Tuberculosis (TB) is a fatal infectious disease which affected millions of people worldwide for many decades and now with mutating drug resistant strains, it poses bigger challenges in treatment of the patients. Computational techniques might play a crucial role in rapidly developing new or modified anti-tuberculosis drugs which can tackle these mutating strains of TB. This research work applied a computational approach to generate a unique recommendation list of possible TB drugs as an alternate to a popular drug, EMB, by first securing an initial list of drugs from a popular online database, PubChem, and thereafter applying an ensemble of ranking mechanisms. As a novelty, both the pharmacokinetic properties and some network based attributes of the chemical structure of the drugs are considered for generating separate recommendation lists. The work also provides customized modifications on a popular and traditional ensemble ranking technique to cater to the specific dataset and requirements. The final recommendation list provides established chemical structures along with their ranks, which could be used as alternatives to EMB. It is believed that the incorporation of both pharmacokinetic and network based properties in the ensemble ranking process added to the effectiveness and relevance of the final recommendation.
Citation: Rishin Haldar, Swathi Jamjala Narayanan. A novel ensemble based recommendation approach using network based analysis for identification of effective drugs for Tuberculosis[J]. Mathematical Biosciences and Engineering, 2022, 19(1): 873-891. doi: 10.3934/mbe.2022040
[1] | J. O. Akanni, S. Ajao, S. F. Abimbade, Fatmawati . Dynamical analysis of COVID-19 and tuberculosis co-infection using mathematical modelling approach. Mathematical Modelling and Control, 2024, 4(2): 208-229. doi: 10.3934/mmc.2024018 |
[2] | Mlyashimbi Helikumi, Paride O. Lolika . Dynamics and analysis of COVID-19 disease transmission: The effect of vaccination and quarantine. Mathematical Modelling and Control, 2023, 3(3): 192-209. doi: 10.3934/mmc.2023017 |
[3] | S. Y. Tchoumi, Y. Kouakep-Tchaptchie, D. J. Fotsa-Mbogne, J. C. Kamgang, J. M. Tchuenche . Optimal control of a malaria model with long-lasting insecticide-treated nets. Mathematical Modelling and Control, 2021, 1(4): 188-207. doi: 10.3934/mmc.2021018 |
[4] | Ihtisham Ul Haq, Nigar Ali, Shabir Ahmad . A fractional mathematical model for COVID-19 outbreak transmission dynamics with the impact of isolation and social distancing. Mathematical Modelling and Control, 2022, 2(4): 228-242. doi: 10.3934/mmc.2022022 |
[5] | Ankur Jyoti Kashyap, Arnab Jyoti Bordoloi, Fanitsha Mohan, Anuradha Devi . Dynamical analysis of an anthrax disease model in animals with nonlinear transmission rate. Mathematical Modelling and Control, 2023, 3(4): 370-386. doi: 10.3934/mmc.2023030 |
[6] | Alexandru Hofman, Radu Precup . On some control problems for Kolmogorov type systems. Mathematical Modelling and Control, 2022, 2(3): 90-99. doi: 10.3934/mmc.2022011 |
[7] | Monica Veronica Crankson, Olusegun Olotu, Ayodeji Sunday Afolabi, Afeez Abidemi . Modeling the vaccination control of bacterial meningitis transmission dynamics: a case study. Mathematical Modelling and Control, 2023, 3(4): 416-434. doi: 10.3934/mmc.2023033 |
[8] | Paride O. Lolika, Mlyashimbi Helikumi . Global stability analysis of a COVID-19 epidemic model with incubation delay. Mathematical Modelling and Control, 2023, 3(1): 23-38. doi: 10.3934/mmc.2023003 |
[9] | Eminugroho Ratna Sari, Nikken Prima Puspita, R. N. Farah . Prevention of dengue virus transmission: insights from host-vector mathematical model. Mathematical Modelling and Control, 2025, 5(2): 131-146. doi: 10.3934/mmc.2025010 |
[10] | Elijah B. Baloba, Baba Seidu . A mathematical model of anthrax epidemic with behavioural change. Mathematical Modelling and Control, 2022, 2(4): 243-256. doi: 10.3934/mmc.2022023 |
Tuberculosis (TB) is a fatal infectious disease which affected millions of people worldwide for many decades and now with mutating drug resistant strains, it poses bigger challenges in treatment of the patients. Computational techniques might play a crucial role in rapidly developing new or modified anti-tuberculosis drugs which can tackle these mutating strains of TB. This research work applied a computational approach to generate a unique recommendation list of possible TB drugs as an alternate to a popular drug, EMB, by first securing an initial list of drugs from a popular online database, PubChem, and thereafter applying an ensemble of ranking mechanisms. As a novelty, both the pharmacokinetic properties and some network based attributes of the chemical structure of the drugs are considered for generating separate recommendation lists. The work also provides customized modifications on a popular and traditional ensemble ranking technique to cater to the specific dataset and requirements. The final recommendation list provides established chemical structures along with their ranks, which could be used as alternatives to EMB. It is believed that the incorporation of both pharmacokinetic and network based properties in the ensemble ranking process added to the effectiveness and relevance of the final recommendation.
Collective behaviors often appear in many classical oscillatory systems [1,4,7,17,18,25,27,29]. Recently, such classical synchronization dynamics has been extended to a quantum regime, and it is called quantum synchronization in literature. It is worthwhile mentioning from [19,20] that quantum synchronization has attracted many researchers in the quantum optics community due to its powerful applications in quantum information and quantum computing [8,14,15,16,21,28,33,34]. Among possible candidates describing quantum synchronization, we are interested in analytical studies on quantum synchronization via Wigner's formalism [30] that was first introduced by Wigner in 1932 in order to find quantum corrections to classical statistical mechanics. For the mathematical properties of the Wigner transform, we refer the reader to [32].
To set up the stage, we begin with the Schördinger-Lohe (SL) model [19]. Let
{i∂tψj=−12Δψj+Vjψj+iκ2NN∑k=1(ψk−⟨ψj,ψk⟩⟨ψj,ψj⟩ψj),t>0,x∈Rd,ψj(0,x)=ψ0j(x),j∈[N]:={1,⋯,N}, | (1) |
where
Note that the Planck constant is assumed to be unity for simplicity. Like the classical Schrödinger equation, system (1) satisfies
In this paper, we study the emergent dynamics of the Cauchy problem to the WL model with identical potentials:
{∂twij+p⋅∇xwij+Θ[V](wij)=κ2NN∑k=1{(wkj+wik)−(∫R2d(wik+wkj)dxdp)wij},t>0,(x,p)∈R2d,wij(0,x,p)=w0ij(x,p),i,j∈[N], | (2) |
subject to initial constraints:
∫R2dw0iidxdp=1,|∫R2dw0ijdxdp−1|<1,i≠j∈[N]. | (3) |
First, we recall the following definition of the emergent dynamics as follows.
Definition 1.1. [3] System (2) exhibits complete aggregation if relative states tend to zero asymptotically.
limt→∞‖wij−wℓm‖L2(R2d)=0,i,j,ℓ,m∈[N]. |
In the sequel, we provide several comments on the Cauchy problem (2)–(3). First, the WL model (2) was first introduced in [3], and a priori asymptotic analysis has been studied only for the two-particle system with
The main results of this paper are two-fold. First, we provide the complete aggregation dynamics of (2) in a priori setting. Under the assumptions (3) on initial data, we can find an invariant set whose center plays the role of an asymptotically stable fixed point (see Lemma 3.2). Then, we obtain the uniform-boundedness of the
Second, we provide a global existence theory of (2) combining the classical methods (fixed point theorem and semigroup theory) and exponential aggregation estimates. We highlight that this paper extends the results in [3] where the existence theory was not considered even for
The rest of this paper is organized as follows. In Section 2, we introduce generalized Wigner functions and the WL distribution matrix, and study their elementary properties. We also review previous results for the WL model. In Section 3, we provide complete aggregation estimates for the WL model in a priori setting. In Section 4, we show the global existence of mild and classical solutions depending on the regularity of initial data. Finally, Section 5 is devoted to a brief summary of this paper and some remaining issues for a future work. In Appendix A, we summarize classical results on the semigroup theory to be used for the global solvability in Section 4.
Gallery of Notation: Throughout the paper, as long as there is no confusion, we simply use
⟨f,g⟩:=∫R2df(x,p)¯g(x,p)dxdp,‖f‖:=√⟨f,f⟩, |
where
(Fϕ)(p):=∫Rdϕ(x)e−ix⋅pdx,(F−1ϕ)(x):=1(2π)d∫Rdϕ(p)eix⋅pdp. |
For a given real-valued function
(Fy→pψ)(x,p):=∫Rdψ(x,y)e−iy⋅pdy. |
In this section, we introduce the
In this subsection, we show how the WL distribution matrix can be constructed from the SL model. For this, we first recall the generalized Wigner distribution and the pseudo-differential operator.
Definition 2.1. [3]
1. For any two complex-valued wave functions
w[ψ,ϕ](x,p):=1(2π)d∫Rdψ(x+y2)¯ϕ(x−y2)eip⋅ydy,(x,p)∈R2d, | (4) |
where
2. For
Θ[V](w)(x,p):=−i(2π)d∫Rd[V(x+y2)−V(x−y2)](Fp′→yw)(x,y)eip⋅ydy=−i(2π)d∫R2d[V(x+y2)−V(x−y2)]w(x,p′)ei(p−p′)⋅ydp′dy. |
Remark 1. Below, we give several comments on the generalized Wigner distribution and the pseudo-differential operator.
1. The generalized Wigner distribution is complex conjugate symmetric in the sense that
w[ϕ,ψ](x,p)=1(2π)d∫Rdϕ(x+y2)¯ψ(x−y2)eip⋅ydy=1(2π)d∫Rd¯ψ(x+y2)ϕ(x−y2)e−ip⋅ydybyy↔−y=¯1(2π)d∫Rdψ(x+y2)¯ϕ(x−y2)eip⋅ydy=¯w[ψ,ϕ](x,p). | (5) |
2. For the case
w[ψ,ψ](x,p)=1(2π)d∫Rdψ(x+y2)¯ψ(x−y2)e−ip⋅ydy. |
Since
w[ψ,ψ]=:w[ψ]. |
Moreover, one can easily verify that
3. The
∫Rdw[ψ](x,p)dp=|ψ(x)|2. |
Moreover, the
∫R2dw[ψ,ϕ](x,p)dxdp=1(2π)d∫R3dϕ(x+y2)¯ψ(x−y2)eip⋅ydydxdp=∫Rdϕ(x)¯ψ(x)dx=⟨ϕ,ψ⟩. |
4. Since
¯Θ[V](w)(x,p)=i(2π)d∫R2d[V(x+y2)−V(x−y2)]ˉw(x,p′)e−i(p−p′)⋅ydp′dy=−i(2π)d∫R2d[V(x−y2)−V(x+y2)]ˉw(x,p′)e−i(p−p′)⋅ydp′dy=−i(2π)d∫R2d[V(x+y2)−V(x−y2)]ˉw(x,p′)ei(p−p′)⋅ydp′dybyy↔−y=Θ[V](¯w)(x,p). |
In the following lemma, we provide several properties of
Lemma 2.2. For
(i)∫R2dΘ[V](f)⋅gdxdp=−∫R2dΘ[V](g)⋅fdxdp.(ii)∫R2dΘ[V](f)dxdp=0. |
Proof. (ⅰ) We use the change of variables:
(p,p′,y)↔(p′,p,−y) |
to yield
∫R2dΘ[V](f)⋅gdxdp=−i(2π)d∫R4d[V(x+y2)−V(x−y2)]f(x,p′)g(x,p)ei(p−p′)⋅ydp′dydxdp=−i(2π)d∫R4d[V(x−y2)−V(x+y2)]f(x,p)g(x,p′)ei(p−p′)⋅ydp′dydxdp=−∫R2dΘ[V](g)⋅fdxdp. |
(ⅱ) By the definition of Definition 2.1 and Fubini's theorem, we have
∫R2dΘ[V](f)dxdp=−i(2π)d∫R4d[V(x+y2)−V(x−y2)]f(x,p′)ei(p−p′)⋅ydp′dydxdp=−i(2π)d∫R3d[V(x+y2)−V(x−y2)]eip⋅y(∫Rdf(x,p′)e−ip′⋅ydp′)dydxdp=−i(2π)d∫R3d[V(x+y2)−V(x−y2)](Fp′→yf)(x,y)eip⋅ydydxdp=−i∫Rd[V(x)−V(x)](Fp′→0f)(x,0)dx=0. |
Remark 2. If we set
∫R2dΘ[V](u)⋅ˉudxdp=−∫R2dΘ[V](ˉu)⋅udxdp=−∫R2d¯Θ[V](u)⋅udxdp=−¯∫R2dΘ[V](u)⋅ˉudxdp. |
This yields
Re[∫R2dΘ[V](u)⋅¯udxdp]=0. |
This fact was used in [23] to show the conservation of
For a given ensemble of wave functions
wij:=w[ψi,ψj],wi:=w[ψ]=w[ψi,ψi],i,j∈[N]. |
Then, the evolution of the WL distributions
∂twij+p⋅∇xwij=−i(2π)d∫R2d[Vi(x+y2)−Vj(x−y2)]wij(x,p′)ei(p−p′)⋅ydp′dy+κ2NN∑k=1[(wkj+wik)−(∫R2dwikdxdp∫R2dwiidxdp+∫R2dwkjdxdp∫R2dwjjdxdp)wij]. | (6) |
For the detailed derivation of (6), we refer the reader to [3]. Next, we show that system (6) admits conservation laws.
Lemma 2.3. Let
Proof. (ⅰ) It follows from (6) that
∂twii+∇x⋅(pwii)+Θ[Vi](wii)=κ2NN∑k=1[(wki+wik)−(∫R2dwikdxdp∫R2dwiidxdp+∫R2dwkidxdp∫R2dwiidxdp)wii]. | (7) |
Now, we integrate (7) over
ddt∫R2dwii(t,x,p)dxdp=0. |
(ⅱ) For the second assertion, we follow a similar calculation in (ⅰ).
Remark 3.
∂tw+p⋅∇xw+Θ[V](w)=0. |
Then by Lemma 2.3, one has
ddt∫R2dw(t,x,p)dxdp=0. | (8) |
However, it is worthwhile mentioning that since
w=w[ψ] |
for a solution
∫R2dw(t,x,p)dxdp=‖ψ(t)‖2L2,t>0. |
Thus, the results in Lemma 2.3 is consistent with the classical theory for the Wigner equation.
‖w(t)‖2=‖ψ(t)‖4. |
Hence, the linear Wigner equation enjoys
From now on, we are concerned with the following special situation:
Vi=Vand∫R2dw0i(x,p)dxdp=1,i∈[N]. | (9) |
In this case, the
∫R2dwi(t,x,p)dxdp=∫R2dw0i(x,p)dxdp=1,t≥0,i∈[N],∫R2dwij(t,x,p,)dxdp=∫R2dw0ij(x,p)dxdp,t≥0,i,j∈[N]. |
Hence, the Cauchy problem for system (6) with (9) can be further simplified as follows:
{∂twij+p⋅∇xwij+Θ[V](wij)=κ2NN∑k=1[(wik+wkj)−(∫R2d(wik+wkj)dxdp)wij],t>0,(x,p)∈R2d,wij(0,x,p)=w0ij(x,p),i,j∈[N]. |
In this subsection, we briefly recall the result from [3] for a two-body system. Extension to the many-body system will be discussed in the following two sections separately. We set
w+12:=Re[w12],z12(t):=∫R2dw12(t,x,p)dxdp,R12(t):=Re[z12(t)]. | (10) |
Then,
{∂tw1+p⋅∇xw1+Θ[V](w1)=κ2(w+12−R12w1),t>0,∂tw2+p⋅∇xw2+Θ[V](w2)=κ2(w+12−R12w2),∂tw12+p⋅∇xw12+Θ[V](w12)=κ4(w1+w2−2z12w12),(w1(0),w2(0),w12(0))=(w01,w02,w012), | (11) |
subject to constraints:
∫R2dw01dxdp=∫R2dw02dxdp=1,|∫R2dw012dxdp|≤1,∫R2dw012dxdp≠−1. | (12) |
Theorem 2.4. [3] Let
|1−z12(t)|≲ |
where
Proof. (ⅰ) The first estimate follows from the following ODE:
\dot z_{12} = \frac{\kappa}{2}(1-z_{12}^2), \quad t > 0. |
This can be integrated explicitly:
\begin{equation} z_{12}(t) = \frac{ (1+z_{12}^0)e^{\kappa t} - (1-z_{12}^0)}{(1+z_{12}^0)e^{\kappa t} + (1-z_{12}^0)}, \quad t > 0, \end{equation} | (13) |
where
\begin{equation} z_{12}^0 \in \mathbb R, \quad z_{12}^0 < -1 \quad \text{or}\quad z_{12}^0 > 1, \end{equation} | (14) |
then the denominator of the right-hand side of (13) can be zero, and hence
\lim\limits_{t\to T_*-} z_{12}(t) = \infty, \quad T_* = \frac1 \kappa \ln \frac{ 1-z_{12}^0}{1+z_{12}^0}. |
In other words, for initial data satisfying (14),
(ⅱ) It is easy to see that
\begin{equation} \partial_t(w_1-w_2)+p\cdot\nabla_x(w_1-w_2)+\Theta[V](w_1-w_2) = -\frac{\kappa R_{12}}{2}(w_1-w_2). \end{equation} | (15) |
We multiply (15) by
\begin{equation*} \frac{ \mathrm{d}}{ \mathrm{d}t}\|w_1(t)-w_2(t)\|_{L^2}^2 = -\kappa R_{12}(t)\|w_1(t)-w_2(t)\|_{L^2}^2. \end{equation*} |
Then, Grönwall's inequality and the first estimate
Before we close this section, we introduce elementary estimates to be used in the following sections.
Lemma 2.5. Let
\begin{equation} y' \leq \alpha_1e^{-\beta_1 t}y + \alpha_2 e^{-\beta_2 t}, \quad t > 0. \end{equation} | (16) |
Then, the following assertions hold.
1. If
\alpha_1 < 0, \quad \beta_1 = 0, \quad \alpha_2 > 0, \quad \beta_2 > 0, |
there exist uniform positive constants
y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0. |
2. If
\alpha_1 > 0, \quad \beta_1 > 0, \quad \alpha_2 = 0, |
there exists a uniform constant
y(t) \leq C_1 y_0, \quad t \geq 0. |
Proof. (ⅰ) By the comparison principle of ODE and method of integrating factor, we have
y(t) \leq \left( y_0 + \frac{\alpha_2}{\alpha_1 + \beta_2}\right) e^{\alpha_1 t} - \frac{\alpha_2}{\alpha_1 + \beta_2} e^{-\beta_2t}, \quad t \geq 0. |
Hence, there exist uniform positive constants
y(t) \leq C_0e^{-D_0 t}, \quad t \geq 0. |
(ⅱ) We multiply (16) with the integrating factor
\begin{equation*} \label{B-6} \exp{ \left(-\int_0^t \alpha_1 e^{-\beta_1 s} ds\right) } = \exp{ \left( -\frac{\alpha_1}{\beta_1} (1-e^{-\beta_1 t}) \right) } \end{equation*} |
to find
y(t) \leq y_0 e^{ \frac{\alpha_1}{\beta_1} (1-e^{-\beta_1t}) } \leq e^\frac{\alpha_1}{\beta_1}y_0 = : C_1y_0, \quad t \geq 0. |
In this section, we present complete aggregation estimates for (2)–(3) in a priori setting. Our first result can be stated as follows.
Theorem 3.1. Let
\begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jm}\| = 0, \quad i, j, k, m \in [N]. \end{equation} | (17) |
Proof. Since the proof is rather lengthy, we introduce a strategy toward the proof. We first claim:
\lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k\neq i, j \in [N]. |
For this, the key idea is to derive Grönwall's type differential inequality for
\begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa \Big ( 1- C_1 e^{- \kappa t} \Big ) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + C_2 e^{- \kappa t}, \quad t > 0. \end{equation} | (18) |
Then, we apply Lemma 2.5 to derive the desired zero convergence for
\|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|. |
The derivation of (18) will be given in Section 3.2 after some preparatory estimates in Section 3.1.
In this subsection, we study basic estimates for (2)–(3) that will be used in the derivation of (18). We set
\begin{equation*} \label{C-2-2} z_{ij}(t) : = \int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p, \quad i, j \in [N], \quad t > 0. \end{equation*} |
Then, it follows from Lemma 2.3 that
\begin{equation} z_i : = z_{ii} = 1, \quad i \in [N]. \end{equation} | (19) |
On the other hand, we integrate (2) with respect to
\begin{equation} \frac{dz_{ij}}{dt} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} | (20) |
Due to (19), it is natural to consider the maximal diameter for the set
\mathcal{D}({\mathcal Z}(t)) : = \max\limits_{1\leq i, j\leq N} |1-z_{ij}(t)|, \quad t > 0, \quad \mathcal D(\mathcal Z^0): = \mathcal D(\mathcal Z(0)), |
which is expected to converge to zero under a suitable condition.
Lemma 3.2. (Existence of a positively invariant set) Let
\begin{equation} \mathcal D(\mathcal Z^0) < 1. \end{equation} | (21) |
Then, one has
\mathcal D(\mathcal Z(t)) < 1, \quad t > 0. |
Proof. It follows from (20) that
\begin{equation} \frac{ \mathrm{d}}{ \mathrm{d}t} (1 - z_{ij}) = -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N (z_{ik} + z_{kj}) (1-z_{ij}), \quad t > 0. \end{equation} | (22) |
Then, (22) gives
\begin{equation} |1-z_{ij}(t)| = |1-z_{ij}^0| \exp\left[ -\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^t (R_{ik} + R_{kj}) \mathrm{d} s \right], \quad t > 0, \end{equation} | (23) |
where
\mathcal T: = \{ T \in (0, \infty) : \mathcal D(\mathcal Z(t)) < 1, \quad t\in [0, T)\}, \quad T_* : = \sup \mathcal{T}. |
By the assumption on initial data, the set
T_* = \infty. |
Suppose to the contrary, i.e.,
T_* < \infty. |
Then, one has
\begin{equation} \lim\limits_{t\to T_*} \mathcal D(\mathcal Z(t)) = 1. \end{equation} | (24) |
On the other hand, we observe
\max\limits_{i \neq j} |1-z_{ij}(t)| < 1\quad \Longrightarrow\quad \min\limits_{i \neq j} R_{ij}(t) > 0, \quad t\in [0, T_*). |
For
\mathcal D(\mathcal Z(t)) = 1-z_{i_t j_t}. |
Hence, (23) yields
1 = \mathcal D(\mathcal Z(T_*)) = \mathcal D(\mathcal Z^0) \exp \left[ {-\frac{ \kappa}{2N} \sum\limits_{k = 1}^N \int_0^{T_*} (R_{i_tk} + R_{kj_t} ) \mathrm{d} s} \right ] < 1, |
which contradicts (24). Since
T_* = \infty, |
and the set
Remark 4. Lemma 3.2 says that if initial data satisfy (21):
\left|\int_{\mathbb{R}^{2d}}w^0_{ij} \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N], |
then one has
\left|\int_{\mathbb{R}^{2d}}w_{ij}(t, x, p) \mathrm{d} x \mathrm{d} p - 1\right| < 1, \quad i, j\in[N], \quad t > 0. |
Thus, the
As a direct consequence of Lemma 3.2, we can also show the uniform
\mathcal R(\mathcal W(t)) : = \max\limits_{1\leq i, j\leq N} \|w_{ij}(t) \|, \quad t > 0. |
Corollary 1. Let
1. The functional
\begin{equation*} \mathcal D( \mathcal Z(t)) \leq \frac{\mathcal D(\mathcal Z^0) e^{- \kappa t}}{\mathcal D(\mathcal Z^0) e^{- \kappa t} + 1 - \mathcal D(\mathcal Z^0)} \leq \frac{\mathcal D(\mathcal Z^0) }{1 - \mathcal D(\mathcal Z^0)}e^{- \kappa t}, \quad t > 0. \end{equation*} |
2. The functional
\sup\limits_{0\leq t < \infty} \mathcal R(\mathcal W(t)) \leq {\mathcal R}^\infty. |
Proof. (ⅰ) It follows from (20) that
\begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} (1-z_{ij}) = - \kappa(1-z_{ij}) + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N ( 1-z_{ik} + 1-z_{kj})(1-z_{ij}). \end{align*} |
Then, we find a differential inequality for
\frac {\mathrm{d}} {\mathrm{d}t} \mathcal D(\mathcal Z) \leq - \kappa \mathcal D(\mathcal Z) + \kappa \mathcal D(\mathcal Z)^2, \quad t > 0. |
Lastly, we use initial data (21) together with the above Riccati differential inequality to give the desired result.
(ⅱ) We multiply
\begin{align} \begin{aligned} & \frac12 \partial_t |w_{ij}|^2 + \frac12 p\cdot \nabla_x |w_{ij}|^2 +\text{Re}\left[ \Theta[V](w_{ij})\overline w_{ij}\right] \\ & \quad\quad\quad\quad \quad = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \mbox{Re}\left[ \Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\overline w_{ij} \right]. \end{aligned} \end{align} | (25) |
Now, we integrate (25) with respect to
\begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \int_{ \mathbb R^{2d}} |w_{ij}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad = -\int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 dx dp - \int_{ \mathbb R^{2d}} \text{Re}\left[ \overline w_{ij} \Theta[V](w_{ij}) \right] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{k = 1}^N \int_{ \mathbb R^{2d}} \text{Re}\left[\overline w_{ij}\Big( w_{ik} + w_{kj} - (z_{ik} + z_{kj}) w_{ij}\Big)\right] \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{11} + \mathcal I_{12} + \mathcal I_{13} . \end{aligned} \end{align} | (26) |
Below, we present estimates for
● Case A.1 (Estimate of
\begin{align*} \mathcal I_{11} = - \int_{ \mathbb R^{2d}}p\cdot \nabla_x |w_{ij}|^2 \mathrm{d} x \mathrm{d} p = 0. \end{align*} |
● Case A.2 (Estimate of
\mathcal I_{12} = 0. |
● Case A.3 (Estimate of
\begin{align*} &\int_{ \mathbb R^{2d}} \Big( \overline w_{ij} w_{ik} +\overline w_{ij} w_{kj} - (z_{ik} + z_{kj} )|w_{ij}|^2 \Big) \mathrm{d} x \mathrm{d} p \\ & \quad = -2\|w_{ij}\|^2 + \int_{ \mathbb R^{2d}} ( \overline w_{ij} w_{ik} + \overline w_{ij} w_{kj}) \mathrm{d} x \mathrm{d} p + (1-z_{ik} + 1-z_{kj}) \|w_{ij}\|^2 \\ & \quad \leq -2\|w_{ij}\|^2 +2 \mathcal R(\mathcal W) ^2 + 2\mathcal D(\mathcal Z) \mathcal R(\mathcal W) ^2. \end{align*} |
In (26), we collect all the estimates in Case A.1–Case A.3 to derive
\begin{align*} \frac {\mathrm{d}} {\mathrm{d}t} \|w_{ij}\|^2 \leq -2 \kappa \|w_{ij}\|^2 + 2 \kappa\mathcal R(\mathcal W) ^2 + 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{align*} |
This yields
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \mathcal R(\mathcal W)^2 \leq 2 \kappa \mathcal D(\mathcal Z) \mathcal R(\mathcal W)^2, \quad t > 0. \end{equation} | (27) |
Since
In this subsection, we are ready to provide the proof of Theorem 3.1. First, we claim:
\begin{equation} \lim\limits_{t\to\infty} \|w_{ik} - w_{jk} \| = 0, \quad k \neq i, j. \end{equation} | (28) |
Note that if one verifies (28), then (17) follows from the triangle inequality:
\|w_{ik} - w_{jm} \| \leq \|w_{ik} - w_{jk} \| + \|w_{jk} - w_{jm}\| = \|w_{ik} - w_{jk} \| + \|w_{kj} - w_{mj}\|. |
We consider the difference between
\begin{align} \begin{aligned} &\partial_t (w_{ik}-w_{jk}) + p \cdot \nabla_x (w_{ik}-w_{jk}) + \Theta[V](w_{ik} -w_{jk}) \\ & \quad -\frac{ \kappa}{2N} \sum\limits_{\ell = 1}^N \Big[ (w_{i\ell}-w_{j\ell}) -(z_{i\ell}w_{ik} - z_{j\ell}w_{jk}) -z_{\ell k}(w_{ik}-w_{jk}) \Big ] = 0. \end{aligned} \end{align} | (29) |
Similar to the proof of Corollary 1, we multiply
\begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad = : - \int_{ \mathbb R^{2d}} p\cdot \nabla_x|w_{ik}-w_{jk}|^2 \mathrm{d} x \mathrm{d} p \\ & \quad -\int_{ \mathbb R^{2d}} 2\text{Re}\Big[ (\overline w_{ik}-\overline w_{jk})\Theta[V](w_{ik}-w_{jk}) \Big] \mathrm{d} x \mathrm{d} p \\ & \quad + \frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \text{Re}( \mathcal J_{ijk\ell}) \; \mathrm{d} x \mathrm{d} p \\ & \quad = : \mathcal I_{21} + \mathcal I_{22} +\mathcal I_{23}. \end{aligned} \end{align} | (30) |
Below, we present estimates of
● Case B.1 (Estimates of
\mathcal I_{21} = \mathcal I_{22} = 0. |
● Case B.2 (Estimate of
\begin{align*} \mathcal J_{ijk\ell} & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) - z_{i\ell}|w_{ik}-w_{jk}|^2 \\ & \quad \quad \quad \quad \quad \quad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}) -z_{\ell k} |w_{ik}-w_{jk}|^2 \\ & = (\overline w_{ik} - \overline w_{jk})(w_{i\ell} -w_{j\ell}) -(z_{i\ell} + z_{\ell k})|w_{ik}-w_{jk}|^2\\&\qquad + (z_{i\ell}-z_{j\ell})w_{jk}(\overline w_{ik} - \overline w_{jk}). \end{align*} |
In (30), we combine all the estimates Case B.1–Case B.2 to find
\begin{align} \begin{aligned} &\frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \int_{ \mathbb R^{2d}} \Big( |w_{ik}-w_{jk}||w_{i\ell}-w_{j\ell}| -\text{Re}(z_{i\ell}+z_{\ell k})|w_{ik}-w_{jk}|^2 \\ & \quad + |z_{i\ell}-z_{j\ell} ||w_{jk}| |w_{ik}-w_{jk}|\Big) \mathrm{d} x \mathrm{d} p \\ & \quad \leq \frac{ \kappa}{N}\sum\limits_{\ell = 1}^N \Big( \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| -\text{Re}(z_{i\ell} + z_{\ell k})\|w_{ik}-w_{jk}\|^2 \\ & \quad + |z_{i\ell}-z_{j\ell}| \|w_{jk}\| \|w_{ik}-w_{jk}\|\Big). \end{aligned} \end{align} | (31) |
If we use Corollary 1 with
\begin{align} \begin{aligned} \frac{ \mathrm{d}}{ \mathrm{d}t} \|w_{ik}-w_{jk}\|^2 &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{\ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| \\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \|w_{ik} - w_{jk}\|. \end{aligned} \end{align} | (32) |
We sum up (32) with respect to
\begin{align} \begin{aligned} & \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ &\leq -2 \kappa ( 1- \alpha e^{- \kappa t})\sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \\ & \quad +\frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\|\\ & \quad + \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \\ & = : -2 \kappa ( 1- \alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 +\mathcal I_{31} + \mathcal I_{32}. \end{aligned} \end{align} | (33) |
● Case C.1 (Estimate of
\begin{align} \begin{aligned} \mathcal I_{31} & = \frac{ \kappa}{N} \sum\limits_{k, \ell = 1}^N \|w_{ik}-w_{jk}\| \|w_{i\ell}-w_{j\ell}\| = \frac \kappa N \left(\sum\limits_{k = 1}^N \|w_{ik} - w_{jk}\|\right)^2\\ & \leq \kappa \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2. \end{aligned} \end{align} | (34) |
● Case C.2 (Estimate of
\begin{equation} \mathcal I_{32} = \frac{ \kappa\mathcal R^\infty}{N} \sum\limits_{\ell = 1}^N |z_{i\ell}-1+1- z_{j\ell} | \sum\limits_{k = 1}^N\|w_{ik} - w_{jk}\| \leq 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{equation} | (35) |
In (33), we combine all the estimates (34) and (35) to derive
\begin{align*} \frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 \leq - \kappa ( 1- 2\alpha e^{- \kappa t}) \sum\limits_{k = 1}^N \|w_{ik}-w_{jk}\|^2 + 4 N \kappa |{\mathcal R}^\infty|^2 \alpha e^{- \kappa t}. \end{align*} |
Finally, we use Lemma 2.5 to establish (28). This completes the proof of Theorem 3.1.
In this section, we show the global existence of a unique mild solution to the Cauchy problem for the WL model (2) following the fixed point approach in [23] where a linear Wigner equation is considered. For this, we define a subset
\begin{align} \begin{aligned} &\mathcal{X}: = \left\{f \in L^2( \mathbb R^{2d}) : \; \left| \int_{ \mathbb R^{2d}} f \mathrm{d} x \mathrm{d} p \right| < \infty \right\}, \\ & \; \; \|f\|_{\mathcal{X}} : = \|f\| + \left|\int f \mathrm{d} x \mathrm{d} p\right|, \; \; A: = -p \cdot \nabla_x. \end{aligned} \end{align} | (36) |
Then, it is easy to check that
D(A) : = \left \{f \in \mathcal{X} :p \cdot \nabla_x f \in L^2( \mathbb R^{2d}) \right \} \subseteq {\mathcal X}. |
For the WL model as a perturbation of the linear Wigner equation, it is strongly believed that
Theorem 4.1. For
1. If initial data and the potential satisfy
w_{ij}^0 \in \mathcal X, \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d), |
then there exists a unique mild solution to the Cauchy problem
w_{ij} \in {C}([0, T];\mathcal X), \quad i, j\in [N]. |
2. If we impose further regularity on initial data and the potential
w_{ij}^0 \in D(A), \quad i, j\in [N], \quad {{and}} \quad V \in L^{\infty}(\mathbb{R}^d) \cap L^{2}(\mathbb{R}^d), |
then there exists a unique classical solution to the Cauchy problem
w_{ij} \in {C}([0, T];\mathcal{X}) \cap { C}^1([0, T];D(A)), \quad i, j \in [N]. |
Proof. Since the proof is rather lengthy, we provide the proofs in Section 4.2 and Section 4.3.
In this subsection, we follow the same strategy in [23] in which the linear Wigner equation has been treated by means of the semigroup approach. First, we begin with an elementary property of the transport operator
Lemma 4.2. Let
Aw_{ij} \in L^2( \mathbb R^{2d}). |
In other words, the transport operator
Proof. Since a solution
\sup\limits_{0\leq t < \infty} \|p\cdot \nabla_x w_{ij}\| < \infty, \quad i, j\in [N]. |
By straightforward calculations, we observe
\begin{align} \begin{aligned} &\frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 \\ & \quad = \text{Re} \langle p\cdot \nabla_x \partial_t w_{ij}, p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \mathrm{Re}\langle p \cdot \nabla_x (- p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle - \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle\\ & \quad + \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \text{Re} \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = : \mathcal{I}_{41} + \mathcal{I}_{42} + \mathcal{I}_{43}. \end{aligned} \end{align} | (37) |
Below, we estimate
● Case C.1 (Estimate of
\begin{align*} & -\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle = -\left \langle \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij}\right \rangle\\ & \quad = \left \langle p \cdot \nabla_x w_{ij}, \sum\limits_{j = 1}^N p_j \partial_j (p \cdot \nabla_x w_{ij})\right \rangle = \overline{\langle p \cdot \nabla_x ( p \cdot \nabla_x w_{ij}), p \cdot \nabla_x w_{ij} \rangle}. \end{align*} |
Hence, we see that
\mathcal I_{41} = 0. |
● Case C.2 (Estimate of
\begin{align*} \langle p \cdot \nabla_x (\Theta w_{ij}), p \cdot \nabla_x w_{ij} \rangle = \langle \Theta[V]( p\cdot \nabla_xw_{ij}), p\cdot \nabla_x w_{ij}\rangle. \end{align*} |
By the skew-Hermitian property of
\mathcal I_{42} = 0. |
● Case C.3 (Estimate of
\begin{align*} \begin{aligned} & \langle p\cdot \nabla_x (w_{ik} + w_{kj} - (z_{ik} + z_{kj})w_{ij} ) , p\cdot \nabla_xw_{ij} \rangle \\ & \quad = \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle -(z_{ik}+z_{kj})\|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad = -2\|p\cdot \nabla_xw_{ij}\|^2 + (1-z_{ik} + 1-z_{kj}) \|p\cdot \nabla_xw_{ij}\|^2\\ & \quad + \langle p\cdot \nabla_x(w_{ik} + w_{kj}), p\cdot\nabla_x w_{ij}\rangle \\ & \quad \leq -2\|p\cdot \nabla_xw_{ij}\|^2 + |1-z_{ik} + 1-z_{kj}| \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align*} |
In (37), we collect all the estimates in Case C.1–Case C.3 to find
\begin{align} \begin{aligned} \frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t}\|p \cdot \nabla_x w_{ij}\|^2 & \leq - \kappa \|p\cdot \nabla_xw_{ij}\|^2 + \kappa \mathcal D(\mathcal Z) \|p\cdot \nabla_xw_{ij}\|^2 \\ & \quad + \frac{ \kappa}{2N}\sum\limits_{k = 1}^N \| p\cdot\nabla_x w_{ij} \| \big( \|p\cdot\nabla_x w_{ik}\| + \|p\cdot\nabla_x w_{kj}\|\big). \end{aligned} \end{align} | (38) |
We sum up (38) with respect to
\frac{1}{2}\frac{ \mathrm{d}}{ \mathrm{d}t} \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2 \leq \kappa \mathcal D(\mathcal Z) \sum\limits_{i, j = 1}^N \|p \cdot \nabla_x w_{ij}\|^2. |
It follows from Corollary 1 that
In this subsection, we show that the Cauchy problem for the WL model admits a unique mild solution.
First, we rewrite (2) as a matrix form to apply the fixed point theorem. For
\begin{align} \begin{aligned} & \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ & \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} W C_j + R_i W E_{ij}) \mathrm{d} x \mathrm{d} p \right), \end{aligned} \end{align} | (39) |
where
\begin{cases} {\bf{X}} : = \left\{ F = (F_{ij}) \in ( L^2( \mathbb R^{2d}) )^{\otimes N^2}\; \; :\; \; \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right| < \infty, \quad i, j \in [N] \right\}, \\ \|F\|_{{\bf{X}}} : = \|F\|_{L^2( \mathbb R^{2d})^{\otimes N^2}} + \left| \int_{ \mathbb R^{2d}} F \mathrm{d} x \mathrm{d} p \right|: = \max\limits_{i, j}\bigg(\|F_{ij}\| + \left| \int_{ \mathbb R^{2d}} F_{ij} \mathrm{d} x \mathrm{d} p \right|\bigg). \end{cases} |
Then,
C([0, T]; {\bf{X}}) |
equipped with the norm
{ \vert\kern-0.25ex \vert\kern-0.25ex \vert {F} \vert\kern-0.25ex \vert\kern-0.25ex \vert}: = \sup\limits_{0 \leq t \leq T} \|F(t) \|_{{\bf{X}}}. |
Now, we are concerned with the global solvability of (39). Let
\begin{equation} \begin{cases} \partial_t W + p\cdot \nabla_x W + \Theta[V](W) \\ \quad = \frac{ \kappa}{2N} \left( E_{ij} W C_j + R_i W E_{ij} - W \int_{ \mathbb R^{2d}} ( E_{ij} G C_j + R_i G E_{ij}) \mathrm{d} x \mathrm{d} p \right), \\ W(0) = W^0. \end{cases} \end{equation} | (40) |
We need to check well-definedness and strict contraction of
● (Well-definedness of
● (Strict contraction): for
{ \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W } \vert\kern-0.25ex \vert\kern-0.25ex \vert} \leq C { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G -\overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert} . |
If we set
\begin{align*} &\partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](\omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ w_{ik} + w_{kj} - w_{ij} \left( \int_{ \mathbb R^{2d}} (g_{ik} + g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right], \\ &\partial_t\overline w_{ij} + p \cdot \nabla_x \overline w_{ij} + \Theta[V](\overline \omega_{ij})\\& = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left[ \overline w_{ik} + \overline w_{kj} - \overline w_{ij} \left( \int_{ \mathbb R^{2d}} (\overline g_{ik} + \overline g_{kj}) \mathrm{d} x \mathrm{d} p \right)\right]. \end{align*} |
For simplicity, we set
q_{ij}(t) : = \int_{ \mathbb R^{2d}} g_{ij} \mathrm{d} x \mathrm{d} p, \quad \overline q_{ij} (t) : = \int_{ \mathbb R^{2d}} \overline g_{ij} \mathrm{d} x \mathrm{d} p. |
By straightforward calculation,
\begin{equation} \frac12\frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| \leq C \max\limits_{1\leq i, j\leq N} \|w_{ij} - \overline w_{ij}\| + \max\limits_{1\leq i, j\leq N} \|\omega_{ij}\| \max\limits_{1\leq i, j \leq N} \left| q_{ij} - \overline q_{ij} \right| . \end{equation} | (41) |
In addition, we observe
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| \leq C \max\limits_{1\leq i, j\leq N} |z_{ij} - \overline z_{ij}| + \tilde C \max\limits_{1\leq i, j\leq N} |q_{ij} - \overline q_{ij}|. \end{equation} | (42) |
It follows from Corollary 1 that
\max\limits_{1\leq i, j\leq N } \|w_{ij}(t) \| \leq \mathcal R^\infty, \quad t > 0. |
Then, (41) and (42) yield
\begin{equation} \frac {\mathrm{d}} {\mathrm{d}t} \|W- \overline W\|_{{\bf{X}}} \leq C_1 \|W- \overline W\|_{{\bf{X}}} + e^{C_2t} \|G- \overline G\|_{{\bf{X}}}, \end{equation} | (43) |
and integrate the relation (43) to find
\begin{align*} \|W- \overline W\|_{\bf{X}} \leq \|W^0- \overline W^0\|_{\bf{X}} + C_1 \int_0^t \|W- \overline W\|_{\bf{X}} \mathrm{d} s + e^{C_2T} \int_0^t \|G- \overline G \|_{\bf{X}} \mathrm{d} s. \end{align*} |
Since
\begin{align*} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {W- \overline W} \vert\kern-0.25ex \vert\kern-0.25ex \vert} & = \sup\limits_{0\leq t \leq T} \|W-\overline W\|_{\bf{X}} \leq Te^{(C_1+C_2)T} \sup\limits_{0\leq t \leq T} \|G- \overline G \|_{\bf{X}}\\ & = Te^{(C_1+C_2)T} { \vert\kern-0.25ex \vert\kern-0.25ex \vert {G- \overline G} \vert\kern-0.25ex \vert\kern-0.25ex \vert}. \end{align*} |
If
W(t) = W_n(t-nT), \quad t \in [nT, (n+1)T], \quad n\geq0. |
Hence,
Next, we are concerned with a global classical solution. In order to apply Theorem A.2(2) in Appendix A for a classical solution to the Cauchy problem (2)–(3), we have to show the continuously differentiability of the coupling term containing
For
\begin{equation*} \label{E-12} (F(W))_{(i, j)}: = \frac{\kappa}{2N}\sum\limits_{k = 1}^N(z_{ik} + z_{kj})w_{ij} = \frac{ \kappa}{2N} \sum\limits_{k = 1}^N \left( \int_{ \mathbb R^{2d}} (w_{ik} + w_{kj}) \mathrm{d} x \mathrm{d} p \right)w_{ij}, \end{equation*} |
which is nonlinear with respect to the argument
Lemma 4.3. For
\begin{align*} \|F(U) - F(V)\|_{\bf{X}} \leq C\|U -V \|_{{\bf{X}}}. \end{align*} |
Then, the functional derivative, denoted by
Proof. For
\mathrm{D}F(U)(V) : = \lim\limits_{\tau \to 0} \frac{ F(U + \tau V) - F(U) }{\tau} = \frac{ \mathrm{d}}{ \mathrm{d} \tau} F(U+ \tau V) \biggl|_{\tau = 0}. |
At each point
\begin{align*} (\mathrm{D}F(U)(V))_{(i, j)} = \frac{\kappa}{2N}\sum\limits_{k = 1}^N \left(u_{ij} \int_{ \mathbb R^{2d}}(v_{ik} + v_{kj}) \mathrm{d} x \mathrm{d} p + v_{ij}\int_{ \mathbb R^{2d}}(u_{ik} + u_{kj}) \mathrm{d} x \mathrm{d} p\right). \end{align*} |
Since
\|\mathrm{D}F(U)(V) \|_{\bf{X}}\leq 2 \kappa \|U\|_{{\bf{X}}} \cdot \|V\|_{{\bf{X}}}. |
Therefore, we verified that
\|F(U) - F(V)\|_{\bf{X}} \leq \|U- V \|_{\bf{X}} \cdot \sup\limits_{t \in [0, 1]}\|\mathrm{D}F(tU + (1-t)V)\|_{ \text{op}}. |
Here,
\|F(U) - F(V)\|_{\bf{X}} \leq 2\kappa \sup\limits_{t \in [0, 1]}\|tU + (1-t)V\|_{\bf{X}} \cdot \|U - V \|_{\bf{X}}. |
This shows that
Now, we are ready to provide the second assertion of Theorem 4.1 by applying semigroup theory.
● Step A (the linear Wigner equation on
\begin{equation} \partial_t w_{ij} + p \cdot \nabla_x w_{ij} + \Theta[V](w_{ij}) = 0. \end{equation} | (44) |
Since (44) on
\|\Theta[V]w\|_{\mathcal{X}} = \|\Theta[V]w\|. |
Since
w_{ij} \in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)). |
For details, we refer the reader to [23,Theorem 1].
● Step B (the WL model on
w_{ij}\in C([0, T];\mathcal{X}) \cap C^1([0, T];D(A)), \quad i, j \in [N]. |
This completes the proof.
In this paper, we have studied the complete aggregation estimate and the global existence of the Wigner-Lohe(WL) model which describes quantum synchronization in the Wigner picture. By taking the Wigner transform on the Schrödinger-Lohe model with identical potentials, we formally derived the WL model which is an integro-differential equation. Compared to the linear Wigner equation, one of the main difficulty to deal with the WL model lies in the lack of conservation laws. However, fortunately, we can overcome the loss of several conserved quantities via collective dynamics. For the WL model, we first establish complete aggregation estimates that can be achieved with an exponential convergence rate in a priori setting. Next, we show that the WL model admits a unique global mild solution by the standard fixed point theorem and if we impose further regularity on initial data, a unique global classical solution can be obtained by using the semigroup theory. Of course, there are still lots of untouched issues. For instance, we focused on the identical WL model where external one-body potentials are assumed to be the same. Thus, the extension of collective dynamics and global solvability of the WL model with non-identical potentials are left for a future work.
In this appendix, we briefly summarize several results in [24] on the semigroup theory to show the existence of evolution equations. The first theorem deals with the bounded perturbation of a linear equation.
Theorem A.1. [24] Let
(i) A is the infinitestimal generator of a
\|T(t)\| \leq Me^{\omega t}. |
(ii)
Then,
\|S(t)\| \leq Me^{(\omega + M\|B\|)t}. |
Consider the following abstract Cauchy problem:
\begin{equation} \begin{cases} \frac{ \mathrm{d} u(t)}{ \mathrm{d}t} + Au(t) = f(t, u(t)), \quad t > t_0, \\ u(t_0) = u_0. \end{cases} \end{equation} | (45) |
In next theorem, we recall the result on the mild and classical solutions of (45).
Theorem A.2. [24] The following assertions hold.
1. Let
2. Let
Finally, we recall Gâteaux's mean value theorem. We denote the directional derivative of
Lemma A.3. [2,Proposition A.2] Let
\|f(y) - f(x) \|_Y \leq \|x-y\|_X \sup\limits_{0 \leq \theta \leq 1} \|Df(\theta x + (1-\theta)y\|_{\mathcal{L}(X, Y)}, |
where
\delta_v f(x) : = \lim\limits_{t \rightarrow \infty} \frac{f(x+tv) - f(x)}{t}. |
[1] |
V. Eldholm, J. Monteserin, A. Rieux, B. Lopez, B. Sobkowiak, V. Ritacco, et al., Four decades of transmission of a multidrug-resistant Mycobacterium tuberculosis outbreak strain, Nat. Comm., 6 (2015), 1–9. doi: 10.1038/ncomms8119. doi: 10.1038/ncomms8119
![]() |
[2] |
J. D. Fonseca, G. M. Knight, T. D. McHugh, The complex evolution of antibiotic resistance in Mycobacterium tuberculosis, Int. J. Infect. Dis., 32 (2015), 94–100. doi: 10.1016/j.ijid.2015.01.014. doi: 10.1016/j.ijid.2015.01.014
![]() |
[3] |
B. Müller, S. Borrell, G. Rose, S. Gagneux, The heterogeneous evolution of multidrug-resistant Mycobacterium tuberculosis, Trends Genet., 29 (2013), 160–169. doi: 10.1016/j.tig.2012.11.005. doi: 10.1016/j.tig.2012.11.005
![]() |
[4] |
S. Ekins, J. S. Freundlich, I. Choi, M. Sarker, C. Talcott, Computational databases, pathway and cheminformatics tools for tuberculosis drug discovery, Trends Microb., 19 (2011), 65–74. doi: 10.1016/j.tim.2010.10.005. doi: 10.1016/j.tim.2010.10.005
![]() |
[5] |
A. Sandgren, M. Strong, P. Muthukrishnan, B. K. Weiner, G. M. Church, M. B. Murray, Tuberculosis drug resistance mutation database, PLoS Med., 6 (2009), e1000002. doi: 10.1371/journal.pmed.1000002. doi: 10.1371/journal.pmed.1000002
![]() |
[6] |
L. Chen, Z. Xiong, L. Sun, J. Yang, Q. Jin, VFDB 2012 update: Toward the genetic diversity and molecular evolution of bacterial virulence factors, Nucleic Acids Res., 40 (2012), 641–645. doi: 10.1093/nar/gkr989. doi: 10.1093/nar/gkr989
![]() |
[7] |
S. Kim, J. Chen, T. Cheng, A. Gindulyte, J. He, S. He, Q. Li et al., PubChem 2019 update: Improved access to chemical data, Nucleic Acids Res., 47 (2019), 1102–1109. doi: 10.1093/nar/gky1033. doi: 10.1093/nar/gky1033
![]() |
[8] |
R. C. Goldman, Target discovery for new antitubercular drugs using a large dataset of growth inhibitors from PubChem, Infect. Dis.-Drug Tar., 20 (2020), 352–366. doi: 10.2174/1871526519666181205163810. doi: 10.2174/1871526519666181205163810
![]() |
[9] |
C. A. Lipinski, F. Lombardo, B. W. Dominy, P. J. Feeney, Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings, Adv. Drug Deliv. Rev., 23 (1997), 3–25. doi: 10.1016/s0169-409x(96)00423-1. doi: 10.1016/s0169-409x(96)00423-1
![]() |
[10] |
S. Ekins, J. S. Freundlich, R. C. Reynolds, Fusing dual-event data sets for Mycobacterium tuberculosis machine learning models and their evaluation, J. Chem. Info. Model., 53 (2013), 3054–3063. doi: 10.1021/ci400480s. doi: 10.1021/ci400480s
![]() |
[11] |
S. Ekins, A. C. Casey, D. Roberts, T. Parish, B. A. Bunin, Bayesian models for screening and TB Mobile for target inference with Mycobacterium tuberculosis, Tuberculosis, 94 (2014), 162–169. doi: 10.1016/j.tube.2013.12.001. doi: 10.1016/j.tube.2013.12.001
![]() |
[12] |
S. Ekins, A. M. Clark, S. J. Swamidass, N. Litterman, A. J. Williams, Bigger data, collaborative tools and the future of predictive drug discovery, J. Computer-aided Mol. Des., 28 (2014), 997–1008. doi: 10.1007/s10822-014-9762-y. doi: 10.1007/s10822-014-9762-y
![]() |
[13] |
S. Ekins, A. M. Clark, A. L. Perryman, J. S. Freundlich, A. Korotcov, V. Tkachenko, Accessible machine learning approaches for toxicology, Comp. Tox. Risk Assess Chem., (2018), 1–29. doi: 10.1002/9781119282594.ch1. doi: 10.1002/9781119282594.ch1
![]() |
[14] |
K. Djaout, V. Singh, Y. Boum, V. Katawera, H. F. Becker, N. G. Bush, et al., Predictive modeling targets thymidylate synthase ThyX in Mycobacterium tuberculosis, Sci. Rep., 6 (2016), 1–11. doi: 10.1038/srep27792. doi: 10.1038/srep27792
![]() |
[15] |
S. Chetty, M. Ramesh, A. Singh-Pillay, M. E. S. Soliman, Recent advancements in the development of anti-tuberculosis drugs, Bioorg. Med. Chem. Let., 27 (2017), 370–386. doi: 10.1016/j.bmcl.2016.11.084. doi: 10.1016/j.bmcl.2016.11.084
![]() |
[16] |
D. Machado, M. Girardini, M. Viveiros, M. Pieroni, Challenging the drug-likeness dogma for new drug discovery in tuberculosis, Front. Microbio., 9 (2018), 1367. doi: 10.3389/fmicb.2018.01367. doi: 10.3389/fmicb.2018.01367
![]() |
[17] |
M. AlMatar, H. AlMandeal, I. Var, B. Kayar, F. Köksal, New drugs for the treatment ofMycobacterium tuberculosis infection, Biomed. Pharmaco., 91 (2017), 546–558. doi: 10.1016/j.biopha.2017.04.105. doi: 10.1016/j.biopha.2017.04.105
![]() |
[18] |
L. D. Ghiraldi-Lopes, P. A. Z. Campanerut-Sá, G. P. C. Evaristo, J. E. Meneguello, A. Fiorini, V. P. Baldin, et al., New insights on Ethambutol Targets in Mycobacterium tuberculosis, Infect. Dis.-Drug Tar., 19 (2019), 73–80. doi: 10.2174/1871526518666180124140840. doi: 10.2174/1871526518666180124140840
![]() |
[19] | S. L. Kinnings, N. Liu, N. Buchmeier, P. J. Tonge, L. Xie, P. E. Bourne, Drug discovery using chemical systems biology: Repositioning the safe medicine Comtan to treat multi-drug and extensively drug resistant tuberculosis, PLoS Comp. Biol., 5 (2009), e1000423. doi; 10.1371/journal.pcbi.1000423. |
[20] | J. T. Dudley, T. Deshpande, A. J. Butte, Exploiting drug–disease relationships for computational drug repositioning, Brief Bioinfo., 12 (2011), 303–311. doi; 10.1093/bib/bbr013. |
[21] |
A. Maitra, S. Bates, T. Kolvekar, P. V. Devarajan, J. D. Guzman, S. Bhakta, Repurposing—a ray of hope in tackling extensively drug resistance in tuberculosis, Int. J. Inf. Dis., 32 (2015), 50–55. doi: 10.1016/j.ijid.2014.12.031. doi: 10.1016/j.ijid.2014.12.031
![]() |
[22] |
Q. Vanhaelen, P. Mamoshina, A. M. Aliper, A. Artemov, K. Lezhnina, I. Ozerov, et al., Design of efficient computational workflows for in silico drug repurposing, Drug Disco. Tod., 22 (2017), 210–222. doi: 10.1016/j.drudis.2016.09.019. doi: 10.1016/j.drudis.2016.09.019
![]() |
[23] |
E. March-Vila, L. Pinzi, N. Sturm, A. Tinivella, O. Engkvist, H. Chen, et al., On the integration of in silico drug design methods for drug repurposing, Front. Pharma., 8 (2017), 298. doi: 10.3389/fphar.2017.00298. doi: 10.3389/fphar.2017.00298
![]() |
[24] |
K. Pavić, I. Perković, Š. Pospíšilová, M. Machado, D. Fontinha, M. Prudêncio, et al., Primaquine hybrids as promising antimycobacterial and antimalarial agents, Euro. J. Med. Chem., 143 (2018), 769–779. doi: 10.1016/j.ejmech.2017.11.083. doi: 10.1016/j.ejmech.2017.11.083
![]() |
[25] |
A. C. Pushkaran, V. Vinod, M. Vanuopadath, S. S. Nair, S. V. Nair, A. K. Vasudevan, et al., Combination of repurposed drug diosmin with amoxicillin-clavulanic acid causes synergistic inhibition of mycobacterial growth, Sci. Rep., 9 (2019), 1–14. doi: 10.1038/s41598-019-43201-x. doi: 10.1038/s41598-019-43201-x
![]() |
[26] |
J. V. Eichborn, M. S. Murgueitio, M. Dunkel, S. Koerner, P. E. Bourne, R. Preissner, PROMISCUOUS: A database for network-based drug-repositioning, Nucleic Acids Res., 39 (2010), 1060–1066. doi: 10.1093/nar/gkq1037. doi: 10.1093/nar/gkq1037
![]() |
[27] |
S. Hasan, B. K. Bonde, N. S. Buchan, M. D. Hall, Network analysis has diverse roles in drug discovery, Drug Disc. Tod., 17 (2012), 869–874. doi: 10.1016/j.drudis.2012.05.006. doi: 10.1016/j.drudis.2012.05.006
![]() |
[28] |
S. Daminelli, V. J. Haupt, M. Reimann, M. Schroeder, Drug repositioning through incomplete bi-cliques in an integrated drug–target–disease network, Integ. Biol., 4 (2012), 778–788. doi: 10.1039/c2ib00154c. doi: 10.1039/c2ib00154c
![]() |
[29] |
N. Chandra, J. Padiadpu, Network approaches to drug discovery, Expert Op. Drug Disc., 8 (2013), 7–20. doi: 10.1517/17460441.2013.741119. doi: 10.1517/17460441.2013.741119
![]() |
[30] |
B. K. Chung, T. Dick, D. Lee, In silico analyses for the discovery of tuberculosis drug targets, J. Antimicro. Chemo., 68 (2013), 2701–2709. doi: 10.1093/jac/dkt273. doi: 10.1093/jac/dkt273
![]() |
[31] |
Z. Wu, Y. Wang, L. Chen, Network-based drug repositioning, Mol. BioSys., 9 (2013), 1268–1281. doi: 10.1039/c3mb25382a. doi: 10.1039/c3mb25382a
![]() |
[32] |
P. Anand, N. Chandra, Characterizing the pocketome of Mycobacterium tuberculosis and application in rationalizing polypharmacological target selection, Sci. Rep., 4 (2014), 1–17. doi: 10.1038/srep06356. doi: 10.1038/srep06356
![]() |
[33] |
E. Guney, J. Menche, M. Vidal, A. Barábasi, Network-based in silico drug efficacy screening, Nat.Comm., 7 (2016), 1–13. doi: 10.1038/ncomms10331. doi: 10.1038/ncomms10331
![]() |
[34] |
P. Emerson, The original Borda count and partial voting, Soc. Choice Welf., 40 (2013), 353–358. doi: 10.1007/s00355-011-0603-9. doi: 10.1007/s00355-011-0603-9
![]() |
[35] |
J. Fraenkel, B. Grofman, The Borda Count and its real-world alternatives: Comparing scoring rules in Nauru and Slovenia, Australian J. Pol. Sc., 49 (2014), 186–205. doi: 10.1080/10361146.2014.900530. doi: 10.1080/10361146.2014.900530
![]() |
[36] |
M. H. Alsharif, Y. H. Alsharif, S. A. Chaudhry, M. A. Albreem, A. Jahid, E. Hwang, Artificial intelligence technology for diagnosing COVID-19 cases: A review of substantial issues, Eur. Rev. Med. Pharmacol. Sci., 24 (2020), 9226–9233. doi: 10.26355/eurrev_202009_22875. doi: 10.26355/eurrev_202009_22875
![]() |
[37] |
M. H. Alsharif, Y. H. Alsharif, M. A. Albreem, A. Jahid, A. A. A. Solyman, K. Yahya, et al., Application of machine intelligence technology in the detection of vaccines and medicines for SARS-CoV-2, Eur. Rev. Med. Pharmacol. Sci., 24 (2020), 11977–11981. doi: 10.26355/eurrev_202011_23860. doi: 10.26355/eurrev_202011_23860
![]() |
[38] |
M. H. Alsharif, Y. H. Alsharif, K. Yahya, O. A. Alomari, M. A. Albreem, A. Jahid, Deep learning applications to combat the dissemination of COVID-19 disease: A review, Eur. Rev. Med. Pharmacol. Sci., 24 (2020), 11455–11460. doi: 10.26355/eurrev_202011_23640. doi: 10.26355/eurrev_202011_23640
![]() |
[39] |
G. Elmas, A. Okumuş, R. Cemaloğlu, Z. Kılıç, S. P. Çelik, L. Açık, et al., Phosphorus-nitrogen compounds. part 38. Syntheses, characterizations, cytotoxic, antituberculosis and antimicrobial activities and DNA interactions of spirocyclotetraphosphazenes with bis-ferrocenyl pendant arms, J. Organomet. Chem., 853 (2017), 93–106. doi: 10.1016/j.jorganchem.2017.10.025. doi: 10.1016/j.jorganchem.2017.10.025
![]() |
[40] |
K. Tahlan, R. Wilson, D. B. Kastrinsky, K. Arora, V. Nair, E. Fischer, et al., SQ109 targets MmpL3, a membrane transporter of trehalose monomycolate involved in mycolic acid donation to the cell wall core of Mycobacterium tuberculosis, Antimicro. Agents Chemo., 56 (2012), 1797–1809. doi: 10.1128/AAC.05708-11. doi: 10.1128/AAC.05708-11
![]() |
[41] | M. A. Musa, V. L. D. Badisa, L. M. Latinwo, Cytotoxic activity of N, N'-Bis (2-hydroxybenzyl) ethylenediamine derivatives in human cancer cell lines, Anticancer Res., 34 (2014), 1601–1607. |
1. | Muhammad Imran, Brett Allen McKinney, Azhar Iqbal Kashif Butt, Pasquale Palumbo, Saira Batool, Hassan Aftab, Optimal Control Strategies for Dengue and Malaria Co-Infection Disease Model, 2024, 13, 2227-7390, 43, 10.3390/math13010043 |