Review Special Issues

Can computers conceive the complexity of cancer to cure it? Using artificial intelligence technology in cancer modelling and drug discovery

  • Received: 13 July 2020 Accepted: 10 September 2020 Published: 25 September 2020
  • Drug discovery and the development of safe and effective therapeutics is an intricate procedure, further complicated in the context of cancer research by the inherent heterogeneity and complexity of the disease. To address the difficulties of identifying, validating, and pursuing a promising drug target, artificial intelligence (AI) technologies including machine learning (ML) have been adopted at all stages throughout the drug development pipeline. Various methods are widely employed to efficiently process and learn from experimental data sets, with agent-based models garnering thorough interest due to their ability to model individual cell populations with aberrant phenotypes. The predictive power of artificial intelligence modelling techniques founded in comprehensive datasets and automated decision-making generates an obvious avenue of interest for application in the drug discovery pipeline.

    Citation: Rachael C. Adams, Behnam Rashidieh. Can computers conceive the complexity of cancer to cure it? Using artificial intelligence technology in cancer modelling and drug discovery[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6515-6530. doi: 10.3934/mbe.2020340

    Related Papers:

    [1] Zairong Wang, Xuan Tang, Haohuai Liu, Lingxi Peng . Artificial immune intelligence-inspired dynamic real-time computer forensics model. Mathematical Biosciences and Engineering, 2020, 17(6): 7221-7233. doi: 10.3934/mbe.2020370
    [2] Hui Yao, Yuhan Wu, Shuo Liu, Yanhao Liu, Hua Xie . A pavement crack synthesis method based on conditional generative adversarial networks. Mathematical Biosciences and Engineering, 2024, 21(1): 903-923. doi: 10.3934/mbe.2024038
    [3] Jiajia Jiao, Xiao Xiao, Zhiyu Li . dm-GAN: Distributed multi-latent code inversion enhanced GAN for fast and accurate breast X-ray image automatic generation. Mathematical Biosciences and Engineering, 2023, 20(11): 19485-19503. doi: 10.3934/mbe.2023863
    [4] Hao Wang, Guangmin Sun, Kun Zheng, Hui Li, Jie Liu, Yu Bai . Privacy protection generalization with adversarial fusion. Mathematical Biosciences and Engineering, 2022, 19(7): 7314-7336. doi: 10.3934/mbe.2022345
    [5] Jinhua Zeng, Xiulian Qiu, Shaopei Shi . Image processing effects on the deep face recognition system. Mathematical Biosciences and Engineering, 2021, 18(2): 1187-1200. doi: 10.3934/mbe.2021064
    [6] Song Wan, Guozheng Yang, Lanlan Qi, Longlong Li , Xuehu Yan, Yuliang Lu . Multiple security anti-counterfeit applications to QR code payment based on visual secret sharing and QR code. Mathematical Biosciences and Engineering, 2019, 16(6): 6367-6385. doi: 10.3934/mbe.2019318
    [7] Dehua Feng, Xi Chen, Xiaoyu Wang, Xuanqin Mou, Ling Bai, Shu Zhang, Zhiguo Zhou . Predicting effectiveness of anti-VEGF injection through self-supervised learning in OCT images. Mathematical Biosciences and Engineering, 2023, 20(2): 2439-2458. doi: 10.3934/mbe.2023114
    [8] Si Li, Limei Peng, Fenghuan Li, Zengguo Liang . Low-dose sinogram restoration enabled by conditional GAN with cross-domain regularization in SPECT imaging. Mathematical Biosciences and Engineering, 2023, 20(6): 9728-9758. doi: 10.3934/mbe.2023427
    [9] Xiao Wang, Jianbiao Zhang, Ai Zhang, Jinchang Ren . TKRD: Trusted kernel rootkit detection for cybersecurity of VMs based on machine learning and memory forensic analysis. Mathematical Biosciences and Engineering, 2019, 16(4): 2650-2667. doi: 10.3934/mbe.2019132
    [10] Sonam Saluja, Munesh Chandra Trivedi, Ashim Saha . Deep CNNs for glioma grading on conventional MRIs: Performance analysis, challenges, and future directions. Mathematical Biosciences and Engineering, 2024, 21(4): 5250-5282. doi: 10.3934/mbe.2024232
  • Drug discovery and the development of safe and effective therapeutics is an intricate procedure, further complicated in the context of cancer research by the inherent heterogeneity and complexity of the disease. To address the difficulties of identifying, validating, and pursuing a promising drug target, artificial intelligence (AI) technologies including machine learning (ML) have been adopted at all stages throughout the drug development pipeline. Various methods are widely employed to efficiently process and learn from experimental data sets, with agent-based models garnering thorough interest due to their ability to model individual cell populations with aberrant phenotypes. The predictive power of artificial intelligence modelling techniques founded in comprehensive datasets and automated decision-making generates an obvious avenue of interest for application in the drug discovery pipeline.




    [1] R. Mahumad, K. Alam, J. Dunn, J. Gow, Emerging cancer incidence, mortality, hospitalisation and associated burden among Australian cancer patients, 1982-2014: An incidence-based approach in terms of trends, determinants and inequality, BMJ Open, 5 (2019).
    [2] M. Breitenbach, J. Hoffmann, Editorial: Cancer models, Front. Oncol., 8 (2018), 401-401.
    [3] L. Ogilvie, A. Kovachev, C. Wierling, B. Lange, H. Lehrach, Models of models: A translational Route for cancer treatment and drug development, Front. Oncol., 7 (2017).
    [4] K. Mak, M. Pichika, Artificial intelligence in drug development: Present status and future prospects, Drug Discovery Today, 24 (2019), 773-780.
    [5] J. Vamathevan, D. Clark, P. Czodrowski, I. Dunham, E. Ferran, G. Lee, et al., Applications of machine learning in drug discovery and development, Nat. Rev. Drug Discovery, 18 (2018), 463-477.
    [6] O. Wolkenhauer, Why model? Front. Phys., 5 (2014).
    [7] A. Levine, C. Schlosser, J. Grewal., R. Coope, S. Jones, S. Yip, Rise of the machines: Advances in deep learning for cancer diagnosis, Trends Cancer, 5 (2019), 157-169.
    [8] K. Vougas, T. Sakellaropolous, A. Kotsina, G. R. P. Foukas, A. Ntargaras, F. Koinis, et al., Machine learning and data mining frameworks for predicting drug response in cancer: An overview and a novel in silico screening process based on association rule mining. Pharmacol. Ther., 203 (2019), 107395.
    [9] G. V. Sherbet, W. L. Woo, S. Dlay, Application of artificial intelligence-based technology in cancer management: A commentary on the deployment of artificial neural networks, Anticancer Res., 38 (2018), 6607-6613.
    [10] R. M. Thomas, T. Van Dyke, G. Merlino, C. P. Day, Concepts in cancer modeling: A brief history, Cancer Res., 76 (2016), 5921-5925.
    [11] P. Kumari, A. Nath, R. Chaube, Identification of human drug targets using machine-learning algorithms, Comput. Biol. Med., 56 (2014), 175-181.
    [12] J. Metzcar, Y. Wang, R. Heiland, P. Macklin, A Review of cell-based computational modeling in cancer biology, JCO Clin. Cancer Inform., 3 (2019), 1-13.
    [13] D. Hanahan, R. A. Weinberg, The hallmarks of cancer, Cell, 100 (2000), 57-70.
    [14] A. Ghaffarizadeh, S. H. Friedman, P. Macklin, BioFVM: An efficient, parallelized diffusive transport solver for 3-D biological simulations, Bioinformatics, 32 (2016), 1256-1258.
    [15] A. Ghaffarizadeh, R. Heiland, S. H. Friedman, S. M. Mumethaler, P. Macklin, PhysiCell: An open source physics-based cell simulator for 3-D multicellular systems, PLOS Comput. Biol., 14 (2018), e1005991.
    [16] E. Bonabeau, Agent-based modeling: Methods and techniques for simulating human systems, Proc. Natl. Acad. Sci. USA, 99 (2002), 7280-7287.
    [17] P. Van Liedekerke, M. M. Palm, N. Jagiella, D. Drasdo, Simulating tissue mechanics with agent-based models: Concepts, perspectives and some novel results, Comput. Particle Mech., 2 (2015), 401-444.
    [18] R. C. Kennedy, G. E. Ropella, C. A. Hunt, A cell-centered, agent-based framework that enables flexible environment granularities, Theor. Biol. Med. Model. 13 (2016).
    [19] J. Poleszczuk, P. Macklin, H. Enderling, Agent-based modeling of cancer stem cell driven solid tumor growth, Methods Mol. Biol., 1516 (2016), 335-346.
    [20] Y. Cai, S. Xu, J. Wu, Q. Long, Coupled modelling of tumour angiogenesis, tumour growth and blood perfusion, J. Theor. Biol., 279 (2011), 90-101.
    [21] A. Shirinifard, J. S. Gens, B. L. Zaitlen, N. J. Poplawski, M. Swat, J. A. Glazier, 3D multi-cell simulation of tumor growth and angiogenesis, PLOS One, 4 (2009), e7190.
    [22] B. Chopard, R. Ouared, A. Deustch, H. Hatzikirou, D. Wolf-Gladrow, Lattice-gas cellular automaton models for biology: From fluids to cells, Acta Biotheor., 58 (2010), 329-340.
    [23] H. Hatzikirou, D. Basanta, M. Simon, K. Schaller, A. Deustch, 'Go or Grow': The key to the emergence of invasion in tumour progression?, Math. Med. Biol.: A J. IMA, 29 (2010), 49-65.
    [24] H. N. Weerasinghe, P. M. Burragem, K. Burrage, D. V. Nicolau, Mathematical models of cancer cell plasticity, J. Oncol., 2019.
    [25] M. S. Alber, M. A. Kiskowski, J. A. Glazier, Y. Jiang, On cellular automaton approaches to modeling biological cells, in Mathematical Systems Theory in Biology, Communications, Computation, and Finance, Springer, New York, (2003), 1-39.
    [26] A. Szabó, R. M. Merks, Cellular potts modeling of tumor growth, tumor invasion, and tumor evolution, Front. Oncol., 3 (2013).
    [27] N. Guisoni, K. I. Mazzitello, L. Diambra, Modeling active cell movement with the potts model, Front. Phys., 6 (2018).
    [28] E. G. Rens, L. Edelstein-Keshet, From energy to cellular forces in the cellular potts model: An algorithmic approach, PLOS Comput. Biol., 15 (2019), e1007459.
    [29] K. A. Rejniak, A. R. A. Anderson, Hybrid models of tumor growth, Wiley Interdiscip. Rev.: Syst. Biol. Med., 3 (2011), 115-125.
    [30] J. Jeon, V. Quaranta, P. T. Cummings, An off-lattice hybrid discrete-continuum model of tumor growth and invasion, Biophys. J., 98 (2010), 37-47.
    [31] S. Koride, A. J. Loza, S. X. Sun, Epithelial vertex models with active biochemical regulation of contractility can explain organized collective cell motility, APL Bioeng., 2 (2018).
    [32] S. Alt, P. Ganguly, G. Salbreux, Vertex models: from cell mechanics to tissue morphogenesis, Philos. Tran. R. Soc. London. Ser. B, Biol. Sci., 372 (2017).
    [33] K. R. Foster, R. Koprowski, J. D. Skufca, Machine learning, medical diagnosis, and biomedical engineering research-commentary, Biomed. Eng. Online, 13 (2014), 94.
    [34] A. M. Shirin, S. S. Dlay, W. L. Woo, G. V. Sherbet, Cross validation evaluation for breast cancer prediction using multilayer perceptron neural networks, Am. J. Eng. Appl. Sci., 4 (2012).
    [35] T. Dietterich, Overfitting and undercomputing in machine learning, ACM Comput. Surveys, 27 (1995), 326-327.
    [36] T. L. Whiteside, The tumor microenvironment and its role in promoting tumor growth, Oncogene, 27 (2018), 5904-5912.
    [37] D. Hanahan, R. A. Weinberg, Hallmarks of cancer: the next generation, Cell, 144 (2011), 646-674.
    [38] A. M. Newman, C. B. Steen, C. L. Liu, A. J. Gentles, A. A. Chaudhuri, F. Scherer, et al., Determining cell type abundance and expression from bulk tissues with digital cytometry. Nat. Biotech., 37 (2019), 773-782.
    [39] B. Chen, M. S. Khodadoust, C. L. Liu, A. M. Newman, A. A. Alizadeh, Profiling tumor infiltrating immune cells with CIBERSORT, Methods Mol. Biol., 1711 (2018), 243-259.
    [40] K. Menden, M. Marouf, S. Oller, A. Dalmia, D. S. Magruder, K. Kloiber, et al., Deep learning-based cell composition analysis from tissue expression profiles, Sci. Adv., 6 (20100), eaba2619.
    [41] X. Sun, B. Hu, Mathematical modeling and computational prediction of cancer drug resistance, Brief Bioinf., 19 (2018), 1382-1399.
    [42] J. Cosgrove, J. Butler, K. Alden, M. Read, V. Kumar, L. Cucurull-Sanchez, et al., Agent-based modeling in systems pharmacology, CPT: Pharmacometrics Syst. Pharmacol., 4 (2015), 615-629.
    [43] R. L. Dedrick, D. S. Zaharko, R. A. Bender, W. A. Bleyer, R. J. Lutz, Pharmacokinetic considerations on resistance to anticancer drugs, Cancer Chemother Rep., 59 (1975), 795-804.
    [44] H. B. Frieboes, M. E. Edgerton, J. P. Fruehauf, F. R. A. J. Rose, L. K. Worrall, R. A. Gatenby, et al., Prediction of drug response in breast cancer using integrative experimental/computational modeling, Cancer Res., 69 (2009, 4484-4492.
    [45] B. G. Birkhead, E. M. Rankin, S. Gallivan, L. Dones, R. D. Rubens, A mathematical model of the development of drug resistance to cancer chemotherapy, Eur. J. Cancer Clin. Oncol., 23 (1987), 1421-1427.
    [46] A. Ghaffarizadeh, S. H. Friedman, P. Macklin, BioFVM: an efficient, parallelized diffusive transport solver for 3-D biological simulations, Bioinformatics, 32 (2015), 1256-1258.
    [47] E. F. Juarez, R. Lau, S. H. Friedman, A. Ghaffarizadeh, E. Jonckheere, D. B. Agus, et al., Quantifying differences in cell line population dynamics using CellPD, BMC Syst. Biol., 10 (2016).
    [48] S. H. Friedman, A. R. A. Anderson, D. M. Bortz, A. G. Fletcher, H. B. Frieboes, A. Ghaffarizadeh, et al., MultiCellDS: a standard and a community for sharing multicellular data, preprint, bioRxiv 090696.
    [49] H. C. Tang, Y. C. Chen, Insight into molecular dynamics simulation of BRAF(V600E) and potent novel inhibitors for malignant melanoma, Int. J. Nanomedicine, 10 (2015), 3131-3146.
    [50] K. J. Mahasa, R. Ouifki, A. Eladdadi, L. de Pillis, Mathematical model of tumor-immune surveillance, J. Theor. Biol., 404 (2016), 312-330.
    [51] T. Jackson, A. Radunskaya, Applications of Dynamical Systems in Biology and Medicine, 2015.
    [52] A. Dhawan, T. A. Graham, A. G. Fletcher, A computational modeling approach for deriving biomarkers to predict cancer risk in premalignant disease, Cancer Prev. Res., 9 (2016), 283-295.
    [53] X. Yang, Y. Wang, R. Byrne, G. Schneider, S. Yang, Concepts of artificial intelligence for computer-assisted drug discovery, Chem. Rev., 119 (2019), 10520-10594.
    [54] W. Kolch, D. Fey, Personalized computational models as biomarkers, J. Pers. Med., 7 (2017), 9.
    [55] C. L. Fischer, A. M. Bates, E. A. Lanzel, J. M. Guthmiller, G. K. Johnson, N. K. Singh, et al., Computational models accurately predict multi-cell biomarker profiles in inflammation and cancer, Sci. Rep., 9 (2019), 10877.
    [56] F. J. Esteva, G. N. Hortobagyi, Prognostic molecular markers in early breast cancer, Breast Cancer Res., 6 (2004), 109-118.
    [57] S. Mojarad, B. Venturini, P. Fulgenzi, R. Papaleo, M. Brisigotti, F. Monti, et al., Prediction of nodal metastasis and prognosis of breast cancer by ANN-based assessment of tumour size and p53, Ki-67 and steroid receptor expression, Anticancer Res., 33 (2013), 3925-3933.
    [58] M. P. Menden, F. Iorio, M. Garnett, U. McDermott, C. H. Benes, P. J. Ballester, et al., Machine learning prediction of cancer cell sensitivity to drugs based on genomic and chemical properties, Plos One, 8 (2013), e61318.
    [59] A. Bravo, J. Pinero, N. Queralt-Rosinach, M. Rautschka, L. I. Furlong, Extraction of relations between genes and diseases from text and large-scale data analysis: implications for translational research, BMC Bioinfor., 16 (2015).
    [60] J. Kim, J-j. Kim, H. Lee, An analysis of disease-gene relationship from medline abstracts by DigSee, Sci. Rep., 7 (2017), 40154.
    [61] P. Mamoshina, M. Volosnikova, I. V. Ozerov, E. Putin, E. Skibina, F. Cortese, et al., Machine learning on human muscle transcriptomic data for biomarker discovery and tissue-specific drug target identification, Front. Genet., 9 (2018).
    [62] T. Zhu, S, Cao, P. C. Su, R. Patel, D. Shah, H. B. Chokshi, et al., Hit identification and optimization in virtual screening: Practical recommendations based on a critical literature analysis, J. Med. Chem., 56 (2013), 6560-6572.
    [63] G. Klopman, S. K. Chakravarti, H, Zhu, J. M. Ivanov, R. D. Saiakhov, ESP: A method to predict toxicity and pharmacological properties of chemicals using multiple MCASE databases, J. Chem. Infor. Comput. Sci., 44 (2004), 704-715.
    [64] I. W. Mak, N. Evaniew, M. Ghert, Lost in translation: animal models and clinical trials in cancer treatment, Am. J. Trans. Res., 6 (2014), 114-118.
    [65] B. Ramsundar, B. Liu, Z. Wu, A. Verra, M. Tudor, R. P. Sherridan, et al., Is multitask deep learning practical for pharma?, J. Chem. Infor. Model., 57 (2017), 2068-2076.
    [66] M. Olivecrona, T. Blashcke, O. Engvist, H. Chen, Molecular de-novo design through deep reinforcement learning, J. Cheminfor., 9 (2017).
    [67] T. Luechtefeld, D. Marsh, C. Rowlands, T. Hartung, Machine learning of toxicological big data enables read-across structure activity relationships (RASAR) outperforming animal test reproducibility, Toxicol. Sci., 165 (2018), 198-212.
    [68] J. L. Perez-Gracia, M. F. Sanmamed, A. Bosch, A. Patino-Garcia, K. A. Schalper, V. Segura, et al., Strategies to design clinical studies to identify predictive biomarkers in cancer research, Cancer Treat. Rev., 53 (2017), 79-97.
    [69] E. E. Bain, L. SHafner, D. P. Walling, A. A. Othman, C. C. Stein, J. Hinkle, et al., Use of a novel artificial intelligence platform on mobile devices to assess dosing compliance in a Phase 2 clinical trial in subjects with schizophrenia, JMIR mHealth uHealth, 5 (2017), e18.
    [70] A. H. Beck, A. R. Sangoi, S. Leung, R. K. Marinelli, T. O. Nielsen, M. J. van de Vijver, et al., Systematic analysis of breast cancer morphology uncovers stromal features associated with survival, Sci. Trans. Med., 3 (2011).
    [71] N. L. Mani, K. A. Schalper, C. Hatzis, O. Saglam, F. Tavassoli, M. Butler, et al., Quantitative assessment of the spatial heterogeneity of tumor-infiltrating lymphocytes in breast cancer, Breast Cancer Res., 18 (2016).
    [72] F. Lake, Artificial intelligence in drug discovery: what is new, and what is next?, Future Drug Discovery, 1 (2019).
    [73] K. L. Fetah, B. J. DiPArdo, E. M. Kongadzem, J. S. Tomlinson, A. Elzaghied, M. Elmusrati, et al., Cancer modeling-on-a-chip with future artificial intelligence integration, Small, 15 (2019).
    [74] V. Assadollahi, B. Rashidieh, M. Alasvand, A. Abdolahi, J. A. Lopez, Interaction and molecular dynamics simulation study of Osimertinib (AstraZeneca 9291) anticancer drug with the EGFR kinase domain in native protein and mutated L844V and C797S, J. Cell. Biochem., 120 (2019), 13046-13055.
    [75] S. Ghafari, M. Komeilian, M. Hashemi, S. Oushani, G. Rigi, B. Rashidieh, et al., Molecular docking based screening of Listeriolysin-O for improved inhibitors, Bioinformation, 13 (2017), 160-163.
    [76] V. Assadollahi, B. Rashidieh, Molecular dynamics simulation of EFGR L844V mutant sensitive to AZD9291 in non-small cell lung cancer, J. Thorac. Oncol., 12 (2017), 1210.
    [77] M. M. Ranbar, V. Assadolahi, M. Yazdani, D. Nikaein, B. Rashidieh, Virtual dual inhibition of COX-2/5-LOX enzymes based on binding properties of alpha-amyrins, the anti-inflammatory compound as a promising anti-cancer drug, EXCLI J., 15 (2016), 238-245.
    [78] B. Rashidieh, M. Valizadeh, V. Assadollahi, M. M. Ranjbar, Molecular dynamics simulation on the low sensitivity of mutants of NEDD-8 activating enzyme for MLN4924 inhibitor as a cancer drug, Am. J. Cancer Res., 5 (2015), 3400-3406.
    [79] B. Rashidieh, Z. Madani. M. K. Azam, S. K. Maklavani, N. R. Akbari, S. Tavakoli, et al., Molecular docking based virtual screening of compounds for inhibiting sortase A in L. monocytogenes, Bioinformation, 11 (2015), 501-505.
    [80] B. Rashidieh, S. Etemadiafshar, G. Memari, M. Mirzaeichegeni, S. Yazdi, F. Farsimadan, et al., A molecular modeling based screening for potential inhibitors to alpha hemolysin from Staphylococcus aureus, Bioinformation, 11 (2015), 373-377.
    [81] J. Ozik, N. Collier, R. Heiland, G. An, P. Macklin, Learning-accelerated discovery of immune-tumour interactions, Mol. Syst. Des. Eng., 4 (2019), 747-760.
    [82] J. Ozik, N. Collier, J. M. Wozniak, C. Macal, C. Cockrell, S. F. Friedman, et al., High-throughput cancer hypothesis testing with an integrated PhysiCell-EMEWS workflow, BMC Bioinfor., 19 (2018).
  • This article has been cited by:

    1. Yangjin Kim, Hyunji Kang, Gibin Powathil, Hyeongi Kim, Dumitru Trucu, Wanho Lee, Sean Lawler, Mark Chaplain, Dominik Wodarz, Role of extracellular matrix and microenvironment in regulation of tumor growth and LAR-mediated invasion in glioblastoma, 2018, 13, 1932-6203, e0204865, 10.1371/journal.pone.0204865
    2. Yangjin Kim, Junho Lee, Donggu Lee, Hans Othmer, Synergistic Effects of Bortezomib-OV Therapy and Anti-Invasive Strategies in Glioblastoma: A Mathematical Model, 2019, 11, 2072-6694, 215, 10.3390/cancers11020215
    3. Christian Engwer, Christian Stinner, Christina Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, 2017, 27, 0218-2025, 1355, 10.1142/S0218202517400188
    4. Markos Antonopoulos, Dimitra Dionysiou, Georgios Stamatakos, Nikolaos Uzunoglu, Three-dimensional tumor growth in time-varying chemical fields: a modeling framework and theoretical study, 2019, 20, 1471-2105, 10.1186/s12859-019-2997-9
    5. Junho Lee, Donggu Lee, Sean Lawler, Yangjin Kim, Stacey Finley, Role of neutrophil extracellular traps in regulation of lung cancer invasion and metastasis: Structural insights from a computational model, 2021, 17, 1553-7358, e1008257, 10.1371/journal.pcbi.1008257
    6. Stefaan W. Verbruggen, Laoise M. McNamara, 2018, 9780128129524, 157, 10.1016/B978-0-12-812952-4.00006-4
    7. Thomas Hillen, Kevin J. Painter, Magdalena A. Stolarska, Chuan Xue, Multiscale phenomena and patterns in biological systems: special issue in honour of Hans Othmer, 2020, 80, 0303-6812, 275, 10.1007/s00285-020-01473-2
    8. Min-Jhe Lu, Chun Liu, John Lowengrub, Shuwang Li, Complex Far-Field Geometries Determine the Stability of Solid Tumor Growth with Chemotaxis, 2020, 82, 0092-8240, 10.1007/s11538-020-00716-z
    9. Yangjin Kim, Donggu Lee, Junho Lee, Seongwon Lee, Sean Lawler, Eugene Demidenko, Role of tumor-associated neutrophils in regulation of tumor growth in lung cancer development: A mathematical model, 2019, 14, 1932-6203, e0211041, 10.1371/journal.pone.0211041
    10. Raluca Eftimie, Joseph J. Gillard, Doreen A. Cantrell, Mathematical Models for Immunology: Current State of the Art and Future Research Directions, 2016, 78, 0092-8240, 2091, 10.1007/s11538-016-0214-9
    11. S. L. Waters, L. J. Schumacher, A. J. El Haj, Regenerative medicine meets mathematical modelling: developing symbiotic relationships, 2021, 6, 2057-3995, 10.1038/s41536-021-00134-2
    12. Vladimir Simic, Miljan Milosevic, Vladimir Milicevic, Nenad Filipovic, Milos Kojic, A novel composite smeared finite element for mechanics (CSFEM): Some applications, 2022, 09287329, 1, 10.3233/THC-220414
    13. Miloš Kojić, Miljan Milošević, Arturas Ziemys, 2023, 9780323884723, 65, 10.1016/B978-0-323-88472-3.00002-5
    14. Gabriella Bretti, Adele De Ninno, Roberto Natalini, Daniele Peri, Nicole Roselli, Estimation Algorithm for a Hybrid PDE–ODE Model Inspired by Immunocompetent Cancer-on-Chip Experiment, 2021, 10, 2075-1680, 243, 10.3390/axioms10040243
    15. Dimitrios G. Patsatzis, Algorithmic asymptotic analysis: Extending the arsenal of cancer immunology modeling, 2022, 534, 00225193, 110975, 10.1016/j.jtbi.2021.110975
    16. Joseph D. Butner, Prashant Dogra, Vittorio Cristini, Thomas S. Deisboeck, Zhihui Wang, 2023, 9780128216248, 251, 10.1016/B978-0-12-821618-7.00244-3
    17. Jonggul Lee, Donggu Lee, Yangjin Kim, Mathematical model of STAT signalling pathways in cancer development and optimal control approaches, 2021, 8, 2054-5703, 10.1098/rsos.210594
    18. Junho Lee, Jin Su Kim, Yangjin Kim, Stacey Finley, Atorvastatin-mediated rescue of cancer-related cognitive changes in combined anticancer therapies, 2021, 17, 1553-7358, e1009457, 10.1371/journal.pcbi.1009457
    19. Aurelio A. de los Reyes, Yangjin Kim, Optimal regulation of tumour-associated neutrophils in cancer progression, 2022, 9, 2054-5703, 10.1098/rsos.210705
    20. Min-Jhe Lu, Wenrui Hao, Chun Liu, John Lowengrub, Shuwang Li, Nonlinear simulation of vascular tumor growth with chemotaxis and the control of necrosis, 2022, 459, 00219991, 111153, 10.1016/j.jcp.2022.111153
    21. Tingzhe Sun, Multi-scale modeling of hippo signaling identifies homeostatic control by YAP-LATS negative feedback, 2021, 208, 03032647, 104475, 10.1016/j.biosystems.2021.104475
    22. Yangjin Kim, Junho Lee, Chaeyoung Lee, Sean Lawler, Role of senescent tumor cells in building a cytokine shield in the tumor microenvironment: mathematical modeling, 2023, 86, 0303-6812, 10.1007/s00285-022-01850-z
    23. Rebecca M. Crossley, Philip K. Maini, Tommaso Lorenzi, Ruth E. Baker, Traveling waves in a coarse‐grained model of volume‐filling cell invasion: Simulations and comparisons, 2023, 0022-2526, 10.1111/sapm.12635
    24. Anneke S.K. Verbruggen, Elan C. McCarthy, Roisin M. Dwyer, Laoise M. McNamara, Mechanobiological cues to bone cells during early metastasis drive later osteolysis: a computational mechanoregulation framework prediction, 2024, 29499070, 100100, 10.1016/j.mbm.2024.100100
  • Reader Comments
  • © 2020 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(5408) PDF downloads(194) Cited by(10)

Article outline

Figures and Tables

Figures(1)  /  Tables(1)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog