Citation: Wenrui Li, Qimin Zhang, Meyer-Baese Anke, Ming Ye, Yan Li. Taylor approximation of the solution of age-dependent stochastic delay population equations with Ornstein-Uhlenbeck process and Poisson jumps[J]. Mathematical Biosciences and Engineering, 2020, 17(3): 2650-2675. doi: 10.3934/mbe.2020145
[1] | R. Li, W. Pang, Q. Wang, Numerical analysis for stochastic age-dependent population equations with Poisson jumps, J. Math. Anal. Appl., 327 (2007), 1214-1224. |
[2] | W. Ma, Q. Zhang, J. Gao, The existence and uniqueness of solutions to stochastic age-dependent population equations with jumps, Chin. J. Appl. Probab. Stat.,32 (2016), 441-451. |
[3] | L. Wang, X. Wang, Convergence of the semi-implicit Euler method for stochastic age-dependent population equations with Poisson jumps, Appl. Math. Model., 34 (2010), 2034-2043. |
[4] | A. Rathinasamy, B. Yin, B. Yasodha, Numerical analysis for stochastic age-dependent population equations with Poisson jump and phase semi-Markovian switching, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 350-362. |
[5] | J. Tan, A. Rathinasamy, Y. Pei, Convergence of the split-step method for stochastic age-dependent population equations with Poisson jumps, Appl. Math. Comput., 254 (2015), 305-317. |
[6] | H. Chen, Existence and uniqueness, attraction for stochastic age-structured population systems with diffusion and Poisson jump, J. Math. Phys., 54 (2013), 082701. |
[7] | M. Wei, Exponential stability of numerical solutions to stochastic age-dependent population equations with Poisson jumps, Engin. Tech., 55 (2011), 1103-1108. |
[8] | Y. Pei, H. Yang, Q. Zhang, F. Shen, Asymptotic mean-square boundedness of the numerical solutions of stochastic age-dependent population equations with Poisson jumps, Appl. Math. Comput., 320 (2018), 524-534. |
[9] | W. Ma, Q. Zhang, Convergence of numerical solutions to stochastic age-dependent population equations with Poisson jumps and Markovian switching, J. Shanxi Univ., 2011 (2011). |
[10] | S. Zhao, S. Yuan, H. Wang, Threshold behavior in a stochastic algal growth model with stoichiometric constraints and seasonal variation, J. Differ. Equ., 2019 (2019). |
[11] | B. Wang, J. Sun, B. Huang, The model analysis for stochastic age-dependent population with Poisson Jumps, Int. Inst. Appl. Stat. Stud., 2008 (2008). |
[12] | W. Li, Q. Zhang, Construction of positivity-preserving numerical method for stochastic SIVS epidemic model, Adv. Differ. Equ., 2019 (2019). |
[13] | Y. Li, M. Ye, Q. Zhang, Strong convergence of the partially truncated Euler Maruyama scheme for a stochastic age-structured SIR epidemic model, Appl. Math. Comput., 362 (2019), 124519. |
[14] | D. Duffie, Dynamic asset pricing theory, Princeton University Press, (2010.) |
[15] | E. Allen, Environmental variability and mean-reverting processes, Discrete Contin. Dyn. Syst. Ser. B, 21 (2016), 2073. |
[16] | Y. Zhao, S. Yuan, J. Ma, Survival and stationary distribution analysis of a stochastic competitive model of three species in a polluted environment, Bull. Math. Biol., 77 (2015), 1285-1326. |
[17] | W. Wang, Y. Cai, Z. Ding, Z. Gui, A stochastic differential equation SIS epidemic model incorporating Ornstein-Uhlenbeck process, Phys. A, 509 (2018), 921-936. |
[18] | Y. Cai, J. Jiao, Z. Gui, Y. Liu, W. Wang, Environmental variability in a stochastic epidemic model, Appl. Math. Comput., 329 (2018), 210-226. |
[19] | S. Deng, W. Fei, Y. Liang, X. Mao, Convergence of the split-step-method for stochastic age-dependent population equations with Markovian switching and variable delay, Appl. Numer. Math., 139 (2019), 15-37. |
[20] | Q. Li, Q. Zhang, B. Cao, Mean-square stability of stochastic age-dependent delay population systems with jumps, Acta Math. Appl. Sin., 34 (2018), 145-154. |
[21] | J. Tan, W. Men, Y. Pei, Y. Guo, Construction of positivity preserving numerical method for stochastic age-dependent population equations, Appl. Math. Comput., 293 (2017), 57-64. |
[22] | F. Jiang, Y. Shen, L. Liu, Taylor approximation of the solutions of stochastic differential delay equations with Poisson jump, Commun. Nonlinear Sci. Numer. Simul., 16 (2011), 798-804. |
[23] | X. Yu, S, Yuan, T. Zhang, Asymptotic properties of stochastic nutrient-plankton food chain models with nutrient recycling, Nonlinear Anal. Hybrid Syst., 34 (2019), 209-225. |
[24] | S. Jankovic, D. Ilic, An analytic approximation of solutions of stochastic differential equations, Comput. Math. Appl., 47 (2004), 903-912. |
[25] | A. Ivanov, Y. Kazmerchuk, A. Swishchuk, Theory, stochastic stability and applications of stochastic delay differential equations: A survey of results, Differ. Equ. Dyna. Syst., 11 (2003), 55-115. |
[26] | Q. Zhang, W. Liu, Z. Nie, Existence, uniqueness and exponential stability for stochastic age-dependent population, Appl. Math. Comput., 154 (2004), 183-201. |
[27] | R. Li, H. Meng, Y. Dai, Convergence of numerical solutions to stochastic delay differential equations with jumps, Appl. Math. Comput., 172 (2006), 584-602. |
[28] | L. Wang, C. Mei, H. Xue, The semi-implicit Euler method for stochastic differential delay equation with jumps, Appl. Math. Comput., 192 (2007), 567-578. |
[29] | S. Anita, Analysis and control of age-dependent population dynamics, Springer Science & Business Media, (2000). |
[30] | D. Higham, P. Kloeden, Strong convergence rates for backward Euler on a class of nonlinear jump-diffusion problems, J. Comput. Appl. Math., 205 (2007), 949-956. |
[31] | I. Bihari, A generalization of a lemma of Bellman and its application to uniqueness problems of differential equations, Acta Math. Hungarica, 7 (1956), 81-94. |