Citation: Pierre Degond, Maxime Herda, Sepideh Mirrahimi. A Fokker-Planck approach to the study of robustness in gene expression[J]. Mathematical Biosciences and Engineering, 2020, 17(6): 6459-6486. doi: 10.3934/mbe.2020338
[1] | Bilal Akbar, Khuram Pervez Amber, Anila Kousar, Muhammad Waqar Aslam, Muhammad Anser Bashir, Muhammad Sajid Khan . Data-driven predictive models for daily electricity consumption of academic buildings. AIMS Energy, 2020, 8(5): 783-801. doi: 10.3934/energy.2020.5.783 |
[2] | Zhongjiao Ma, Zichun Yan, Mingfei He, Haikuan Zhao, Jialin Song . A review of the influencing factors of building energy consumption and the prediction and optimization of energy consumption. AIMS Energy, 2025, 13(1): 35-85. doi: 10.3934/energy.2025003 |
[3] | Kaovinath Appalasamy, R Mamat, Sudhakar Kumarasamy . Smart thermal management of photovoltaic systems: Innovative strategies. AIMS Energy, 2025, 13(2): 309-353. doi: 10.3934/energy.2025013 |
[4] | Feng Tian . A wind power prediction model with meteorological time delay and power characteristic. AIMS Energy, 2025, 13(3): 517-539. doi: 10.3934/energy.2025020 |
[5] | Xiaojing Tian, Weiqi Ye, Liang Xu, Anjian Yang, Langming Huang, Shenglong Jin . Optimization research on laminated cooling structure for gas turbines: A review. AIMS Energy, 2025, 13(2): 354-401. doi: 10.3934/energy.2025014 |
[6] | Emrah Gulay . Forecasting the total electricity production in South Africa: Comparative analysis to improve the predictive modelling accuracy. AIMS Energy, 2019, 7(1): 88-110. doi: 10.3934/energy.2019.1.88 |
[7] | Rahaman Abu, John Amakor, Rasaq Kazeem, Temilola Olugasa, Olusegun Ajide, Nosa Idusuyi, Tien-Chien Jen, Esther Akinlabi . Modeling influence of weather variables on energy consumption in an agricultural research institute in Ibadan, Nigeria. AIMS Energy, 2024, 12(1): 256-270. doi: 10.3934/energy.2024012 |
[8] | Yan Li, Yaheng Su, Qixin Zhao, Bala Wuda, Kaibo Qu, Lei Tang . An electricity price optimization model considering time-of-use and active distribution network efficiency improvements. AIMS Energy, 2025, 13(1): 13-34. doi: 10.3934/energy.2025002 |
[9] | Anbazhagan Geetha, S. Usha, J. Santhakumar, Surender Reddy Salkuti . Forecasting of energy consumption rate and battery stress under real-world traffic conditions using ANN model with different learning algorithms. AIMS Energy, 2025, 13(1): 125-146. doi: 10.3934/energy.2025005 |
[10] | Ghafi Kondi Akara, Benoit Hingray, Adama Diawara, Arona Diedhiou . Effect of weather on monthly electricity consumption in three coastal cities in West Africa. AIMS Energy, 2021, 9(3): 446-464. doi: 10.3934/energy.2021022 |
In the present paper, we study the following coupled nonlinear wave equations (see [1])
utt−div(ρ(|∇u|2)∇u)+|ut|m−1ut+f1(u,v)=0, | (1.1) |
vtt−div(ρ(|∇v|2)∇v)+|vt|n−1vt+f2(u,v)=0, | (1.2) |
where ut=∂u∂t,vt=∂v∂t, m,n>1, ∇ is the gradient operator, div is the divergence operator and fi(.,.):R2→R,i=1,2 are known functions. For arbitrary solutions of (1.1) and (1.2), the function ρ is supposed to satisfy one or the other of the two conditions:
A1). 0<ρ2(q2)q2≤m1˜ρ(q2),
or
A2). 0<1K1<ρ−1(q2)≤K2˜ρ(q2)1q2,
where ˜ρ(q2)=∫q20ρ(ζ)dζ, q2=|∇u|2,m1,K1,K2>0.
Quintanilla [2] imposed condition A1 and obtained the growth or decay estimates of the solution to the type Ⅲ heat conduction. The condition A1 can be satisfied easily, e.g., ρ(q2)=1√1+q2 or ρ(q2)=(1+bpq2)p−1,b>0,0<p≤1. The similar condition as A2 was also considered by many papers (see [3,4]). ρ(q2)=√1+q2 satisfies the condition A2.
In addition, we introduce a function F(u,v) which is defined as ∂F∂u=f1(u,v), ∂F∂v=f2(u,v), where F(0,0)=0.
The wave equations have attracted many attentions of scholars due to their wide application, and a large number of achievements have been made in the existence of solutions (see [1,5,6,7,8,9,10,11,12]). The fuzzy inference method is used to solve this problem. The algebraic formulation of fuzzy relation is studied in [13,14]. In this paper, we study the Phragmén-Lindelöf type alternative property of solutions of wave equations (1.1)–(1.2). It is proved that the solution of the equations either grows exponentially (polynomially) or decays exponentially (polynomially) when the space variable tends to infinite. In the case of decay, people usually expect a fast decay rate. The Phragmén-Lindelöf type alternative research on partial differential equations has lasted for a long time (see [2,15,16,17,18,19,20,21,22,23]).
It is worth emphasizing that Quintanilla [2] considered an exterior or cone-like region. Under some appropriate conditions, the growth/decay estimates of some parabolic problems are obtained. Inspired by [2], we extends the research of to the nonlinear wave model in this paper. However, different from [2], in addition to condition A1 and condition A2, we also consider a special condition of ρ. The appropriate energy function is established, and the nonlinear differential inequality about the energy function is derived. By solving this differential inequality, the Phragmén-Lindelöf type alternative results of the solution are obtained. Our model is much more complex than [2], so the methods used in [2] can not be applied to our model directly. Finally, a nonlinear system of viscoelastic type is also studied when the system is defined in an exterior or cone-like regions and the growth or decay rates are also obtained.
Letting that Ω(r) denotes a cone-like region, i.e.,
Ω(r)={x||x|2≥r2,r≥R0>0}, |
and that B(r) denotes the exterior surface to the sphere, i.e.,
B(r)={x||x|2=r2,r≥R0>0}, |
Equations (1.1) and (1.2) also have the following initial-boundary conditions
u(x,0)=v(x,0)=0, in Ω, | (2.1) |
u(x,t)=g1(x,t), v(x,t)=g2(x,t), in B(R0)×(0,τ), | (2.2) |
where g1 and g2 are positive known functions, x=(x1,x2,x3) and τ>0.
Now, we establish an energy function
E(r,t)=∫t0∫B(r)e−ωηρ(|∇u|2)∇u⋅xruηdSdη+∫t0∫B(r)e−ωηρ(|∇v|2)∇v⋅xrvηdSdη≐E1(r,t)+E2(r,t). | (2.3) |
Let r0 be a positive constant which satisfies r>r0≥R0. Integrating E(z,t) from r0 to r, using the divergence theorem and Eqs (1.1) and (1.2), (2.1) and (2.2), we have
E(r,t)−E(r0,t)=∫t0∫rr0∫B(ξ)e−ωη∇⋅[ρ(|∇u|2)∇uuη]dsdξdη+∫t0∫rr0∫B(ξ)e−ωη∇⋅[ρ(|∇v|2)∇vvη]dsdξdη+∫t0∫rr0∫B(ξ)e−ωη[uηη+|uη|m+1+f1(u,v)]uηdsdξdη+∫t0∫rr0∫B(ξ)e−ωη[vηη+|vη|n+1+f2(u,v)]vηdsdξdη+12∫t0∫rr0∫B(ξ)e−ωη∂∂η˜ρ(|∇u|2)dsdξdη+12∫t0∫rr0∫B(ξ)e−ωη∂∂η˜ρ(|∇v|2)dsdξdη=12e−ωt∫rr0∫B(ξ)[|ut|2+|vt|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dsdξ+12ω∫t0∫rr0∫B(ξ)e−ωη[|uη|2+|vη|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dSdξdη+∫t0∫rr0∫B(ξ)e−ωη[|uη|m+1+|vη|n+1]dsdξdη, | (2.4) |
from which it follows that
∂∂rE(r,t)=12e−ωt∫B(r)[|ut|2+|vt|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]ds+12ω∫t0∫B(r)e−ωη[|uη|2+|vη|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dSdη+∫t0∫B(r)e−ωη[|uη|m+1+|vη|n+1]dsdη, | (2.5) |
where ω is positive constant.
Now, we show how to bound E(r,t) by ∂∂rE(r,t). We use the Hölder inequality, the Young inequality and the condition A1 to have
|E1(r,t)|≤[∫t0∫B(r)e−ωηρ2(|∇u|2)|∇u|2dsdη⋅∫t0∫B(r)e−ωηu2ηdsdη]12≤√m1[∫t0∫B(r)e−ωη˜ρ(|∇u|2)dsdη⋅∫t0∫B(r)e−ωηu2ηdsdη]12≤√m12[∫t0∫B(r)e−ωη˜ρ(|∇u|2)dsdη+∫t0∫B(r)e−ωηu2ηdsdη], | (2.6) |
and
|E2(r,t)|≤√m12[∫t0∫B(r)e−ωη˜ρ(|∇v|2)dsdη+∫t0∫B(r)e−ωηv2ηdsdη]. | (2.7) |
Inserting (2.6) and (2.7) into (2.3) and combining (2.5), we have
|E(r,t)|≤√m1ω[∂∂rE(r,t)]. | (2.8) |
We consider inequality (2.8) for two cases.
I. If ∃r0>R0 such that E(r0,t)≥0. From (2.5), we obtain E(r,t)≥E(r0,t)≥0,r≥r0. Therefore, from (2.8) we have
E(r,t)≤√m1ω[∂∂rE(r,t)],r≥r0. | (2.9) |
Integrating (2.9) from r0 to r, we have
E(r,t)≥[E(r0,t)]eω√m1(r−r0),r≥r0. | (2.10) |
Combing (2.4) and (2.10), we have
limr→∞{e−ω√m1r[12e−ωt∫rr0∫B(ξ)[|ut|2+|vt|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dsdξ+12ω∫t0∫rr0∫B(ξ)e−ωη[|uη|2+|vη|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dsdξdη+∫t0∫rr0∫B(ξ)e−ωη[|uη|m+1+|vη|n+1]dsdξdη]}≥E(R0,t)e−ω√m1R0. | (2.11) |
II. If ∀r>R0 such that E(r,t)<0. The inequality (2.8) can be rewritten as
−E(r,t)≤√m1ω[∂∂rE(r,t)],r≥R0. | (2.12) |
Integrating (2.12) from r0 to r, we have
−E(r,t)≥[−E(R0,t)]e−ω√m1(r−R0),r≥R0. | (2.13) |
Inequality (2.13) shows that limr→∞[−E(r,t)]=0. Integrating (2.5) from r to ∞ and combining (2.13), we obtain
12e−ωt∫∞r∫B(ξ)[|ut|2+|vt|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dsdξ+12ω∫t0∫∞r∫B(ξ)e−ωη[|uη|2+|vη|2+˜ρ(|∇u|2)+˜ρ(|∇v|2)+2F(u,v)]dsdξdη+∫t0∫∞r∫B(ξ)e−ωη[|uη|m+1+|vη|n+1]dsdξdη≤[−E(r0,t)]e−ω√m1(r−R0). | (2.14) |
We summarize the above result as the following theorem.
Theorem 2.1. Let (u,v) be solution of the (1.1), (1.2), (2.1), (2.2) in Ω(R0), and ρ satisfies condition A1. Then for fixed t, (u,v) either grows exponentially or decays exponentially. Specifically, either (2.11) holds or (2.14) holds.
If the function ρ satisfies the condition A2, we recompute the inequality (2.6) and (2.7). Therefore
|E1(r,t)|≤[∫t0∫B(r)e−ωηρ2(|∇u|2)|∇u|2dsdη⋅∫t0∫B(r)e−ωηu2ηdsdη]12≤K1√K1[∫t0∫B(r)e−ωηρ−1(|∇u|2)dsdη⋅∫t0∫B(r)e−ωηu2ηdsdη]12≤K1√K1K22[∫t0∫B(r)e−ωη˜ρ(|∇u|2)dsdη+∫t0∫B(r)e−ωηu2ηdsdη], | (3.1) |
and
|E2(r,t)|≤K1√K1K22[∫t0∫B(r)e−ωη˜ρ(|∇v|2)dsdη+∫t0∫B(r)e−ωηv2ηdsdη]. | (3.2) |
Inserting (3.1) and (3.2) into (2.3) and combining (2.5), we have
|E(r,t)|≤K1√K1K2ω[∂∂rE(r,t)]. | (3.3) |
By following a similar method to that used in Section 2, we can obtain the Phragmén-Lindelöf type alternative result.
Theorem 3.1. Let (u,v) be solution of the (1.1), (1.2), (2.1), (2.2) in Ω(R0), and ρ satisfies condition A1. Then for fixed t, (u,v) either grows exponentially or decays exponentially.
Remark 3.1. Clearly, the rates of growth or decay obtained in Theorems 2.1 and 3.1 depend on ω. Because ω can be chosen large enough, the rates of growth or decay of the solutions can become large as we want.
Remark 3.2. The analysis in Sections 2 and 3 can be adapted to the single-wave equation
utt−div(ρ(|∇u|2)∇u)+|ut|m−1ut+f(u)=0 | (3.4) |
and the heat conduction at low temperature
autt+but−cΔu+Δut=0, | (3.5) |
where a,b,c>0.
In this section, we suppose that ρ satisfies ρ(q2)=b1+b2q2β, where b1,b2 and β are positive constants. Clearly, ρ(q2)=b1+b2q2β can not satisfy A1 or A2. In this case, we define an "energy" function
F(r,t)=∫t0∫B(r)e−ωη(b1+b2|∇u|2β)∇u⋅xruηdsdη+∫t0∫B(r)e−ωη(b1+b2|∇v|2β)∇v⋅xrvηdsdη≐F1(r,t)+F2(r,t). | (4.1) |
Computing as that in (2.4) and (2.5), we can get
F(r,t)=F(r0,t)+12e−ωt∫rr0∫B(ξ)[|ut|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]dsdξ+12e−ωt∫rr0∫B(ξ)[|vt|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]dsdξ+12ω∫t0∫rr0∫B(ξ)e−ωη[|uη|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]dsdξdη+12ω∫t0∫rr0∫B(ξ)e−ωη[|vη|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]dsdξdη+∫t0∫rr0∫B(ξ)e−ωη|uη|m+1dsdξdη+∫t0∫B(r)e−ωη|vη|n+1dsdξdη, | (4.2) |
and
∂∂rF(r,t)=12e−ωt∫B(r)[|ut|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]ds+12e−ωt∫B(r)[|vt|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]ds+12ω∫t0∫B(r)e−ωη[|uη|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]dsdη+12ω∫t0∫B(r)e−ωη[|vη|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]dsdη+∫t0∫B(r)e−ωη|uη|m+1dsdη+∫t0∫B(r)e−ωη|vη|n+1dsdη. | (4.3) |
Using the Hölder inequality and Young's inequality, we have
|F1(r,t)|≤b1[∫t0∫B(r)e−ωη|∇u|2dsdη∫t0∫B(r)e−ωηu2ηdsdη]12+b2[∫t0∫B(r)e−ωη|∇u|2(β+1)dsdη]2β+12(β+1)∫t0∫B(r)e−ωη|uη|m+1dsdη]1m+1|t2πr|12(β+1)−1m+1≤√b1R0ω[b12rω∫t0∫B(r)e−ωη|∇u|2dsdη+12rω∫t0∫B(r)e−ωηu2ηdsdη]+b2|2tπ|12(β+1)−1m+1R−ββ+1−2m+10[2β+12(β+1)r2β+12(β+1)+1m+1∫t0∫B(r)e−ωη|∇u|2(β+1)dsdη+1m+1r2β+12(β+1)+1m+1∫t0∫B(r)e−ωη|uη|m+1dsdη]2β+12(β+1)+1m+1, | (4.4) |
and
|F2(r,t)|≤√b1R0ω[b12rω∫t0∫B(r)e−ωη|∇v|2dsdη+12rω∫t0∫B(r)e−ωηv2ηdsdη]+b2|2tπ|12(β+1)−1n+1R−ββ+1−2n+10[2β+12(β+1)r2β+12(β+1)+1n+1∫t0∫B(r)e−ωη|∇v|2(β+1)dsdη+1n+1r2β+12(β+1)+1n+1∫t0∫B(r)e−ωη|vη|n+1dsdη]2β+12(β+1)+1n+1, | (4.5) |
where we have chosen 12(β+1)>1n+1. Inserting (4.4) and (4.5) into (4.1), we obtain
|F(r,t)|≤c1[r∂∂rF(r,t)]+c2[r∂∂rF(r,t)]2β+12(β+1)+1m+1+c3[r∂∂rF(r,t)]2β+12(β+1)+1n+1, | (4.6) |
where c1=√b1R0ω,c2=b2|2tπ|12(β+1)−1n+1R−ββ+1−2m+10,c3=b2|2tπ|12(β+1)−1n+1R−ββ+1−2n+10.
Next, we will analyze Eq (4.6) in two cases
I. If ∃r0≥R0 such that F(r0,t)≥0, then F(r,t)≥F(r0,t)≥0,r≥r0. Therefore, (4.6) can be rewritten as
F(r,t)≤c1[r∂∂rF(r,t)]+c2[r∂∂rF(r,t)]2β+12(β+1)+1m+1+c3[r∂∂rF(r,t)]2β+12(β+1)+1n+1,r≥r0. | (4.7) |
Using Young's inequality, we have
[r∂∂rF(r,t)]2β+12(β+1)+1m+1≤(4β+34(β+1)+12(m+1))[r∂∂rF(r,t)]12+(14(β+1)−12(m+1))[r∂∂rF(r,t)], | (4.8) |
[r∂∂rF(r,t)]2β+12(β+1)+1n+1≤(4β+34(β+1)+12(n+1))[r∂∂rF(r,t)]12+(14(β+1)−12(n+1))[r∂∂rF(r,t)]. | (4.9) |
Inserting (4.8) and (4.9) into (4.7), we have
F(r,t)≤c4[r∂∂rF(r,t)]12+c5[r∂∂rF(r,t)],r≥r0. | (4.10) |
where c4=c2(4β+34(β+1)+12(m+1))+c3(4β+34(β+1)+12(n+1)) and c5=c1+c2(14(β+1)−12(m+1))+c3(14(β+1)−12(n+1)). From (4.10) we have
F(r,t)c5≤[√r∂∂rF(r,t)+c42c5]2−c244c25,r≥r0 |
or
∂∂rF(r,t)[√F(r,t)c5+c244c25−c42c5]2≥1r,r≥r0 | (4.11) |
Integrating (4.11) from r0 to r, we get
2c5[ln(√F(r,t)c5+c244c25−c42c5)−ln(√F(r0,t)c5+c244c25−c42c5)]−c4{[√F(r,t)c5+c244c25−c42c5]−1−[√F(r0,t)c5+c244c25−c42c5]−1}≥ln(rr0),r≥r0 | (4.12) |
Dropping the third term on the left of (4.12), we have
√F(r,t)c5+c244c25−c42c5≥Q1(r0,t)(rr0)12c5, | (4.13) |
where Q1(r0,t)=(√F(r0,t)c5+c244c25−c42c5)exp{−c42c5[√F(r0,t)c5+c244c25−c42c5]−1}.
In view of
√F(r,t)c5+c244c25≤√F(r,t)c5+c42c5, |
we have from (4.13)
F(r,t)≥c5Q21(r0,t)(rr0)1c5. | (4.14) |
Combining (4.2) and (4.14), we have
limr→∞{r−1c5[12e−ωt∫rr0∫B(ξ)[|ut|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]dsdξ+12e−ωt∫rr0∫B(ξ)[|vt|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]dsdξ+12ω∫t0∫rr0∫B(ξ)e−ωη[|uη|2+b1|∇u|2+1β+1b2|∇u|2(β+1)]dsdξdη+12ω∫t0∫rr0∫B(ξ)e−ωη[|vη|2+b1|∇v|2+1β+1b2|∇v|2(β+1)+F(u,v)]dsdξdη+∫t0∫rr0∫B(ξ)e−ωη|uη|m+1dsdξdη+∫t0∫B(r)e−ωη|vη|n+1dsdξdη]}≥c5Q21(r0,t)r−1c50. | (4.15) |
II. If ∀r≥R0 such that F(r,t)<0, then (4.6) can be rewritten as
−F(r,t)≤c1[r∂∂rF(r,t)]+c2[r∂∂rF(r,t)]2β+12(β+1)+1m+1+c3[r∂∂rF(r,t)]2β+12(β+1)+1n+1,r≥R0. | (4.16) |
Without losing generality, we suppose that m>n>1.
[r∂∂rF(r,t)]2β+12(β+1)+1n+1≤1n+1−1m+12β+12(β+1)−1m+1[r∂∂rF(r,t)]+2β+12(β+1)−1m+12β+12(β+1)−1m+1[r∂∂rF(r,t)]2β+12(β+1)+1m+1, | (4.17) |
[r∂∂rF(r,t)]≤2β(m+3)+4(2β+1)(m+2)+1[r∂∂rF(r,t)]2β+12(β+1)+1m+1+m+1−2(β+1)(2β+1)(m+2)+1[r∂∂rF(r,t)]2[2β+12(β+1)+1m+1]. | (4.18) |
Inserting (4.17) and (4.18) into (4.16), we get
−F(r,t)≤c6[r∂∂rF(r,t)]2β+12(β+1)+1m+1+c7[r∂∂rF(r,t)]2[2β+12(β+1)+1m+1], r≥R0, | (4.19) |
where c6=[c1+c31n+1−1m+12β+12(β+1)−1m+1]2β(m+3)+4(2β+1)(m+2)+1+c32β+12(β+1)−1m+12β+12(β+1)−1m+1,c7=c3m+1−2(β+1)(2β+1)(m+2)+1. From (4.19) we obtain
r∂∂rF(r,t)≥[√−F(r,t)c7+c264c27−c62c7]12β+12(β+1)+1m+1, r≥R0 |
or
2c7√−F(r,t)c7+c264c27[√−F(r,t)c7+c264c27−c62c7]12β+12(β+1)+1m+1d{√−F(r,t)c7+c264c27−c62c7}≤−1r, r≥R0 | (4.20) |
Integrating (4.20) from R0 to r, we obtain
2c7(2β+12(β+1)+1m+1)β2(β+1)+2m+1[√−F(r,t)c7+c264c27−c62c7]β2(β+1)+2m+12β+12(β+1)+1m+1−2c7(2β+12(β+1)+1m+1)β2(β+1)+2m+1[√−F(R0,t)c7+c264c27−c62c7]β2(β+1)+2m+12β+12(β+1)+1m+1−c6(2β+12(β+1)+1m+1)12(β+1)−1m+1[√−F(r,t)c7+c264c27−c62c7]−12(β+1)−1m+12β+12(β+1)+1m+1+c6(2β+12(β+1)+1m+1)12(β+1)−1m+1[√−F(R0,t)c7+c264c27−c62c7]−12(β+1)−1m+12β+12(β+1)+1m+1≤ln(R0r). | (4.21) |
Dropping the first and fourth terms on the left of (4.21), we obtain
√−F(r,t)c7+c264c27≤[c8ln(rR0)−Q2(R0,t)]−2β+12(β+1)+1m+112(β+1)−1m+1+c62c7, | (4.22) |
where Q2(R0,t)=2c7(12(β+1)−1m+1)c6(β2(β+1)+2m+1)[√−F(R0,t)c7+c264c27−c62c7]β2(β+1)+2m+12β+12(β+1)+1m+1 and c8=12(β+1)−1m+1c6(2β+12(β+1)+1m+1).
Squaring (4.22) we have
−F(r,t)≤c7[c8ln(rR0)−Q2(R0,t)]−2β+1β+1+2m+112(β+1)−1m+1+c6[c8ln(rR0)−Q2(R0,t)]−2β+12(β+1)+1m+112(β+1)−1m+1. | (4.23) |
From (4.15) and (4.23) we can obtain the following theorem.
Theorem 4.1. Let (u,v) be the solution of (1.1), (1.2), (2.1) and (2.2) with ρ(q2)=b1+b2q2β, where 12(β+1)>max{1m+1,1n+1}. Then for fixed t, when r→∞, (u,v) either grows algebraically or decays logarithmically. The growth rate is at least as fast as z1c5 and the decay rate is at least as fast as (lnr)−2β+12(β+1)+1m+112(β+1)−1m+1.
Remark 4.1. Obviously, in this case of ρ(q2)=b1+b2q2β, the decay rate obtained by Theorem 4.1 is slower than that obtained by Theorem 2.1 and Theorem 3.1.
In this section, we concern with a system of two coupled viscoelastic equations
utt−Δu+∫t0h1(t−η)Δu(η)dη+f1(u,v)=0, | (5.1) |
vtt−Δv+∫t0h2(t−η)Δv(η)dη+f2(u,v)=0, | (5.2) |
which describes the interaction between two different fields arising in viscoelasticity. In (5.1) and (5.2), 0<t<T and h1,h2 are differentiable functions satisfying h1(0),h2(0)>0 and
2(∫T0h21(T−η)dη), 4Th1(0)[∫T0(h′1(T−η)−ωh1(T−η))2dη]≤h1(0), | (5.3) |
2(∫T0h22(T−η)dη), 4Th2(0)[∫T0(h′2(T−η)−ωh2(T−η))2dη]≤h2(0). | (5.4) |
Messaoudi and Tatar [24] considered the system (5.1) and (5.2) in a bounded domain and proved the uniform decay for the solution when t→∞. For more special cases, one can refer to [25,26,27]. They mainly concerned the well-posedness of the solutions and proved that the solutions decayed uniformly under some suitable conditions. However, the present paper extends the previous results to Eqs (5.1) and (5.2) in an exterior region. We consider Eqs (5.1) and (5.2) with the initial-boundary conditions (2.1) and (2.2) in Ω.
We define two functions
G1(r,t)=∫t0∫B(r)e−ωη∇u⋅xruηdsdη−∫t0∫B(r)e−ωη(∫η0h1(η−s)∇uds)⋅xruηdsdη≐I1+I2, | (5.5) |
G2(r,t)=∫t0∫B(r)e−ωη∇v⋅xrvηdsdη−∫t0∫B(r)e−ωη(∫η0h2(η−s)∇vds)⋅xrvηdsdη≐J1+J2. | (5.6) |
Integrating (5.5) from r0 to r and using (5.1), (5.2), (2.1), (2.2) and the divergence theorem, we have
G1(r,t)=G1(r0,t)+12∫rr0∫B(ξ)e−ωt[|ut|2+|∇u|2]dsdξ+12ω∫t0∫rr0∫B(ξ)e−ωη|uη|2dsdξdη+12ω∫t0∫rr0∫B(ξ)e−ωη|∇u|2dsdξdη+∫t0∫rr0∫B(ξ)e−ωηh1(0)|∇u|2dsdξdη−∫rr0∫B(ξ)e−ωt(∫t0h1(t−τ)∇udτ)⋅∇udsdξ+∫t0∫rr0∫B(ξ)e−ωη[∫η0(h′1(η−τ)−ωh1(η−τ))∇udτ]⋅∇udsdξdη+∫t0∫rr0∫B(ξ)e−ωηf1(u,v)uηdsdξdη. | (5.7) |
From (5.7) it follows that
∂∂zG1(r,t)=12∫B(r)e−ωt[|ut|2+|∇u|2]ds+12ω∫t0∫B(r)e−ωη|uη|2dsdη+12ω∫t0∫B(r)e−ωη|∇u|2dsdη+∫t0∫B(r)e−ωηh1(0)|∇u|2dsdη−∫B(r)e−ωt(∫t0h1(t−τ)∇udτ)⋅∇uds+∫t0∫B(r)e−ωη[∫η0(h′1(η−τ)−ωh1(η−τ))∇udτ]⋅∇udsdη+∫t0∫B(r)e−ωηf1(u,v)uηdsdη. | (5.8) |
By the Young inequality and the Hölder inequality, we have
|−∫B(r)e−ωt(∫t0h1(η−τ)∇udτ)⋅∇uds|≤∫B(r)e−ωt[(∫t0h1(t−s)∇u(s)ds)2+14|∇u|2]ds≤(∫t0h21(t−τ)dτ)∫t0∫B(r)e−ωη|∇u|2dsdη+14∫B(r)e−ωt|∇u|2ds, | (5.9) |
and
|∫t0∫B(r)e−ωη[∫η0(h′1(η−τ)−ωh1(η−τ))∇udτ]⋅∇udsdη|≤th1(0)[∫t0(h′1(η−τ)−ωh1(η−τ))2dτ]∫t0∫B(r)e−ωη|∇u|2dsdη+14∫t0∫B(r)e−ωηh1(0)|∇u|2dsdη. | (5.10) |
Inserting (5.9) and (5.10) into (5.8) and using (5.3), we have
∂∂zG1(r,t)≥12∫B(r)e−ωt[|ut|2+12|∇u|2]ds+12ω∫t0∫B(r)e−ωη|uη|2dsdη+12ω∫t0∫B(r)e−ωη|∇u|2dsdη+∫t0∫B(r)e−ωηf1(u,v)uηdsdη. | (5.11) |
Similar to (5.11), we also have for G2(r,t)
∂∂zG2(r,t)≥12∫B(r)e−ωt[|vt|2+12|∇v|2]ds+12ω∫t0∫B(r)e−ωη|vη|2dsdη+12ω∫t0∫B(r)e−ωη|∇v|2dsdη+∫t0∫B(r)e−ωηf2(u,v)vηdsdη. | (5.12) |
If we define
G(r,t)=G1(r,t)+G2(r,t), |
then by (5.11) and (5.12) we have
∂∂zG(r,t)≥12∫B(r)e−ωt[|ut|2+|vt|2+12|∇u|2+12|∇v|2+2F(u,v)]ds+12ω∫t0∫B(r)e−ωη[|uη|2+|vη|2+|∇u|2+|∇v|2+2F(u,v)]dsdη. | (5.13) |
On the other hand, we bound G(r,t) by ∂∂rG(r,t). Using the Hölder inequality, the AG mean inequality, (5.3) and combining (5.13), we have
|I1|+|J1|≤(∫t0∫B(r)e−ωη|∇u|2dAdη⋅∫t0∫B(r)e−ωη|uη|2dsdη)12+(∫t0∫B(r)e−ωη|∇v|2dAdη⋅∫t0∫B(r)e−ωη|vη|2dsdη)12≤1ω[∂∂rG(r,t)], | (5.14) |
and
|I2|≤(∫t0∫B(r)e−ωη|∫η0h1(η−τ)∇udτ|2dsdη⋅∫t0∫B(r)e−ωη|uη|2dsdη)12≤(∫t0∫B(r)e−ωη(∫η0h21(η−τ)dτ)(∫η0|∇u|2dτ)dsdη⋅∫t0∫B(r)e−ωη|uη|2dsdη)12≤t(∫t0h21(η−τ)dτ)12(∫t0∫B(r)e−ωη|∇u|2dsdη⋅∫t0∫B(r)e−ωη|uη|2dsdη)12≤t2(∫t0h21(η−τ)dτ)12[∫t0∫B(r)e−ωη|∇u|2dsdη+∫t0∫B(r)e−ωη|uη|2dsdη]≤T2ω√h1(0)[∂∂rG(r,t)]. | (5.15) |
Similar to (5.15), we have
|J2|≤T2ω√h2(0)[∂∂rG(r,t)]. | (5.16) |
Inserting (5.14)–(5.16) into (5.5) and (5.6), we have
|G(r,t)|≤c91ω[∂∂rG(r,t)], | (5.17) |
where c9=T2(√h1(0)+√h2(0))+2.
We can follow the similar arguments given in the previous sections to obtain the following theorem.
Theorem 5.1. Let (u,v) be the solution of (5.1), (5.2), (2.1) and (2.2) in Ω, and (5.3) and (5.4) hold. For fixed t,
(1) If ∃ R0≥r0, G(R0,t)≥0, then
G(r,t)≥G(R0,t)eωb9(r−R0). |
(2) If ∀ r≥r0, G(r,t)<0, then
−G(r,t)≤[−G(r0,t)]e−ωb9(r−r0). |
Again, the rate of growth or decay obtained in this case is arbitrarily large
Remark 5.1. It is clear that the above analysis can be adapted without difficulties to the equation (see [28,29])
utt−k0△u+∫t0div[a(x)h(t−s)∇u(s)]ds+b(x)g(ut)+f(u)=0 |
and the equation (see [30])
|ut|σutt−k0△u−Δutt+∫t0h(t−s)Δu(s)]ds−γΔut=0 |
with some suitable g and a(x)+b(x)≥b10>0 and k0,σ,γ>0.
In this paper, we have considered several situations where the solutions of Eqs (1.1) and (1.2) either grow or decay exponentially or polynomially. We emphasize that the Poincaré inequality on the cross sections is not used in this paper. Thus, our results also hold for the two-dimensional case. On the other hand, there are some deeper problems to be studied in this paper. We can continue to study the continuous dependence of coefficients in the equation as that in [31]. These are the issues we will continue to study in the future.
The authors declare they have not used Artificial Intelligence (AI) tools in the creation of this article.
The authors express their heartfelt thanks to the editors and referees who have provided some important suggestions. This work was supported by the Guangzhou Huashang College Tutorial Scientific Research Project (2022HSDS09), National Natural Science Foundation of China (11371175) and the Research Team Project of Guangzhou Huashang College (2021HSKT01).
The authors declare that there is no conflict of interest.
[1] |
L. Bleris, Z. Xie, D. Glass, A. Adadey, E. Sontag, Y. Benenson, Synthetic incoherent feedforward circuits show adaptation to the amount of their genetic template, Molecular systems biology, 7 (2011), 519. doi: 10.1038/msb.2011.49
![]() |
[2] | R. Blevins, L. Bruno, T. Carroll, J. Elliott, A. Marcais, C. Loh, et al., Micrornas regulate cellto-cell variability of endogenous target gene expression in developing mouse thymocytes, PLoS genetics, 11 (2015). |
[3] |
M. S. Ebert, P. A. Sharp, Roles for micrornas in conferring robustness to biological processes, Cell, 149 (2012), 515-524. doi: 10.1016/j.cell.2012.04.005
![]() |
[4] | H. Herranz, S. M. Cohen, Micrornas and gene regulatory networks: managing the impact of noise in biological systems, Genes & development, 24 (2010), 1339-1344. |
[5] | M. Osella, C. Bosia, D. Corá, M. Caselle, The role of incoherent microrna-mediated feedforward loops in noise buffering, PLoS Comput Biol, 7 (2011), e1001101. |
[6] | N. G. van Kampen, Stochastic Processes in Physics and Chemistry, North-Holland, Amsterdam, 1981. |
[7] |
D. T. Gillespie, A general method for numerically simulating the stochastic time evolution of coupled chemical reactions, J. Comput. Phys., 22 (1976), 403-434. doi: 10.1016/0021-9991(76)90041-3
![]() |
[8] |
C. Bosia, M. Osella, M. El Baroudi, D. Corà, M. Caselle, Gene autoregulation via intronic micrornas and its functions, BMC Syst. Biol., 6 (2012), 131. doi: 10.1186/1752-0509-6-131
![]() |
[9] | P. Degond, S. Jin, Y. Zhu, An uncertainty quantification approach to the study of gene expression robustness, preprint, arXiv: 1910.07188. |
[10] | B. Perthame, Parabolic Equations in Biology, Lecture Notes on Mathematical Modelling in the Life Sciences, Springer, Cham, 2015. |
[11] | P. Lötstedt, L. Ferm, Dimensional reduction of the Fokker-Planck equation for stochastic chemical reactions, Multiscale Modeling & Simulation, 5 (2006), 593-614. |
[12] | P. Degond, M. Herda, S. Mirrahimi, FPmuRNA, 2020. Available from: https://gitlab.inria.fr/herda/fpmurna. |
[13] |
D. T. Gillespie, The chemical langevin equation, The Journal of Chemical Physics, 113 (2000), 297-306. doi: 10.1063/1.481811
![]() |
[14] |
W. Huang, M. Ji, Z. Liu, Y. Yi, Steady states of Fokker-Planck equations: I. Existence, J. Dynam. Differential Equations, 27 (2015), 721-742. doi: 10.1007/s10884-015-9454-x
![]() |
[15] |
W. Huang, M. Ji, Z. Liu, Y. Yi, Integral identity and measure estimates for stationary FokkerPlanck equations, Ann. Probab., 43 (2015), 1712-1730. doi: 10.1214/14-AOP917
![]() |
[16] | V. I. Bogachev, N. V. Krylov, M. Röckner, S. V. Shaposhnikov, Fokker-Planck-Kolmogorov Equations, American Mathematical Society, Providence, RI, 2015. |
[17] | R. Z. Has'minskiĭ, Ergodic properties of recurrent diffusion processes and stabilization of the solution of the Cauchy problem for parabolic equations, Teor. Verojatnost. i Primenen., 5 (1960), 196-214. |
[18] | D. Gilbarg, N. S. Trudinger, Elliptic Partial Differential Equations of Second Order, SpringerVerlag, Berlin, 2001. |
[19] | F. W. J. Olver, D. W. Lozier, R. F. Boisvert, C. W. Clark, NIST Handbook of Mathematical Functions Hardback and CD-ROM, Cambridge University Press, Cambridge, 2010. |
[20] | M. Bessemoulin-Chatard, M. Herda, T. Rey, Hypocoercivity and diffusion limit of a finite volume scheme for linear kinetic equations, Math. Comp., 89 (2020), 1093-1133. |
[21] |
J. S. Chang, G. Cooper, A practical difference scheme for Fokker-Planck equations, Journal of Computational Physics, 6 (1970), 1-16. doi: 10.1016/0021-9991(70)90001-X
![]() |
[22] |
C. Chainais-Hillairet, J. Droniou, Finite-volume schemes for noncoercive elliptic problems with Neumann boundary conditions, IMA J. Numer. Anal., 31 (2011), 61-85. doi: 10.1093/imanum/drp009
![]() |
[23] | H. J. Brascamp, E. H. Lieb, On extensions of the Brunn-Minkowski and Prékopa-Leindler theorems, including inequalities for log concave functions, and with an application to the diffusion equation, J. Functional Analysis, 22 (1976), 366-389. |
[24] |
S. G. Bobkov, M. Ledoux, From Brunn-Minkowski to Brascamp-Lieb and to logarithmic Sobolev inequalities, Geom. Funct. Anal., 10 (2000), 1028-1052. doi: 10.1007/PL00001645
![]() |
[25] | D. Bakry, Michel Émery, Diffusions hypercontractives, in Séminaire de Probabilités, XIX, 1983/84, Springer, Berlin, (1985), 177-206. |
[26] | D. Bakry, L'hypercontractivité et son utilisation en théorie des semigroupes, in Lectures on Probability Theory (Saint-Flour, 1992), Springer, Berlin, (1994), 1-114. |
[27] |
A. Arnold, P. Markowich, G. Toscani, A. Unterreiter, On convex Sobolev inequalities and the rate of convergence to equilibrium for Fokker-Planck type equations, Comm. Partial Differ. Equations, 26 (2001), 43-100. doi: 10.1081/PDE-100002246
![]() |
[28] |
A. Arnold, J. Dolbeault, Refined convex Sobolev inequalities, J. Funct. Anal., 225 (2005), 337-351. doi: 10.1016/j.jfa.2005.05.003
![]() |
[29] | B. Arras, Y. Swan, A stroll along the gamma, Stochastic Process. Appl., 127 (2017), 3661-3688. |
[30] | D. Bakry, Remarques sur les semigroupes de Jacobi, Astérisque, 236 (1996), 23-39. |
[31] |
M. Benaïm, R. Rossignol, Exponential concentration for first passage percolation through modified Poincaré inequalities, Ann. Inst. Henri Poincaré Probab. Stat., 44 (2008), 544-573. doi: 10.1214/07-AIHP124
![]() |
[32] | L. Miclo, Sur l'inégalité de Sobolev logarithmique des opérateurs de Laguerre à petit paramètre, in Séminaire de Probabilités, XXXVI, Springer, Berlin, (2003), 222-229. |
1. | S.A. Pedro, J.M. Tchuenche, HIV/AIDS dynamics: Impact of economic classes with transmission from poor clinical settings, 2010, 267, 00225193, 471, 10.1016/j.jtbi.2010.09.019 | |
2. | C. P. Bhunu, S. Mushayabasa, H. Kojouharov, J. M. Tchuenche, Mathematical Analysis of an HIV/AIDS Model: Impact of Educational Programs and Abstinence in Sub-Saharan Africa, 2011, 10, 1570-1166, 31, 10.1007/s10852-010-9134-0 | |
3. | Sarada S. Panchanathan, Diana B. Petitti, Douglas B. Fridsma, The development and validation of a simulation tool for health policy decision making, 2010, 43, 15320464, 602, 10.1016/j.jbi.2010.03.013 | |
4. | Cristiana J. Silva, Delfim F.M. Torres, A SICA compartmental model in epidemiology with application to HIV/AIDS in Cape Verde, 2017, 30, 1476945X, 70, 10.1016/j.ecocom.2016.12.001 | |
5. | S. D. Hove-Musekwa, F. Nyabadza, H. Mambili-Mamboundou, Modelling Hospitalization, Home-Based Care, and Individual Withdrawal for People Living with HIV/AIDS in High Prevalence Settings, 2011, 73, 0092-8240, 2888, 10.1007/s11538-011-9651-7 | |
6. | Emmanuelina L. Kateme, Jean M. Tchuenche, Senelani D. Hove-Musekwa, HIV/AIDS Dynamics with Three Control Strategies: The Role of Incidence Function, 2012, 2012, 2090-5572, 1, 10.5402/2012/864795 | |
7. | F. Nyabadza, Z. Mukandavire, S.D. Hove-Musekwa, Modelling the HIV/AIDS epidemic trends in South Africa: Insights from a simple mathematical model, 2011, 12, 14681218, 2091, 10.1016/j.nonrwa.2010.12.024 | |
8. | Xiaodong Wang, Chunxia Wang, Kai Wang, Extinction and persistence of a stochastic SICA epidemic model with standard incidence rate for HIV transmission, 2021, 2021, 1687-1847, 10.1186/s13662-021-03392-y |