi.org/10.1371/journal.pcbi.1005455 doi: 10.1371/journal.pcbi.1005455
    [28] J. Gao, B. Hu, L. Chen, A path-based method for identification of protein phenotypic annotations, Curr. Bioinform., 16 (2021), 1214–1222. https://doi.org/10.2174/1574893616666210531100035 doi: 10.2174/1574893616666210531100035
    [29] S. Kohler, S. Bauer, D. Horn, P. N. Robinson, Walking the interactome for prioritization of candidate disease genes, Am. J. Hum. Genet., 82 (2008), 949–958. https://doi.org/10.1016/j.ajhg.2008.02.013 doi: 10.1016/j.ajhg.2008.02.013
    [30] Y.J. Li, J. C. Patra, Genome-wide inferring gene-phenotype relationship by walking on the heterogeneous network, Bioinformatics, 26 (2010), 1219–1224. https://doi.org/10.1093/bioinformatics/btq108 doi: 10.1093/bioinformatics/btq108
    [31] X. Chen, M. X. Liu, G. Y. Yan, Drug-target interaction prediction by random walk on the heterogeneous network, Mol. BioSyst., 8 (2012), 1970–1978. https://doi.org/10.1039/C2MB00002D doi: 10.1039/C2MB00002D
    [32] L. Chen, T. Liu, X. Zhao, Inferring anatomical therapeutic chemical (ATC) class of drugs using shortest path and random walk with restart algorithms, BBA Mol. Basis Dis., 1864 (2017), 2228–2240. https://doi.org/10.1016/j.bbadis.2017.12.019 doi: 10.1016/j.bbadis.2017.12.019
    [33] L. Chen, Y. H. Zhang, Z. Zhang, T. Huang, Y. D. Cai, Inferring novel tumor suppressor genes with a protein-protein interaction network and network diffusion algorithms, Mol. Ther. Methods Clin. Dev., 10 (2018), 57–67. https://doi.org/10.1016/j.omtm.2018.06.007 doi: 10.1016/j.omtm.2018.06.007
    [34] S. Lu, K. Zhao, X. Wang, H. Liu, X. Ainiwaer, Y. Xu, et al., Use of laplacian heat diffusion algorithm to infer novel genes with functions related to uveitis, Front. Genet., 9 (2018), 425. https://doi.org/10.3389/fgene.2018.00425 doi: 10.3389/fgene.2018.00425
    [35] H. Y. Liang, B. Hu, L. Chen, S. Q. Wang, Aorigele, Recognizing novel chemicals/drugs for anatomical therapeutic chemical classes with a heat diffusion algorithm, BBA Mol. Basis. Dis., 1866 (2020), 165910. https://doi.org/10.1016/j.bbadis.2020.165910 doi: 10.1016/j.bbadis.2020.165910
    [36] M. Imanishi, Y. Hori, M. Nagaoka, Y. Sugiura, Design of novel zinc finger proteins: towards artificial control of specific gene expression, Eur. J. Pharm. Sci., 13 (2001), 91–97. https://doi.org/10.1016/S0928-0987(00)00212-8 doi: 10.1016/S0928-0987(00)00212-8
    [37] M. Alirezaei, E. Mordelet, N. Rouach, A. C. Nairn, J. Glowinski, J. Premont, Zinc-induced inhibition of protein synthesis and reduction of connexin-43 expression and intercellular communication in mouse cortical astrocytes, Eur. J. Neurosci., 16 (2002), 1037–1044. https://doi.org/10.1046/j.1460-9568.2002.02180.x doi: 10.1046/j.1460-9568.2002.02180.x
    [38] K. H. Ibs, L. Rink, Zinc-altered immune function, J. Nutr., 133 (2003), 1452s–1456s. https://doi.org/10.1093/jn/133.5.1452S doi: 10.1093/jn/133.5.1452S
    [39] Z. A. Bhutta, R. E. Black, K. H. Brown, J. M. Gardner, S. Gore, A. Hidayat, et al., Prevention of diarrhea and pneumonia by zinc supplementation in children in developing countries: Pooled analysis of randomized controlled trials, J. Pediatr., 135 (1999), 689–697. https://doi.org/10.1016/S0022-3476(99)70086-7 doi: 10.1016/S0022-3476(99)70086-7
    [40] D. E. Roth, S. A. Richard, R. E. Black, Zinc supplementation for the prevention of acute lower respiratory infection in children in developing countries: meta-analysis and meta-regression of randomized trials, Int. J. Epidemiol., 39 (2010), 795–808. https://doi.org/10.1093/ije/dyp391 doi: 10.1093/ije/dyp391
    [41] D. Hulisz, Efficacy of zinc against common cold viruses: an overview, J. Am. Pharm. Assoc., 44 (2004), 594–603. https://doi.org/10.1331/1544-3191.44.5.594.Hulisz doi: 10.1331/1544-3191.44.5.594.Hulisz
    [42] R. O. Suara, J. E. Crowe, Effect of zinc salts on respiratory syncytial virus replication, Antimicrob. Agents Ch., 48 (2004), 783–790. https://doi.org/10.1128/AAC.48.3.783-790.2004 doi: 10.1128/AAC.48.3.783-790.2004
    [43] D. Li, L. Z. Wen, H. Yuan, Observation on clinical efficacy of combined therapy of zinc supplement and jinye baidu granule in treating human cytomegalovirus infection, Zhongguo Zhong xi yi jie he za zhi, 25 (2005), 449–451.
    [44] F. Femiano, F. Gombos, C. Scully, Recurrent herpes labialis: a pilot study of the efficacy of zinc therapy, J. Oral Pathol. Med., 34 (2005), 423–425. https://doi.org/10.1111/j.1600-0714.2005.00327.x doi: 10.1111/j.1600-0714.2005.00327.x
    [45] M. Singh, R. R. Das, Zinc for the common cold, Cochrane Database Syst. Rev., 6 (2013), CD001364. https://doi.org/10.1002/14651858.CD001364.pub4 doi: 10.1002/14651858.CD001364.pub4
    [46] M. Lazzerini, H. Wanzira, Oral zinc for treating diarrhoea in children, Cochrane Database Syst. Rev., 12 (2016), CD005436. https://doi.org/10.1002/14651858.CD005436.pub5 doi: 10.1002/14651858.CD005436.pub5
    [47] F. Sakai, S. Yoshida, S. Endo, H. Tomita, Double-blind, placebo-controlled trial of zinc picolinate for taste disorders, Acta oto-laryngol., 122 (2002), 129–133. https://doi.org/10.1080/00016480260046517 doi: 10.1080/00016480260046517
    [48] A. R. Watson, A. Stuart, F. E. Wells, I. B. Houston, G. M. Addison, Zinc supplementation and its effect on taste acuity in children with chronic renal failure, Hum. Nutr. Clin. Nutr., 37 (1983), 219–225.
    [49] J. Cervantes, A. E. Eber, M. Perper, V. M. Nascimento, K. Nouri, J. E. Keri, The role of zinc in the treatment of acne: A review of the literature, Dermatol. Ther., 31 (2018), e12576. https://doi.org/10.1111/dth.12576 doi: 10.1111/dth.12576
    [50] A. Y. Bedikian, M. Valdivieso, L. K. Heilbrun, R. H. Withers, G. P. Bodey, E. J. Freireich, Glycerol: an alternative to dexamethasone for patients receiving brain irradiation for metastatic disease, South. Med. J., 73 (1980), 1210–1214.
    [51] M. S. Frank, M. C. Nahata, M. D. Hilty, Glycerol: a review of its pharmacology, pharmacokinetics, adverse reactions, and clinical use, Pharmacotherapy, 1 (1981), 147–160. https://doi.org/10.1002/j.1875-9114.1981.tb03562.x doi: 10.1002/j.1875-9114.1981.tb03562.x
    [52] J. Wang, Y. Ren, S. F. Wang, L. D. Kan, L. J. Zhou, H. M. Fang, et al., Comparative efficacy and safety of glycerol versus mannitol in patients with cerebral oedema and elevated intracranial pressure: A systematic review and meta-analysis, J. Clin. Pharm. Ther., 46 (2021), 504–514. https://doi.org/10.1111/jcpt.13314 doi: 10.1111/jcpt.13314
    [53] J. Wang, Y. Ren, L. J. Zhou, L. D. Kan, H. Fan, H. M. Fang, Glycerol Infusion Versus Mannitol for Cerebral Edema: A Systematic Review and Meta-analysis, Clin. Ther., 43 (2021), 637–649. https://doi.org/10.1016/j.clinthera.2021.01.010 doi: 10.1016/j.clinthera.2021.01.010
    [54] E. Righetti, M. G. Celani, T. A. Cantisani, R. Sterzi, G. Boysen, S. Ricci, Glycerol for acute stroke, Cochrane Database Syst. Rev., 2 (2004), CD000096. https://doi.org/10.1002/14651858.CD000096.pub2 doi: 10.1002/14651858.CD000096.pub2
    [55] A. Frei, C. Cottier, P. Wunderlich, E. Lüdin, Glycerol and dextran combined in the therapy of acute stroke. A placebo-controlled, double-blind trial with a planned interim analysis, Stroke, 18 (1987), 373–379. https://doi.org/10.1161/01.STR.18.2.373 doi: 10.1161/01.STR.18.2.373
    [56] E. Lin, Glycerol utilization and its regulation in mammals, Annu. Rev. Biochem., 46 (1977), 765–795. https://doi.org/10.1146/annurev.bi.46.070177.004001 doi: 10.1146/annurev.bi.46.070177.004001
    [57] Y. Yu, C. Kumana, I. Lauder, Y. Cheung, F. Chan, M. Kou, et al., Treatment of acute cortical infarct with intravenous glycerol. A double-blind, placebo-controlled randomized trial, Stroke, 24 (1993), 1119–1124. https://doi.org/10.1161/01.STR.24.8.1119 doi: 10.1161/01.STR.24.8.1119
    [58] B. á Rogvi-Hansen, G. Boysen, Intravenous Glycerol Treatment of Acute Stroke – A Statistical Review, Cerebrovasc. Dis., 2 (1992), 11–13. https://doi.org/10.1159/000108981 doi: 10.1159/000108981
    [59] H. L. Philpott, S. Nandurkar, J. Lubel, P. R. Gibson, Drug-induced gastrointestinal disorders, Frontline Gastroente., 5 (2014), 49–57. http://dx.doi.org/10.1136/flgastro-2013-100316 doi: 10.1136/flgastro-2013-100316
    [60] S. Saleem, How to induce arrhythmias with dopamine, in Arrhythmia Induction in the EP Lab, Springer, (2019), 81–89. https://doi.org/10.1007/978-3-319-92729-9_9
    [61] R. Ceravolo, C. Rossi, E. Del Prete, U. Bonuccelli, A review of adverse events linked to dopamine agonists in the treatment of Parkinson's disease, Expert Opin. Drug Saf., 15 (2016), 181–198. https://doi.org/10.1517/14740338.2016.1130128 doi: 10.1517/14740338.2016.1130128
  • mbe-19-06-269-supplementary.pdf
  • This article has been cited by:

    1. Saima Parveen, Fozia Bashir Farooq, Nadeem Ul Hassan Awan, Rakotondrajao Fanja, Muhammad Farooq Choudhary, Muhammad Kamran Jamil, Topological Indices of Drugs Used in Rheumatoid Arthritis Treatment and Its QSPR Modeling, 2022, 2022, 2314-4785, 1, 10.1155/2022/1562125
    2. Ali N.A. Koam, Moin A. Ansari, Azeem Haider, Ali Ahmad, Muhammad Azeem, Topological properties of reverse-degree-based indices for sodalite materials network, 2022, 15, 18785352, 104160, 10.1016/j.arabjc.2022.104160
    3. Ali N. A. Koam, Ali Ahmad, Ashfaq Ahmed Qummer, Gohar Ali, On the Study of Reverse Degree-Based Topological Properties for the Third Type of p  th Chain Hex-Derived Network, 2021, 2021, 2314-4785, 1, 10.1155/2021/4540276
    4. Usman Babar, Asim Naseem, Hani Shaker, Mian Muhammad Zobair, Haidar Ali, Andrea Penoni, Eccentricity-Based Topological Descriptors of First Type of Hex-Derived Network, 2022, 2022, 2090-9071, 1, 10.1155/2022/3340057
    5. Vignesh Ravi, QSPR analysis of drugs used for treatment of hepatitis via reduced reverse degree-based topological descriptors, 2024, 99, 0031-8949, 105236, 10.1088/1402-4896/ad729d
    6. Muhammad Mudassar Hassan, Topological Descriptors of Molecular Networks via Reverse Degree, 2023, 1040-6638, 1, 10.1080/10406638.2023.2274473
    7. Qasem M. Tawhari, Muhammad Naeem, Abdul Rauf, Muhammad Kamran Siddiqui, Oladele Oyelakin, Modeling and estimation of physiochemical properties of cancer drugs using entropy measures, 2025, 15, 2045-2322, 10.1038/s41598-025-87755-5
  • Reader Comments
  • © 2022 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2903) PDF downloads(99) Cited by(6)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog