Human behavior has a major impact on the spread of the disease during an epidemic. At the same time, the spread of disease has an impact on human behavior. In this paper, we propose a coupled model of human behavior and disease transmission, take into account both individual-based risk assessment and neighbor-based replicator dynamics. The transmission threshold of epidemic disease and the stability of disease-free equilibrium point are analyzed. Some numerical simulations are carried out for the system. Three kinds of return matrices are considered and analyzed one by one. The simulation results show that the change of human behavior can effectively inhibit the spread of the disease, individual-based risk assessments had a stronger effect on disease suppression, but also more hitchhikers. This work contributes to the study of the relationship between human behavior and disease epidemics.
Citation: Maoxing Liu, Rongping Zhang, Boli Xie. The impact of behavioral change on the epidemic under the benefit comparison[J]. Mathematical Biosciences and Engineering, 2020, 17(4): 3412-3425. doi: 10.3934/mbe.2020193
[1] | Rinaldo M. Colombo, Mauro Garavello . A Well Posed Riemann Problem for the --System at a Junction. Networks and Heterogeneous Media, 2006, 1(3): 495-511. doi: 10.3934/nhm.2006.1.495 |
[2] | Yannick Holle, Michael Herty, Michael Westdickenberg . New coupling conditions for isentropic flow on networks. Networks and Heterogeneous Media, 2020, 15(4): 605-631. doi: 10.3934/nhm.2020016 |
[3] | Gabriella Bretti, Roberto Natalini, Benedetto Piccoli . Numerical approximations of a traffic flow model on networks. Networks and Heterogeneous Media, 2006, 1(1): 57-84. doi: 10.3934/nhm.2006.1.57 |
[4] | Jens Lang, Pascal Mindt . Entropy-preserving coupling conditions for one-dimensional Euler systems at junctions. Networks and Heterogeneous Media, 2018, 13(1): 177-190. doi: 10.3934/nhm.2018008 |
[5] | Michael Herty, Niklas Kolbe, Siegfried Müller . Central schemes for networked scalar conservation laws. Networks and Heterogeneous Media, 2023, 18(1): 310-340. doi: 10.3934/nhm.2023012 |
[6] | Samitha Samaranayake, Axel Parmentier, Ethan Xuan, Alexandre Bayen . A mathematical framework for delay analysis in single source networks. Networks and Heterogeneous Media, 2017, 12(1): 113-145. doi: 10.3934/nhm.2017005 |
[7] | Jan Friedrich, Simone Göttlich, Annika Uphoff . Conservation laws with discontinuous flux function on networks: a splitting algorithm. Networks and Heterogeneous Media, 2023, 18(1): 1-28. doi: 10.3934/nhm.2023001 |
[8] | Caterina Balzotti, Maya Briani, Benedetto Piccoli . Emissions minimization on road networks via Generic Second Order Models. Networks and Heterogeneous Media, 2023, 18(2): 694-722. doi: 10.3934/nhm.2023030 |
[9] | Michael Herty, J.-P. Lebacque, S. Moutari . A novel model for intersections of vehicular traffic flow. Networks and Heterogeneous Media, 2009, 4(4): 813-826. doi: 10.3934/nhm.2009.4.813 |
[10] | Gunhild A. Reigstad . Numerical network models and entropy principles for isothermal junction flow. Networks and Heterogeneous Media, 2014, 9(1): 65-95. doi: 10.3934/nhm.2014.9.65 |
Human behavior has a major impact on the spread of the disease during an epidemic. At the same time, the spread of disease has an impact on human behavior. In this paper, we propose a coupled model of human behavior and disease transmission, take into account both individual-based risk assessment and neighbor-based replicator dynamics. The transmission threshold of epidemic disease and the stability of disease-free equilibrium point are analyzed. Some numerical simulations are carried out for the system. Three kinds of return matrices are considered and analyzed one by one. The simulation results show that the change of human behavior can effectively inhibit the spread of the disease, individual-based risk assessments had a stronger effect on disease suppression, but also more hitchhikers. This work contributes to the study of the relationship between human behavior and disease epidemics.
[1] |
F. Verelst, L. Willem, P. Beutels, Behavioural change models for infectious disease transmission: A systematic review (2010-2015), J. R. Soc. Interface, 13 (2016), 20160820. doi: 10.1098/rsif.2016.0820
![]() |
[2] |
J. T. F. Lau, X. L. Yang, H. Y. Tsui, E. Pang, SARS related preventive and risk behaviours practised by Hong Kong-mainland China cross border travellers during the outbreak of the SARS epidemic in Hong Kong, J. Epidemiol. Community Health, 58 (2004), 988-996. doi: 10.1136/jech.2003.017483
![]() |
[3] |
J. T. Vietri, M. Li, A. P. Galvani, G. B. Chapman, Vaccinating to help ourselves and others, Med. Decis. Making, 32 (2012), 447-458. doi: 10.1177/0272989X11427762
![]() |
[4] | S. Abdelmalek, S. Bendoukha, Global asymptotic stability of a diffusive SVIR epidemic model with immigration of individuals, Electron. J. Differ. Equations, 284 (2016), 1-14. |
[5] |
C. R. Cai, Z. X. Wu, J. Y. Guan, Behavior of susceptible-vaccinated-infected-recovered epidemics with diversity in the infection rate of individuals, Phys. Rev. E, 88 (2013), 062805. doi: 10.1103/PhysRevE.88.062805
![]() |
[6] | C. Deng, H. J. Gao, Stability of SVIR system with random perturbations, Inter. J. Biomath., 5 (2012). |
[7] | T. C. Reluga, C. T. Bergstrom, Game theory of social distancing in response to an epidemic, PLoS Comput. Biol., 6 (2010). |
[8] | E. P. Fenichel, C. Castillo-Chavez, M. G. Ceddia, G. Chowell, P. A. G. Parra, G. J. Hickling, et al., Adaptive human behavior in epidemiological models, Proc. Natl. Acad. Sci., 108 (2011), 6306-6311. |
[9] | E. P. Fenichel, X. X. Wang, The mchanism and phenomena of adaptive human behavior during an epidemic and the role of information, in Modeling the Interplay Between Human Behavior and the Spread of Infectious Diseases, Springer, (2013), 153-168. |
[10] | P. C. Zhu, Q. Zhi, Y. M. Guo, Z. Wang, Analysis of epidemic spreading process in adaptive networks, IEEE Trans. Circuits Syst. II: Express Briefs, 66 (2018), 1252-1256. |
[11] |
Y. Z. Zhou, Y. J. Xia, Epidemic spreading on weighted adaptive networks, Phys. A, 399 (2014), 16-23. doi: 10.1016/j.physa.2013.12.036
![]() |
[12] |
T. Li, X. D. Liu, J. Wu, C. Wan, Z. H. Guan, Y. M. Wang, An epidemic spreading model on adaptive scale-free networks with feedback mechanism, Physica A, 450 (2016), 649-656. doi: 10.1016/j.physa.2016.01.045
![]() |
[13] | S. L. Chang, M. Piraveenan, P. Pattison, M. Prokopenko, Game theoretic modelling of infectious disease dynamics and intervention methods: A review, J. Biol. Dyn., 14 (2019), 57-89. |
[14] |
H. Zhang, F. Fu, W. Zhang, B. Wang, Rational behavior is a double-edged sword when considering voluntary vaccination, Phys. A, 391 (2012), 4807-4815. doi: 10.1016/j.physa.2012.05.009
![]() |
[15] |
Y. Zhang, The impact of other-regarding tendencies on the spatial vaccination game, Chaos Solitons Fractals, 56 (2013), 209-215. doi: 10.1016/j.chaos.2013.08.014
![]() |
[16] |
Q. Li, M. C. Li, L. Lv, C. Guo, K. Lu, A new prediction model of infectious diseases with vaccination strategies based on evolutionary game theory, Chaos Solitons Fractals, 104 (2017), 51-60. doi: 10.1016/j.chaos.2017.07.022
![]() |
[17] |
K. Kuga, J. Tanimoto, Which is more effective for suppressing an infectious disease: Imperfect vaccination or defense against contagion?, J. Stat. Mech. Theory Exp., 2018 (2018), 023407. doi: 10.1088/1742-5468/aaac3c
![]() |
[18] |
K. M. A. Kabir, K. Kuga, J. Tanimoto, Effect of information spreading to suppress the disease contagion on the epidemic vaccination game, Chaos Solitons Fractals, 119 (2019), 180-187. doi: 10.1016/j.chaos.2018.12.023
![]() |
[19] |
C. T. Bauch, D. J. D. Earn, Vaccination and the theory of games, Proc. Natl. Acad. Sci., 101 (2004), 13391-13394. doi: 10.1073/pnas.0403823101
![]() |
[20] | T. Dominic, R. Mary, V. H. A. Jan, W. J. Edmunds, R. Vivancos, A. Bukasa, et al., The effect of measles on health-related quality of life: A patient-based survey, PLoS ONE, 9 (2014). |
[21] |
X. Feng, B. Wu, L. Wang, Voluntary vaccination dilemma with evolving psychological perceptions, J. Theor. Biol., 439 (2018), 65-75. doi: 10.1016/j.jtbi.2017.11.011
![]() |
[22] |
K. M. A. Kabir, J. Tanimoto, Evolutionary vaccination game approach in metapopulation migration model with information spreading on different graphs, Chaos Solitons Fractals, 120 (2019), 41-55. doi: 10.1016/j.chaos.2019.01.013
![]() |
[23] |
K. M. A. Kabir, M. Jusup, J. Tanimoto, Behavioral incentives in a vaccination-dilemma setting with optional treatment, Phys. Rev. E, 100 (2019), 062402. doi: 10.1103/PhysRevE.100.062402
![]() |
[24] |
K. Kuga, J. Tanimoto, M. Jusup, To vaccinate or not to vaccinate: A comprehensive study of vaccination-subsidizing policies with multi-agent simulations and mean-field modeling, J. Theor. Biol., 469 (2019), 107-126. doi: 10.1016/j.jtbi.2019.02.013
![]() |
[25] |
M. R. Arefin, K. M. A. Kabir1, J. Tanimoto. A mean-field vaccination game scheme to analyze the effect of a single vaccination strategy on a two-strain epidemic spreading, J. Stat. Mech. Theory Exp., 2020 (2020), 033501. doi: 10.1088/1742-5468/ab74c6
![]() |
[26] |
P. Poletti, B. Caprile, M. Ajelli, A. Pugliese, S. Merlera, Spontaneous behavioural changes in response to epidemics, J. Theor. Biol., 260 (2009), 31-40. doi: 10.1016/j.jtbi.2009.04.029
![]() |
[27] |
P. S. Romualdo, V. Alessandro, Epidemic spreading in scale-free networks, Phys. Rev. Lett., 86 (2001), 3200-3203. doi: 10.1103/PhysRevLett.86.3200
![]() |
[28] | A. B. M. Nasiruzzaman, M. N. Akter, M. A. Mahmud, H. R. Pota, Exploration of power flow distribution to reveal scale-free characteristics in power grids, 2017 IEEE Power & Energy Society General Meeting, 2017. Available from: https://ieeexplore.ieee.org/abstract/document/8273917. |
[29] |
A. L. Barabasi, R. Albert, H. Jeong, Scale-free characteristics of random networks: the topology of the world-wide web, Physica A, 281 (2000), 69-77. doi: 10.1016/S0378-4371(00)00018-2
![]() |
[30] |
K. Dharshana, P. Mahendra, Emergence of scale-free characteristics in socio-ecological systems with bounded rationality, Sci. Rep., 5 (2015), 10448. doi: 10.1038/srep10448
![]() |
[31] | P. Yang, Z. P. Xu, J. Feng, X. Fu, Feedback pinning control of collective behaviors aroused by epidemic spread on complex networks, Chaos, 29 (2019). |
[32] | K. Li, Z. Ma, Z. Jia, M. Small, X Fu, Interplay between collective behavior and spreading dynamics on complex networks, Chaos, 29 (2012), 043113 |
1. | R. M. Colombo, M. Herty, V. Sachers, On Conservation Laws at a Junction, 2008, 40, 0036-1410, 605, 10.1137/070690298 | |
2. | BENJAMIN BOUTIN, CHRISTOPHE CHALONS, PIERRE-ARNAUD RAVIART, EXISTENCE RESULT FOR THE COUPLING PROBLEM OF TWO SCALAR CONSERVATION LAWS WITH RIEMANN INITIAL DATA, 2010, 20, 0218-2025, 1859, 10.1142/S0218202510004817 | |
3. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Reprint of: Finite volume methods for multi-component Euler equations with source terms, 2018, 169, 00457930, 40, 10.1016/j.compfluid.2018.03.057 | |
4. | M. Herty, J. Mohring, V. Sachers, A new model for gas flow in pipe networks, 2010, 33, 01704214, 845, 10.1002/mma.1197 | |
5. | RINALDO M. COLOMBO, PAOLA GOATIN, BENEDETTO PICCOLI, ROAD NETWORKS WITH PHASE TRANSITIONS, 2010, 07, 0219-8916, 85, 10.1142/S0219891610002025 | |
6. | Jochen Kall, Rukhsana Kausar, Stephan Trenn, Modeling water hammers via PDEs and switched DAEs with numerical justification, 2017, 50, 24058963, 5349, 10.1016/j.ifacol.2017.08.927 | |
7. | Michael Herty, Coupling Conditions for Networked Systems of Euler Equations, 2008, 30, 1064-8275, 1596, 10.1137/070688535 | |
8. | Kristen DeVault, Pierre A. Gremaud, Vera Novak, Mette S. Olufsen, Guillaume Vernières, Peng Zhao, Blood Flow in the Circle of Willis: Modeling and Calibration, 2008, 7, 1540-3459, 888, 10.1137/07070231X | |
9. | CIRO D'APICE, BENEDETTO PICCOLI, VERTEX FLOW MODELS FOR VEHICULAR TRAFFIC ON NETWORKS, 2008, 18, 0218-2025, 1299, 10.1142/S0218202508003042 | |
10. | Stephan Gerster, Michael Herty, Michael Chertkov, Marc Vuffray, Anatoly Zlotnik, 2019, Chapter 8, 978-3-030-27549-5, 59, 10.1007/978-3-030-27550-1_8 | |
11. | Martin Gugat, Michael Herty, Axel Klar, Günther Leugering, Veronika Schleper, 2012, Chapter 7, 978-3-0348-0132-4, 123, 10.1007/978-3-0348-0133-1_7 | |
12. | Mapundi K. Banda, Michael Herty, Jean-Medard T. Ngnotchouye, Toward a Mathematical Analysis for Drift-Flux Multiphase Flow Models in Networks, 2010, 31, 1064-8275, 4633, 10.1137/080722138 | |
13. | Jeroen J. Stolwijk, Volker Mehrmann, Error Analysis and Model Adaptivity for Flows in Gas Networks, 2018, 26, 1844-0835, 231, 10.2478/auom-2018-0027 | |
14. | Mapundi K. Banda, Axel-Stefan Häck, Michael Herty, Numerical Discretization of Coupling Conditions by High-Order Schemes, 2016, 69, 0885-7474, 122, 10.1007/s10915-016-0185-x | |
15. | Evgenii S. Baranovskii, Vyacheslav V. Provotorov, Mikhail A. Artemov, Alexey P. Zhabko, Non-Isothermal Creeping Flows in a Pipeline Network: Existence Results, 2021, 13, 2073-8994, 1300, 10.3390/sym13071300 | |
16. | Rinaldo M. Colombo, Mauro Garavello, On the Cauchy Problem for the p-System at a Junction, 2008, 39, 0036-1410, 1456, 10.1137/060665841 | |
17. | J.B. Collins, P.A. Gremaud, Analysis of a domain decomposition method for linear transport problems on networks, 2016, 109, 01689274, 61, 10.1016/j.apnum.2016.06.004 | |
18. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Treating network junctions in finite volume solution of transient gas flow models, 2017, 344, 00219991, 187, 10.1016/j.jcp.2017.04.066 | |
19. | Martin Gugat, Michael Herty, Siegfried Müller, Coupling conditions for the transition from supersonic to subsonic fluid states, 2017, 12, 1556-181X, 371, 10.3934/nhm.2017016 | |
20. | H. Egger, A Robust Conservative Mixed Finite Element Method for Isentropic Compressible Flow on Pipe Networks, 2018, 40, 1064-8275, A108, 10.1137/16M1094373 | |
21. | Yannick Holle, Kinetic relaxation to entropy based coupling conditions for isentropic flow on networks, 2020, 269, 00220396, 1192, 10.1016/j.jde.2020.01.005 | |
22. | Mohamed Elshobaki, Alessandro Valiani, Valerio Caleffi, Numerical modelling of open channel junctions using the Riemann problem approach, 2019, 57, 0022-1686, 662, 10.1080/00221686.2018.1534283 | |
23. | Mapundi K. Banda, Michael Herty, Towards a space mapping approach to dynamic compressor optimization of gas networks, 2011, 32, 01432087, 253, 10.1002/oca.929 | |
24. | Rinaldo M. Colombo, 2011, Chapter 13, 978-1-4419-9553-7, 267, 10.1007/978-1-4419-9554-4_13 | |
25. | Seok Woo Hong, Chongam Kim, A new finite volume method on junction coupling and boundary treatment for flow network system analyses, 2011, 65, 02712091, 707, 10.1002/fld.2212 | |
26. | Michael Herty, Mohammed Seaïd, Assessment of coupling conditions in water way intersections, 2013, 71, 02712091, 1438, 10.1002/fld.3719 | |
27. | Gunhild A. Reigstad, Existence and Uniqueness of Solutions to the Generalized Riemann Problem for Isentropic Flow, 2015, 75, 0036-1399, 679, 10.1137/140962759 | |
28. | R. Borsche, A. Klar, Flooding in urban drainage systems: coupling hyperbolic conservation laws for sewer systems and surface flow, 2014, 76, 02712091, 789, 10.1002/fld.3957 | |
29. | Pascal Mindt, Jens Lang, Pia Domschke, Entropy-Preserving Coupling of Hierarchical Gas Models, 2019, 51, 0036-1410, 4754, 10.1137/19M1240034 | |
30. | Alexandre Morin, Gunhild A. Reigstad, Pipe Networks: Coupling Constants in a Junction for the Isentropic Euler Equations, 2015, 64, 18766102, 140, 10.1016/j.egypro.2015.01.017 | |
31. | Mapundi Kondwani Banda, 2015, Chapter 9, 978-3-319-11321-0, 439, 10.1007/978-3-319-11322-7_9 | |
32. | Yogiraj Mantri, Sebastian Noelle, Well-balanced discontinuous Galerkin scheme for 2 × 2 hyperbolic balance law, 2021, 429, 00219991, 110011, 10.1016/j.jcp.2020.110011 | |
33. | Mauro Garavello, Benedetto Piccoli, Conservation laws on complex networks, 2009, 26, 0294-1449, 1925, 10.1016/j.anihpc.2009.04.001 | |
34. | Mauro Garavello, 2011, Chapter 15, 978-1-4419-9553-7, 293, 10.1007/978-1-4419-9554-4_15 | |
35. | Andrea Corli, Ingenuin Gasser, Mária Lukáčová-Medvid’ová, Arne Roggensack, Ulf Teschke, A multiscale approach to liquid flows in pipes I: The single pipe, 2012, 219, 00963003, 856, 10.1016/j.amc.2012.06.054 | |
36. | Raul Borsche, Jochen Kall, ADER schemes and high order coupling on networks of hyperbolic conservation laws, 2014, 273, 00219991, 658, 10.1016/j.jcp.2014.05.042 | |
37. | Mapundi K. Banda, Michael Herty, Multiscale modeling for gas flow in pipe networks, 2008, 31, 01704214, 915, 10.1002/mma.948 | |
38. | Gunhild A. Reigstad, Tore Flåtten, Nils Erland Haugen, Tor Ytrehus, Coupling constants and the generalized Riemann problem for isothermal junction flow, 2015, 12, 0219-8916, 37, 10.1142/S0219891615500022 | |
39. | Alfredo Bermúdez, Xián López, M. Elena Vázquez-Cendón, Finite volume methods for multi-component Euler equations with source terms, 2017, 156, 00457930, 113, 10.1016/j.compfluid.2017.07.004 | |
40. | Raul Borsche, Numerical schemes for networks of hyperbolic conservation laws, 2016, 108, 01689274, 157, 10.1016/j.apnum.2016.01.006 | |
41. | Alexandre Bayen, Maria Laura Delle Monache, Mauro Garavello, Paola Goatin, Benedetto Piccoli, 2022, Chapter 3, 978-3-030-93014-1, 39, 10.1007/978-3-030-93015-8_3 | |
42. | Christian Contarino, Eleuterio F. Toro, Gino I. Montecinos, Raul Borsche, Jochen Kall, Junction-Generalized Riemann Problem for stiff hyperbolic balance laws in networks: An implicit solver and ADER schemes, 2016, 315, 00219991, 409, 10.1016/j.jcp.2016.03.049 | |
43. | Michael Herty, Nouh Izem, Mohammed Seaid, Fast and accurate simulations of shallow water equations in large networks, 2019, 78, 08981221, 2107, 10.1016/j.camwa.2019.03.049 | |
44. | F. Daude, P. Galon, A Finite-Volume approach for compressible single- and two-phase flows in flexible pipelines with fluid-structure interaction, 2018, 362, 00219991, 375, 10.1016/j.jcp.2018.01.055 | |
45. | Benedetto Piccoli, Andrea Tosin, 2013, Chapter 576-3, 978-3-642-27737-5, 1, 10.1007/978-3-642-27737-5_576-3 | |
46. | Gunhild Allard Reigstad, Tore Flåtten, 2015, Chapter 66, 978-3-319-10704-2, 667, 10.1007/978-3-319-10705-9_66 | |
47. | F. Daude, R.A. Berry, P. Galon, A Finite-Volume method for compressible non-equilibrium two-phase flows in networks of elastic pipelines using the Baer–Nunziato model, 2019, 354, 00457825, 820, 10.1016/j.cma.2019.06.010 | |
48. | Benedetto Piccoli, Andrea Tosin, 2012, Chapter 112, 978-1-4614-1805-4, 1748, 10.1007/978-1-4614-1806-1_112 | |
49. | Mouhamadou Samsidy Goudiaby, Gunilla Kreiss, Existence result for the coupling of shallow water and Borda–Carnot equations with Riemann data, 2020, 17, 0219-8916, 185, 10.1142/S021989162050006X | |
50. | Michael Herty, Mohammed Seaïd, Simulation of transient gas flow at pipe-to-pipe intersections, 2008, 56, 02712091, 485, 10.1002/fld.1531 | |
51. | RINALDO M. COLOMBO, CRISTINA MAURI, EULER SYSTEM FOR COMPRESSIBLE FLUIDS AT A JUNCTION, 2008, 05, 0219-8916, 547, 10.1142/S0219891608001593 | |
52. | Mapundi K. Banda, Michael Herty, Jean Medard T. Ngnotchouye, On linearized coupling conditions for a class of isentropic multiphase drift-flux models at pipe-to-pipe intersections, 2015, 276, 03770427, 81, 10.1016/j.cam.2014.08.021 | |
53. | Christophe Chalons, Pierre-Arnaud Raviart, Nicolas Seguin, The interface coupling of the gas dynamics equations, 2008, 66, 0033-569X, 659, 10.1090/S0033-569X-08-01087-X | |
54. | Sara Grundel, Michael Herty, Hyperbolic discretization of simplified Euler equation via Riemann invariants, 2022, 106, 0307904X, 60, 10.1016/j.apm.2022.01.006 | |
55. | Zlatinka Dimitrova, Flows of Substances in Networks and Network Channels: Selected Results and Applications, 2022, 24, 1099-4300, 1485, 10.3390/e24101485 | |
56. | Edwige Godlewski, Pierre-Arnaud Raviart, 2021, Chapter 7, 978-1-0716-1342-9, 627, 10.1007/978-1-0716-1344-3_7 | |
57. | Jens Brouwer, Ingenuin Gasser, Michael Herty, Gas Pipeline Models Revisited: Model Hierarchies, Nonisothermal Models, and Simulations of Networks, 2011, 9, 1540-3459, 601, 10.1137/100813580 | |
58. | Raul Borsche, Jochen Kall, High order numerical methods for networks of hyperbolic conservation laws coupled with ODEs and lumped parameter models, 2016, 327, 00219991, 678, 10.1016/j.jcp.2016.10.003 | |
59. | MOUHAMADOU SAMSIDY GOUDIABY, GUNILLA KREISS, A RIEMANN PROBLEM AT A JUNCTION OF OPEN CANALS, 2013, 10, 0219-8916, 431, 10.1142/S021989161350015X | |
60. | Martin Gugat, Michael Herty, 2022, 23, 9780323850599, 59, 10.1016/bs.hna.2021.12.002 | |
61. | Benedetto Piccoli, Andrea Tosin, 2009, Chapter 576, 978-0-387-75888-6, 9727, 10.1007/978-0-387-30440-3_576 | |
62. | Gunhild A. Reigstad, Numerical network models and entropy principles for isothermal junction flow, 2014, 9, 1556-181X, 65, 10.3934/nhm.2014.9.65 | |
63. | Andrea Corli, Massimiliano D. Rosini, Ulrich Razafison, 2024, Mathematical Modeling of Chattering and the Optimal Design of a Valve*, 979-8-3503-1633-9, 76, 10.1109/CDC56724.2024.10886245 | |
64. | Michael T. Redle, Michael Herty, An asymptotic-preserving scheme for isentropic flow in pipe networks, 2025, 20, 1556-1801, 254, 10.3934/nhm.2025013 | |
65. | Andrea Corli, Ulrich Razafison, Massimiliano D. Rosini, Coherence of Coupling Conditions for the Isothermal Euler System, 2025, 0170-4214, 10.1002/mma.10847 |