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Abstract: Tuberculosis (TB) is a fatal infectious disease which affected millions of people worldwide 

for many decades and now with mutating drug resistant strains, it poses bigger challenges in treatment 

of the patients. Computational techniques might play a crucial role in rapidly developing new or 

modified anti-tuberculosis drugs which can tackle these mutating strains of TB. This research work 

applied a computational approach to generate a unique recommendation list of possible TB drugs as 

an alternate to a popular drug, EMB, by first securing an initial list of drugs from a popular online 

database, PubChem, and thereafter applying an ensemble of ranking mechanisms. As a novelty, both 

the pharmacokinetic properties and some network based attributes of the chemical structure of the 

drugs are considered for generating separate recommendation lists. The work also provides customized 

modifications on a popular and traditional ensemble ranking technique to cater to the specific dataset 

and requirements. The final recommendation list provides established chemical structures along with 

their ranks, which could be used as alternatives to EMB. It is believed that the incorporation of both 

pharmacokinetic and network based properties in the ensemble ranking process added to the 

effectiveness and relevance of the final recommendation. 

Keywords: Drug resistant Tuberculosis; Mtb; drug discovery; ensemble ranking; pharmacokinetic 

properties; network based recommendation 

 

1. Introduction  

Tuberculosis (TB), caused by the bacteria Mycobacterium tuberculosis (Mtb), is a major global 

health hazard, where the human mortality rate goes above 1 million per year. Surveys have revealed 
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the existence of Mtb for more than four decades [1], and more importantly, it has developed various 

degrees of resistance to multiple anti tuberculosis drugs along this journey.  Studies have also shown 

that [2] the pathways that led to these drug resistant Mtb strains were very complex and indicated that 

the bacteria acquired a step by step process, starting from a low degree mutation to a near complete 

drug resistance. The role of bacterial factors like persistence, compensatory evolution, fitness, hyper 

mutation on the evolution of drug resistance were also explored [3].  

There are various resources which documented the drug resistant properties of Mtb by various 

types of databases [4]. For example, the TBDRMD database [5] reported polymorphisms at different 

codon regions of certain genes of H37Rv, a specific strain of Mtb, in response to specific anti 

tuberculosis drugs. The VFDB database [6] provided virulence factors and structural features of 

different strains of Mtb. Studies [4] stressed on the urgent need to rapidly discover new drugs which 

could tackle the mutating drug resistant strains of Mtb. 

PubChem, an open chemistry database [7], provided an extensive resource on chemical structures, 

chemical and physical properties of a chemical compound (drug) as well as a comprehensive list of 

compounds (drugs) which were similar in nature. It was encouraging to know that a large number of 

growth inhibitors for Mtb were submitted [8] on PubChem after an elaborate process of 

experimentation and validation. This ensured that the list of similar drugs/compounds provided by 

PubChem, did not have any compounds that acted as inhibitors. Thus, for this paper, PubChem was 

chosen to be the resource which could give an initial list of drugs which had some kind of similarity 

with an existing anti tuberculosis drug.  

The basic functional effectiveness of any drug depends heavily on the molecular properties that 

are crucial to its pharmacokinetics, including absorption, distribution, metabolism and excretion 

(ADME). The well-established Lipinski’s rule of five [9] defined some boundaries on the chemical 

properties of the drugs which, when satisfied, made the drugs more functionally acceptable for human 

intake. This important aspect was emphasized in our proposed methodology, both during data pre-

processing as well as during the actual recommendation process. 

There were many instances found in the literature where machine learning techniques were used 

to suggest new drugs, using available datasets related to drug resistant Mtb. Reviews [4] have pointed 

out cheminformatcs tools that were used on several datasets related to drug resistant Mtb. For example, 

a cheminformatics data fusion approach [10] was followed by validation on datasets having 

cytotoxicity and tuberculosis data by Support Vector Machine and Bayesian models. Subsequently, 

Bayesian machine learning models were applied [11] on large datasets for rapid screening and 

prioritizing of compounds for anti-tubercular activities before in vitro testing. As both high throughput 

screening techniques and chemical datasets expanded [12], the needs to integrate and link the different 

datasets as well as consolidate the techniques by secure mechanisms were proposed. It has been 

reported that [13], popular machine learning techniques in cheminformatics can be useful in making 

the drug discovery process more efficient. This was due to the faster selection of filtered compounds 

for testing, when compared to the traditional in vitro screening for toxicity of compounds. This 

inference was also validated [14] when structure-activity relationships of a couple of Mtb enzymes 

were analysed both by in vitro screening as well as Naïve Bayesian model with smoothening.  In 

another review [15], the relevance of the advancement of tools, including machine learning techniques, 

were highlighted with regard to development of anti-tuberculosis drugs.  

Literature also revealed interesting approaches, other than throughput screening and 

cheminformatics tools, which were applied for drug discovery against drug resistant Mtb. 
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Lipophilicity [16], along with structural peculiarities and energy depletion, in some cases, were 

reported to be more relevant than Lipinsky’s rule of five, in the specific context of drug resistant TB. 

Reports [17] have summarised newer anti-tuberculosis drugs in different stages of clinical trials, along 

with their various methods of action. In another study [18[, the efficacy of Ethambutol (EMB), a 

popular anti-tuberculosis drug, was evaluated on how the drug affected both the cell wall integrity and 

the metabolism of the Mtb.  

The review [15], mentioned before, even though acknowledged the effectiveness of compounds 

like EMB and INH as part of a multi-drug regimen against TB, it also underlined the critical need to 

come up with new anti-tuberculosis drugs, and suggested using repurposed drugs by exploring 

properties like genomics and crystallography.  Reports [19] have also suggested that existing drugs 

meant for Parkinson’s disease could be repositioned to treat drug resistant TB, by modelling protein-

ligand interaction networks and exploring the bonding and docking properties. In the context of drug 

repurposing in general, reviews [20] classified them through two axes, drug based or disease based. 

The review also highlighted computational methods of repurposing benefitted both these axes. 

Studies [21] have also pointed out three actual repurposed drugs which were extensively used to 

treat drug resistant Mtb, when traditional combinations of anti-tuberculosis drugs were not 

effective. One study [22] looked at repurposing in general, by computational workflows, linking 

data availability with current trends in technology along with the associated algorithms. On similar 

lines, drug repositioning [23] was highlighted for associations between drug to target and target to 

disease. In an experimental study [24], Primaquine derivatives were shown to be effective as both anti-

malarial and anti-tuberculosis agents. In one more recent study [25], a traditional anti-tuberculosis 

drug, AMC, and a repurposed drug, Diosmin, were used together to treat TB. Repurposing of drugs 

might be an effective way to deal with a current disease, however, the process would always require 

significant experimental studies. Network structure based approach, on the other hand, would stress 

more on the computational part to come up with candidates efficiently, which in turn could reduce the 

number of candidates for undergoing subsequent experimental studies. 

There were some studies which looked at drug discovery, in general, from a graph oriented, 

network based approach. PROMISCOUS [26] was a database that had an extensive list of drugs 

annotated with protein-protein interactions (PPI) and drug-protein interactions. This study highlighted 

structural similarities among drugs, connected with PPI, which has the potential in the field of multi-

pharmacology, and drug repositioning. Network analysis approaches [27] were studied in the context 

of drug discovery, and similarities were suggested in both social networks and biological networks. 

Incomplete network motifs of bi-cliques [28] were utilised in drug-target-disease networks to predict 

new drugs for one or more diseases. In one study, molecular interaction networks [29] were explored 

for lead identification in drug discovery pipeline. It also pointed out how this can help in exploring the 

emergence of drug resistance and drug repositioning. Reports [30] had also suggested the need to 

connect genome-based biological networks with anti-tuberculosis drug discovery to come up with 

potentially rational drugs. Surveys [31] had shown that network based computational approaches 

focussed on molecular interactions can address both drug repositioning, as well as drug combination. 

In case of finding drugs for Mtb, both of these (repositioning and combination) were very crucial for 

effective treatment of TB. A proteomic structural approach [32] was adopted for creation of clusters of 

pocket-similarity networks, or pocketomes, which consequently helped in finding sets of binding sites 

within Mtb. In a recent study [33], a drug-disease proximity measure was proposed by looking into the 

network neighbourhoods of both disease genes and drugs. This study revealed that effectiveness of 
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most of the drugs was limited to small sub networks of disease genes. 

In summary, the entire literature study repeatedly highlighted the importance of coming up with 

discovery of relevant and effective anti-tuberculosis drugs in a rapid manner. Majority of these studies 

acknowledged the importance of the pharmacokinetic/ADME properties while discovering the new 

drugs, while quite a few of them looked at the problem from the structural network point of view. With 

these issues in context, this work is aimed at providing a recommendation list of possible anti-

tuberculosis drugs which were similar to a popular and existing tuberculosis drug. The proposed 

method incorporated an ensemble approach, where both pharmacokinetic properties as well as network 

properties of the chemical structures of the recommended drugs were given special attention. For this 

ensemble recommendation approach, literature showed that Borda Count [34] was a very well-

established method and was used both in social science, as well as in machine learning domains. 

Studies [35] also showed that Borda Count can be effectively tailored for specific scenarios. In this 

context, the uniqueness of this effort was in the customisation of this popular ensemble ranking method, 

Borda Count, as well as utilising the network properties of the recommended drugs for the second time 

to fine tune the final recommendation list, and all these specific customisations were made to address 

the drug resistant property of the Mtb. 

As a side note, artificial intelligence techniques [36], machine learning tools [37], with or without 

ensembles, as well as deep learning techniques [38] have been utilised very recently to tackle the covid-

19 disease, with its continuously changing variants. 

This section provided a basic introduction to the needs and a summary of techniques practised in 

discovering drugs against drug resistant Mtb. Section 2 details the methodology of this study along 

with our proposed ensemble recommendation system. Section 3 provides the experimental details for 

a popular anti-tuberculosis drug, and documents the results at each step of the process. Section 4 

discusses and analyses the significance of our results, and finally, Section 5 highlights the conclusion 

and future possibilities.    

2. Materials and methods 

The process of consolidating the recommendation list of proposed TB drugs from a given effective 

TB drug is shown by the block diagram in Figure 1. The process involved data pre-processing at the 

beginning, followed by the generation of three different recommendation lists (Uniform weighted, 

Pharmacokinetic weighted and Network weighted). These were then fed into an ensemble 

recommendation system resulting in a consolidated recommendation. The final step involved 

refinement of the consolidated ranking by utilising the Network weighted list of values. 

2.1. Data pre-processing 

The online PubChem database provided a list of drugs having similar characteristics for a TB drug 

given as a query. The dataset consisted of the list of drugs along with several attributes for each of 

these drugs. Since the objective of the research work dealt with providing recommendations by 

utilising different computational measures, a quantifiable approach was the basic requirement. In this 

context, data pre-processing was done on two fronts. The first filtering was done on numeric/non-

numeric nature of the attributes, and the subsequent filtering was done on the pharmacokinetic values 

of the attributes. Additionally, for each of these pre-processing steps, each row/entry was checked for 
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null values and missing values. Such entries, if found, were to be removed completely. 

 

Figure 1. Block Diagram of proposed methodology. 

2.1.1. Numeric attributes  

From the initial dataset, at first, all non-numeric attributes were removed. This paved the way for 

performing numerical computations. 

2.1.2. Pharmacokinetic filtering 

The well-established pharmacokinetic properties of chemical drugs, provided by Lipinski's rule 

of five, Ghose Filter and Verber’s rule, were applied to the relevant attribute values and those drugs 

whose attributes did not satisfy any of these rules, were removed.  The combined rules are listed in 

Table 1. 

Table 1. Filters applied on the attributes of the list of drugs generated from PubChem. 

Attribute Constraints Filter Rule 

hbond donor count <=5 Lipinski’s Rule 

hbond receptor count <=10 Lipinski’s Rule 

180<= Molecular weight <=480 Lipinski’s Rule and Ghose Filter (combined) 

-0.4 <= logP <5 Lipinski’s Rule and Ghose Filter (combined) 

20<=Total number of atoms<=70 Ghose Filter 

Polar surface area <=140 Verber’s Rule 

Number of rotatable bonds <=10 Verber’s Rule 

2.2. Ensemble of ranked lists 

Three different ranked lists were generated from the processed dataset. The objective was to 

explore multiple ways of finding k nearest neighbors/drugs for the given query drug, where the entries 

in the ranked recommendation lists were in ascending order of dissimilarity. This meant that the 
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topmost drug on a particular list would be the closest to the queried drug, as per the chosen measure 

of evaluation, and consequently the bottommost (k th) drug on the list would be the farthest. Three 

separate ranked recommendation lists were generated using three different evaluation measures.  

2.2.1. Uniform weighted ranking  

The first, and completely unbiased, ranking involved finding out the individual distances between 

each of the drugs in the processed dataset to the queried drug, and consequently storing the 𝑘 nearest 

drugs. Mathematically, this process was similar to finding the Euclidean distance between vectors, and 

storing the 𝑘 closest vectors, in sorted order, with respect to a single vector, represented by the queried 

drug. Each drug was represented by a vector of 𝑚 numeric attributes. The formula for finding out the 

Euclidean dissimilarity between each of the suggested drugs and the queried drug is given in Eq (1). 

UED(𝑞𝑑, 𝑟𝑑𝑖)=√∑ (𝑞𝑑𝑗 − 𝑟𝑑𝑖𝑗)
29

𝑗=1

 

  
2

                                 (1) 

UED(𝑞𝑑 , 𝑟𝑑𝑖)  stands for the uniform Euclidean distance between the vectors of the queried 

drug, 𝑞𝑑,, and 𝑟𝑑𝑖 , the ith suggested drug. Each of these vectors had nine numeric entries and 𝑞𝑑1 

to 𝑞𝑑9 represents the numeric entries of the queried drug and subsequently 𝑟𝑑𝑖1 to 𝑟𝑑𝑖9 represents 

the numeric entries of the  𝑟𝑑𝑖 drug. 

The key characteristic of this evaluation measure was that each of the attributes was given equal 

weightage when distance/dissimilarity were calculated for each of the suggested drugs from the 

queried drug. 

2.2.2. Pharmacokinetic weighted ranking 

The second ranking used the same processed dataset to generate 𝑘 nearest drugs and used the 

same Euclidean distance measure to find out the dissimilarity between each of the suggested drugs to 

the queried drugs. However, this method gave more weightage to a subset of the attributes while 

calculating the overall dissimilarity. These more important attributes (four in number) were the ones 

mentioned in Lipinsky’s rule of five. Eq (2) shows the formula for calculating the dissimilarity, by 

incorporating the added weightage given to these more important attributes.    

WED(𝑞𝑑, 𝑟𝑑𝑖) = 𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒 ( √ ∑ (
2

9
(𝑞𝑑𝑝𝑗 − 𝑟𝑑𝑝𝑖𝑗))

2
4
𝑗=1   

2

 +  √ ∑ (
1

9
(𝑞𝑑𝑘 − 𝑟𝑑𝑖𝑘))

2
5
𝑘=1    

2

  )    (2) 

WED(𝑞𝑑, 𝑟𝑑𝑖) stands for the weighted Euclidean distance between the vectors of the queried 

drug, 𝑞𝑑,, and 𝑟𝑑𝑖 , the ith  suggested drug. Each of these vectors had nine numeric entries, out of 

which four of them (𝑞𝑑𝑝1 , 𝑟𝑑𝑝𝑖1 to 𝑞𝑑𝑝4, 𝑟𝑑𝑝𝑖4) were given double the weightage, compared to the 

remaining five numeric attributes represented by 𝑞𝑑1 , 𝑟𝑑𝑖1 to 𝑞𝑑5, 𝑟𝑑𝑖5 . The total sum was then 

normalized for uniformity. 

This weighted ranking approach gave more importance to the findings reported by researchers 

who had studied the pharmacokinetic properties of chemical drugs. 

2.2.3. Network weighted ranking 

This paper introduces a new set of numeric attributes, which represents the network based 

characteristics of the chemical drugs. These network/graph based properties not only gave more 

insights into the chemical structures, by means of how the atoms were situated with respect to each 
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other and how they were connected to each other, they also indicated the importance of an atom or a 

connection between two atoms to act as a bridge to connect to the remaining atoms of the network 

structure. This information, we believe, can be related with molecular bonding properties, which 

consequently determines the drug’s ability to handle harmful bacterial antigens. The chosen network 

based attributes were i) average degree (DGA), ii) average closeness (CLA), iii) average node 

betweenness (NBA) and iv) average edge betweenness (EBA). Eq (3) to Eq (6) shows the formula to 

calculate these values for a specific chemical drug structure. 

DGA =  (2 ∗ 𝐸) 𝑁⁄                   (3)   

CLA = ( ∑
1

∑ 𝑑(𝑦,𝑥𝑖)𝑁
𝑦=1,𝑦≠𝑥𝑖

 ) 𝑁⁄𝑁
𝑖=1                (4)  

NBA = ( ∑
𝜎𝑠𝑡

(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡  ) 𝑁⁄                   (5) 

EBA = ( ∑
𝜆𝑠𝑡

(𝑒)

𝜆𝑠𝑡
𝑠≠𝑒≠𝑡  ) 𝑁⁄                   (6) 

𝐸 stands for the total number of edges, and 𝑁 stands for the total number of nodes in a network. 

In the case of CLA, 𝑑(𝑦, 𝑥𝑖) signifies the shortest distance between nodes 𝑦 and 𝑥𝑖. For NBA, 𝜎𝑠𝑡  

represents the total number of shortest paths between the nodes 𝑠 and 𝑡, while 𝜎𝑠𝑡
(𝑣)

 shows the ones 

among those which pass through the node 𝑦. Similarly, for EBA, 𝜆𝑠𝑡 generates the total number of 

shortest paths between the nodes 𝑠 and 𝑡, while 𝜆𝑠𝑡
(𝑒)

 gives the ones which pass through the edge 𝑒. 

This network based ranked recommendation list stored k nearest neighbours / drugs with respect 

to the queried drug, where the input was only the ids of the suggested drugs, and the four attributes (i 

to iv). All these four numeric values were calculated from the graphical representations of the chemical 

drugs. The k nearest neighbours /drugs, in sorted order, with respect to the queried drug, with this 

customized dataset, were generated in the same manner as 3.2.1 using Eq (1) to calculate the dissimilarity. 

2.3. Consolidated ranking 

The three different k-ranked recommendation lists were fed as input to the consolidated ranking 

system to generate a combined and consistent k-ranked recommendation list of drugs for a queried 

drug. The popular Borda ranking technique was initially chosen for this task, not only for its simple 

and effective way of ranking multiple ranked lists, but also for its unbiased way of giving weightage 

to a candidate even if it did not feature in the top k ranks in any of the ranked lists.  

This paper proposes a customized version of Borda ranking to cater to the specific properties of 

the dataset. The ranking mechanism is explained in Table 2 as a demonstration.  In the traditional 

Borda ranking system with three (A, B, C) evaluation measures, if C1, C2 and C3 were the chosen 

candidates, then the cells where C4 and C5 are placed (grey coloured cells), in the 3rd ranked position 

of evaluation measure B and C respectively, would be kept blank. This would have resulted in each of 

C1, C2 and C3 securing 6 points. However, the proposed modification looked at the absolute difference 

of ranking when lower ranked candidates were considered. In the case of Table 2, rank 4 and 5 (which 

were both lower than rank 3) resulted in Borda values of 0 and -1 respectively. Even though the 
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proposed modification looked at lower ranks, the final result still looked at the top 3 ranks.  The 

rankings generated by traditional Borda system and the rankings generated by our proposed 

modifications are highlighted in Table 2.  

Table 2. An illustrative example of our customized Borda ranking. 

Evaluation 

Measures 

Rank of Candidates 

1 2 3 4 5 

A C2 C3 C1 C5 C4 

B C1 C2 C4 C3 C5 

C C3 C1 C5 C2 C4 

 

      

Candidates 
Borda 

Score 

Borda 

Rank 

 
Candidates 

Modified 

Borda Score 

Modified 

Borda Rank 

C1 6 

Equal 

C1 6 1 

C2 6 C2 5 2 

C3 6 C3 5 2 

   C4 -1  

   C5 0  

Note: C1 to C5 are the candidates and A, B, C are the three evaluation measures, and the objective is to get 

the top three candidates. The upper table shows the ranks of the 5 candidates for each of the evaluation 

measures. The bottom left table shows the ranks of C1, C2, C3 by the traditional Borda ranking, while the 

bottom right table shows the same by our customized Borda ranking. The grey coloured cells represent 

locations where traditional Borda ranking would have kept blank, and would have given C3 and C2 1 point 

each, respectively. 

2.4. Refinement of recommendation 

The consolidated ranked recommendation list provided k nearest neighbors/drugs with respect to 

the queried drugs by incorporating three kinds of evaluation measures. This paper specifically looked 

at one Tuberculosis (TB) drug in the query and consequently generated the k nearest recommended 

drugs. The queried TB drug, although being quite effective, was not perfect, as limited polymorphisms 

were reported by certain genes of a specific Mtb strain. This indicated that the effectiveness of the drug 

might reduce drastically in the future once the Mtb strain gradually becomes drug resistant to that 

specific drug. Therefore, an effective way to recommend other drugs could be to look for similar drugs, 

i.e., drugs that are high up in the ranked recommendation list, but not those drugs which are extremely 

similar, or identical, in terms of the attribute values. In this specific context, this paper proposes a 

unique refinement on the consolidated recommendation, by revisiting the network based 

recommendation list, and removing those topmost recommended drugs from the consolidated ranked 

recommendation list which had identical network structure based attribute values when compared with 

the queried drug. This meant that drugs which had almost identical chemical structure might not be an 

effective recommended drug in the long run, while top recommended drugs which are similar, but did 
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not have identical network structures were viable suggestions. 

The consolidated ranked k nearest neighbor recommendation list was thus refined by removing 

those drug entries which had identical attribute values with respect to the queried drug in the network 

based ranked recommendation list. 

2.5. Algorithm 

The proposed methodology is detailed by the steps given below. 

Input: ID[n x c]   

//A dataset “ID”, with “n” number of tuples and “c” number of columns. Each tuple represents a drug along with its “c” 

properties. The dataset was provided by PubChem in response to a queried drug 

Output: FR[fn x 2]  

//A table “FR” having “fn” number of tuples and 2 columns, the first column being the unique numeric (cid) code of the 

drug and the second column representing the consolidated rank of the drug, 1 being the highest rank  

Begin 

Step 1: ID’[n x num]  ID[n x c] 

   delete column i if i is non-numerical  

      // ID[n x c] is reduced to ID’[n x num] (num < c), where num represents the numeric attributes of the 

drug. For our experiment, num=10, consisting of the cid and nine numeric attributes.  

Step 2: D[n’ x num]  ID’[n x num]  

   delete row i if i contains entries which do not satisfy Table 1 

      // ID’[n x num] is reduced to D[n’ x num] (n’ < n), after tuples were removed  because these tuples 

(drugs) did not satisfy the pharmacokinetic properties, as specified in Table 1. 

Step 3a: A[tn,3]  D[n’ x num]  

   for all i <- 1 to tn rows 

A[i,1] <- cid of ith drug 

A[i,2] <- UDS of ith drug 

A[i,3] <- UR of ith drug 

      //A[tn,3] is acquired from D[n’ x num], by calculating uniform weighted dissimilarity using Eq (1). The 

first column in A corresponds to the cid of the recommended drug, the second column gave the uniform 

dissimilarity score (UDS in Table 3) and the third column gave the dissimilarity rank (UR in Table 3). 

tn represented the top number of drugs that was asked for. 

Step 3b: B[tn,3]  D[n’ x num]  

   for all i <- 1 to tn rows 

B[i,1] <- cid of ith drug 

B[i,2] <- WDS of ith drug 

B[i,3] <- WR of ith drug 

      //B[tn,3] is acquired from D[n’ x num], by calculating pharmacokinetic weighted dissimilarity using Eq 

(2). The first column in B corresponds to the cid of the recommended drug, the second column gave the 

weighted dissimilarity score (WDS in Table 4) and the third column gave the dissimilarity rank (WR in 

Table 4). tn represented the top number of drugs asked for. 

Step 3c: C[tn,3]  D[n’ x 4]  
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   for all i <- 1 to tn rows 

C[i,1] <- cid of ith drug 

C[i,2] <- NWDS of ith drug 

C[i,3] <- NWR of ith drug 

      //C[tn,3] is acquired from D[n’ x 4], by calculating four Network based dissimilarity features for each of 

the tuples. The four features (DGA, CLA, NBA, EBA) were calculated using Eq (3-6).  The final 

dissimilarity of each of these four attributed vectors from the queried drug, cid 14052, was calculated 

using Eq (1). The first column in C corresponds to the cid of the recommended drug, the second column 

gave the Network based dissimilarity score (NWDS in Table 5) and the third column gave the 

dissimilarity rank (NWR in Table 5). tn represented the top number of drugs that was asked for. 

Step 4: F[tn x 3]Ensemble ranking (A[tn,2],B[tn,2],C[tn,2]) by customised Borda 

       for all i <- 1 to tn rows 

F[i,1] <- cid of ith drug 

F[i,2] <- MBV of ith drug 

F[i,3] <- CR of ith drug 

      //F corresponds to a table which holds the i) cid, ii) customised Borda Value (MBV in Table 6) and 

iii)customised Borda rank (CR in Table 6) for tn number of tuples (drugs). The inputs were the datasets 

A, B and C, with tn entries and only two columns, the i) cid and the corresponding ii) dissimilarity 

ranks (UR, WR and NWR respectively).   

Step 5: FR[fn x 2]  F[tn x 3] 

    j <-1 

    for all i <- 1 to tn rows 

If (C[i,2] not equal to 0) 

FR[j,1] <- cid of ith drug 

      FR[j,2] <- RR of ith drug     

      j <- j+1 

      // FR represents the final recommendation table with fn number of entries and 2 columns.  The columns 

being i) cid and ii) final recommendation rank (RR in Table 6). The value fn ( <= tn ) corresponds to 

the number of drugs which are still there after filtering is done on the table F by entries in table C. If any 

entry in the second column of C was zero, then that corresponding cid tuple entry is removed from the 

FR table.  

End 

3. Results 

The online PubChem database was used to gather the initial dataset for this effort. The dataset 

provided a list of chemical structures (and their details) that was similar to a queried chemical structure.  

The queried chemical structure was EMB (Ethambutol), an effective TB drug used for analysing drug 

resistant properties of H37Rv strain of Mycobacterium Tuberculosis, and this was gathered from 

VFDB and TBDRMD datasets. These datasets revealed that EMB was a drug of choice for many 

proteins on the H37Rv strain of Mtb as it resulted in either zero or extremely low number of 

polymorphisms. In response to the queried TB drug, EMB, PubChem generated a dataset having a 

dimension of 352 x 20, signifying 352 similar drugs/chemical structures, each having 20 attributes.  

The 20 attributes consisted of nine numeric attributes, namely i) molecular weight, ii) polar area, iii) 
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complexity, iv) log p, v) heavy count, vi) hbond donor, vii) hbond acceptor, viii) rotatable bonds and  

ix) annotation hit count. There were 13 non-numeric attributes like the cid, molecular formula, name 

of component, synonym of component, inchikey, meshheading etc. For our calculations, only the cid 

and the nine numeric attributes were kept and the remaining attributes were pruned as the first part of 

data pre-processing, which reduced the dataset to be 352 x 10. Thereafter, pharmacokinetic filtering 

was applied as the second part of data pre-processing, which involved with the values in six (i, ii, iv, 

vi, vii and vii) of the numeric attributes. The filtering was done as per rules described in Table 1, and 

the final pre-processed dataset, D, came out with a dimension of 236 x 10. None of the entries 

generated from the query had any missing values or null values, hence, no pruning took place on 

these conditions.    

The cleaned dataset D was first utilised to generate the uniform weighted ranked recommendation 

list. For the experiments conducted, we chose the top 15 (k = 15) chemical structures / drugs which 

were similar to the queried drug, EMB, having a cid of 14052. The uniform weighted ranked 

recommendation list is shown in Table 3. This was calculated using Eq. (1), where k-nearest 

neighbours/drugs of 14052 were listed with the dissimilarity values and the corresponding ranks, the 

1st rank being the one with the least dissimilarity. 

Table 3. Recommendation list for the cid 14052, based on uniformly weighted properties, 

where all nine numeric attributes were given equal weightage in calculating the dissimilarity.  

Pub

Che

m Sl 

No. 

cid mw 
Polar 

area 

comple

xity 
xlogp heavycnt 

hbondd

onor 

hbon

dacc 

rotbon

ds 

annothitc

nt 

Dissimilari

ty Score 

(UDS) 

Uniform 

Rank 

(UR) 

 14052 204.31 64.5 109 -0.1 14 4 4 9 15   

             

1 3279 204.31 64.5 109 0 14 4 4 9 15 0.1 1 

2 162045 204.31 64.5 123 0.4 14 4 4 9 0 20.5243758 6 

3 465436 204.31 64.5 109 0 14 4 4 9 1 14.0003571 4 

4 469919 188.31 35.5 105 0 13 2 3 8 1 36.2768521 13 

5 469924 202.34 35.5 129 0 14 2 3 8 1 38.0380191 14 

6 469926 218.34 64.5 120 0 15 4 4 10 1 22.7123513 7 

7 469930 218.34 64.5 145 0 15 4 4 9 3 40.4703706 15 

8 469973 219.32 81.8 147 0 15 4 5 9 1 46.5467518 16 

9 469988 204.31 64.5 128 0 14 4 4 7 2 23.1086564 8 

10 469989 232.36 64.5 149 0 16 4 4 9 1 50.8607167 18 

11 469990 204.31 64.5 109 0 14 4 4 9 1 14.0003571 4 

12 469991 232.36 64.5 145 0 16 4 4 9 3 47.2314779 17 

13 469996 204.31 44.7 123 0 14 2 4 9 0 28.5840865 9 

14 470016 192.3 45.3 96.5 0 13 4 4 7 0 29.9856649 11 

15 470071 204.31 64.5 109 0 14 4 4 9 6 9.00055554 2 

16 470072 204.31 64.5 109 0 14 4 4 9 6 9.00055554 2 

17 470075 188.31 44.3 109 0 13 3 3 8 1 29.3947274 10 

18 470076 188.31 44.3 121 0 13 3 3 7 1 31.7970124 12 
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The dataset D was again used to generate the pharmacokinetic weighted ranked recommendation 

list, where the top k (=15) nearest neighbours/drugs of 14052 were listed (in Table 4) with the 

dissimilarity values and the corresponding ranks, the 1st rank being the one with the least dissimilarity. 

The dissimilarity was calculated using Eq (2), by a Euclidean distance measure, where more weightage 

was given to four of the attributes (mw, xlogp, hbond donor count, hbond acceptor count). 

Table 4. Recommendation list for the cid 14052 based on differentially weighted properties, 

where four attributes (mw, xlogp, hbond donor count and hbond acceptor count, which 

attributed to pharmacokinetic properties) were given more weight than the others. 

Pub

Che

m Sl 

No. 

cid mw 
Polar 

area 

comple

xity 
xlogp heavycnt 

hbond

donor 

hbo

nda

cc 

rotbon

ds 

annothitc

nt 

Weighted 

Dissimilarity 

Score (WDS) 

Weight

ed  

Rank 

(WR) 

 14052 204.31 64.5 109 -0.1 14 4 4 9 15   

             

1 3279 204.31 64.5 109 0 14 4 4 9 15 0.015385 1 

2 162045 204.31 64.5 123 0.4 14 4 4 9 0 1.580203 6 

3 465436 204.31 64.5 109 0 14 4 4 9 1 1.077033 4 

4 469919 188.31 35.5 105 0 13 2 3 8 1 3.524252 14 

5 469924 202.34 35.5 129 0 14 2 3 8 1 2.952848 11 

6 469926 218.34 64.5 120 0 15 4 4 10 1 2.558665 9 

7 469930 218.34 64.5 145 0 15 4 4 9 3 3.631228 15 

8 469973 219.32 81.8 147 0 15 4 5 9 1 4.103347 16 

9 469988 204.31 64.5 128 0 14 4 4 7 2 1.777639 7 

10 469989 232.36 64.5 149 0 16 4 4 9 1 5.410515 18 

11 469990 204.31 64.5 109 0 14 4 4 9 1 1.077033 4 

12 469991 232.36 64.5 145 0 16 4 4 9 3 5.212213 17 

13 469996 204.31 44.7 123 0 14 2 4 9 0 2.214904 8 

14 470016 192.3 45.3 96.5 0 13 4 4 7 0 2.807313 10 

15 470071 204.31 64.5 109 0 14 4 4 9 6 0.692479 2 

16 470072 204.31 64.5 109 0 14 4 4 9 6 0.692479 2 

17 470075 188.31 44.3 109 0 13 3 3 8 1 3.113323 12 

18 470076 188.31 44.3 121 0 13 3 3 7 1 3.250016 13 

The dataset D had a list of drugs (cids) which were similar to EMB (14052) as per PubChem 

query. PubChem also provided 2-dimensional chemical structures of these cids. This paper, as a novelty, 

looked into four network based properties (average degree, average closeness, average node 

betweenness and average edge betweenness) of each of these chemical structures and found out how 

each of them were dissimilar from the chemical structural properties of popular TB drug EMB. The 

dissimilarity was calculated by the Euclidean distance measure and consequently the network weighted 

ranked recommendation list was generated for the k (=15) nearest neighbours/drugs as shown in Table 5. 
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Table 5. Recommendation list for the cid 14052 based on four network based properties.  

Pub 

Rank 

cid Avg degree Avg closeness Avg 

Nbetween 

Avg 

Ebetween 

N/w 

Weighted 

Dissimilarity 

Score 

(NWDS) 

N/w 

Weighted 

Rank 

(NWR) 

 14052 1.833 0.030437 11.667 18.7272   

        

1 3279 1.8571 0.025008 14.2857 22.3846 4.49830799 9 

2 162045 1.833 0.030437 11.667 18.7272 0 1 

3 465436 1.8461 0.02755192 12.923 20.5 2.1726794 6 

4 469919 1.7778 0.0511514 6.222 11.5 9.04897348 13 

5 469924 1.8182 0.0358856 9.5454 16 3.45529378 7 

6 469926 1.8571 0.025008 14.2857 22.3846 4.49830799 9 

7 469930 1.875 0.0194469 19.1875 28.4667 12.3051886 15 

8 469973 1.875 0.020659 17.6875 28.8667 11.7922746 14 

9 469988 1.8889 0.016112 23.7778 34.1765 19.6304783 17 

10 469989 1.8889 0.016112 23.7778 34.1765 19.6304783 17 

11 469990 1.8571 0.025008 14.2857 22.3846 4.49830799 9 

12 469991 1.8889 0.0167056 22.5556 32.8823 17.8586612 16 

13 469996 1.8182 0.037331 9 15.4 4.26420161 8 

14 470016 1.7333 0.011509 8.6 15.2307 4.6521285 12 

15 470071 1.833 0.030437 11.667 18.7272 0 1 

16 470072 1.833 0.030437 11.667 18.7272 0 1 

17 470075 1.846 0.028601 12.1538 19.6667 1.05820927 4 

18 470076 1.8333 0.031711 10.9167 17.9091 1.1100628 5 

After generating the three different ranked recommendation lists (Table 3, 4 and 5), a 

consolidated ranked list was prepared by using a modified Borda ranking technique. The unique 

modification to the traditional Borda technique is explained in Section 3.3. For our experiment, we 

chose the top 15 drugs/chemical structures for the consolidated list, thus rank 16, 17 and 18 had a 

value of 0, -1 and -2 respectively. The ‘Consolidated Rank’ column of Table 6 shows the result of 

this modified Borda ranking. 

The final list of suggested drugs with their corresponding ranks is listed in the “Refined 

Recommendation” column of Table 6. According to our proposed recommendation mechanism, the 

chemical compound Myambutol, having cid 3279, was top ranked among the suggested chemical 

structures, which could be studied as an alternative to the queried drug, EMB, with cid 14052. The 

network based properties of both 14052 and 3279 are shown in Figure 2 and Figure 3 respectively. The 

circles represent atoms and the edges represent the connections between the atoms. The Nitrogen, 

Hydrogen and Oxygen atoms are represented as N, H and O respectively, followed by a serial number, 

while the other atoms are represented by a serial number only.  The size of a circle is proportional to 

the value for that atom for a particular attribute, signifying that a bigger value of the specific attribute 

resulted in a bigger sized circle. 
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Table 6. Final recommendation list for the TB drug EMB (cid 14052).  

Sl. 

No. 

cid Uniform  

Rank 

(UR) 

Weighted  

Rank (WR) 

N/w 

Rank 

(NWR) 

Modified 

Borda 

Value(MBV) 

Consolidated 

Rank (CR) 

Refined 

Recommendation 

(RR) 

1 3279 1 1 9 37 3 1 

2 162045 6 6 1 35 4  

3 465436 4 4 6 34 5 2 

4 469919 13 14 13 8 14 11 

5 469924 14 11 7 16 11 8 

6 469926 7 9 9 23 7 4 

7 469930 15 15 15 3 15 12 

8 469973 16 16 14 2 16 13 

9 469988 8 7 17 16 12 9 

10 469989 18 18 17 -5 18 15 

11 469990 4 4 9 31 6 3 

12 469991 17 17 16 -2 17 14 

13 469996 9 8 8 23 8 5 

14 470016 11 10 12 15 13 10 

15 470071 2 2 1 43 1  

16 470072 2 2 1 43 2  

17 470075 10 12 4 22 9 6 

18 470076 12 13 5 18 10 7 

Note: “Consolidated Rank” column ranked the drugs as per the customized Borda ranking, and “Refined 

Recommendation” provided the final recommendation ranks after revisiting Network Based dissimilarities. The grey 

coloured entries showed the ranks of the cids which were below the rank of 15. Our proposed modification to the Borda 

ranking incorporated these ranks also. The violet entries signified drugs which had identical network based attribute 

properties to the queried drug, EMB with cid 14092. 

 

 

Figure 2. Graphical representation of the network attributes for the queried drug EMB (cid 14052). 
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Figure 3. Graphical representation of the network attributes for the top ranked drug, 

Myambutol (cid 3279). 

4. Discussion 

It is evident from Table 6 that three chemical compounds, namely 162045, 470071 and 470072, 

were omitted from the final recommendation list (‘Refined Recommendation’ column). This was due 

to the fact that these three chemical compounds had no difference with EMB, and consequently held 

the 1st recommendation rank jointly, based on the chosen network based properties, as shown in Table 

5. The motivation for their omission in the Refined Recommendation was to give importance to similar 

drugs/chemical structures, but not to those which had almost identical chemical structures. The reason 

was inferred from the fact that although EMB was an effective drug against the H37Rv strain of Mtb 

due to the very low number of polymorphisms, the complex drug resistance properties of Mtb [1,2] 

would eventually make an existing drug, like EMB, to be ineffective in due course of time. Hence, 

finding an alternative drug with almost identical chemical structure as the current one would also be 

ineffective. However, a recommended drug which had minor changes in the chemical structure, when 

compared to an existing effective drug, could be effective in dealing with a mutated strain of Mtb. This 

drug recommendation, needless to say, should also adhere to the pharmacokinetic limitations or 

boundaries. These boundaries might have limited the search space for candidate drugs / compounds 

and consequently could have restricted the degree of effectiveness. However, adhering to the 

boundaries would ensure that the bioavailability of the candidates would not be compromised. This 

could be significant for dealing with lethal bacteria like Mtb.  

The literature revealed that several promising studies were conducted [27,29,31,33] which focused 

on the chemical/drug from the structural network point of view only and consequently came up with 

new drugs or existing drugs which could be repurposed.  On the other hand, the recommended drug 

had to satisfy basic pharmacokinetic properties for effective utilization by the human body.  In this 

context, this study attempted to provide a balanced approach by giving due weightage to both these 

aspects by generating two additional recommendation lists, one with emphasis on network centric 

similarities and the other with emphasis on pharmacokinetic related similarities. Consequently, the 

customized ensemble ranking was aimed at providing an elegant way to come up with a consolidated 

ranking which took into account all these aspects. 

Interestingly, the effect of the network structure for some of the drugs, shown in Table 6, was 

significant in their corresponding consolidated ranking. The drug with cid no 469924 had lower 

ranking (WR = 14) in pharmacokinetic properties, but had higher ranking (NWR=7) in network 

properties. This resulted in the compound to get a somewhat higher ranking (RR=8) in the consolidated 
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ranking. Similar findings can be observed for cid 470075 (WR = 12, NWR = 4, RR = 6) and cid 470076 

(WR = 13, NWR = 5, RR = 7). 

The final list of suggested drugs (from the last column in Table 6) had 15 entries, even though 

Table 3, Table 4 and table 5 showed 18 entries. These 3 additional entries were utilised in our modified 

Borda ranking technique. These additional entries were also helpful because after the final refinement 

of recommendation, where three chemical structures were omitted, it was still able to suggest 15 

chemical structures at the end. 

There were other experimental studies which reported the use of compounds in dealing with 

tuberculosis which coincided with the results generated by the computational approach of this paper. 

The compound with cid 469926 was applied in an antituberculosis and antimicrobial experimental 

study [39]. The cid 469990 was useful in an experimental study on the cell wall core of Mtb [40]. 

Additionally, looking at the repurposing effectiveness of the generated results, the same cid 469990 

was also useful in an experimental study which dealt with human cancer cell lines [41].  

5. Conclusions 

The effort was aimed at generating a list of possible TB drugs by using an ensemble of ranking 

mechanisms in which one of the ranking mechanisms included a novel way of looking at the chemical 

structures of the drugs and evaluating them based on network based attributes, and another ranking 

mechanism stressed on pharmacokinetic compatibility. The effort also proposed unique modifications 

on a popular ensemble ranking technique to suit our specific requirement. The results dealt with 

providing established chemical structures along with their ranks, which could possibly be used as 

alternatives to EMB, a popular drug used for H37Rv strain of TB. It is believed that the incorporation 

of the pharmacokinetic properties as well as network based properties in the ensemble ranking 

mechanism would make the proposed recommendations logical, practical and effective. 

The proposed methodology can be applied not only for TB drugs, but to any other drugs, provided 

they are recorded in the online PubChem database. From the pharmacokinetic point of view, more 

studies can be done to verify that the recommendation does not produce an unwanted inhibitory or 

toxic effect on the biological system. On the other hand, while evaluating network based properties of 

the chemical structures, four popular properties were looked at. One can also look at more network 

properties as well as graph isomorphism properties to find out the level of similarity/dissimilarity 

among chemical structures of drugs.   
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