Citation: Ephraim O. Agyingi, Tamas I. Wiandt, Laurence U. Buxbaum, Bolaji N. Thomas. Modeling the immune system response: an application to leishmaniasis[J]. Mathematical Biosciences and Engineering, 2020, 17(2): 1253-1271. doi: 10.3934/mbe.2020064
| [1] |
R. Alam, A brief review of the immune system, Prim. Care, 25 (2005), 727-738. doi: 10.1016/S0095-4543(05)70084-1
|
| [2] |
D. D. Chaplin, Overview of the immune response, J. Allergy Clin. Immun., 125 (2010), S3-S23. doi: 10.1016/j.jaci.2009.12.980
|
| [3] | M. J. Spiering, Primer on the immune system, Alcohol. Res., 37 (2015), 171-175. |
| [4] |
C. Bogdan, M. Röllinghoff, The immune response to Leishmaaia: mechanisms of parasite control and evasion, Int. J. Parasitol., 28 (1998), 121-134. doi: 10.1016/S0020-7519(97)00169-0
|
| [5] |
C. D. Mathers, M. Ezzati, A. D. Lopez, Measuring the burden of neglected tropical diseases: The global burden of disease framework, PLoS Negl. Trop. Dis., 1 (2007), e114. doi: 10.1371/journal.pntd.0000114
|
| [6] |
J. Alvar, I. D. Vélez, C. Bern, M. Herrero, P. Desjeux, J. Cano, et al., Leishmaniasis worldwide and global estimates of its incidence, PLoS One, 7 (2012), e35671. doi: 10.1371/journal.pone.0035671
|
| [7] |
S. P. Georgiadou, K. P. Makaritsis, G. N. Dalekos, Leishmaniasis revisited: Current aspects on epidemiology, diagnosis and treatment, J. Transl. Int. Med., 3 (2015), 43-50. doi: 10.1515/jtim-2015-0002
|
| [8] | D. Liu, J. E. Uzonna, The early interaction of Leishmania with macrophages and dendritic cells and its influence on the host immune response, Front. Cell. Infect. Mi., 2 (2012), 83. |
| [9] |
M. Podinovskaia, A. Descoteaux, Leishmania and the macrophage: a multifaceted interaction, Future Microbiol., 10 (2015),111-129. doi: 10.2217/fmb.14.103
|
| [10] |
F. Tomiotto-Pellissier, B. Bortoleti, J. P. Assolini, M. D. Gonçalves, A. C. M. Carloto, M. M. Miranda-Sapla, et al., Macrophage Polarization in Leishmaniasis: Broadening Horizons, Front. Immunol., 9 (2018), 2529. doi: 10.3389/fimmu.2018.02529
|
| [11] |
M. Rossi, N. Fasel, How to master the host immune system? Leishmania parasites have the solutions!, Int. Immun., 30 (2018), 103-111. doi: 10.1093/intimm/dxx075
|
| [12] |
T. Laskay, G. van Zandbergen, W. Solbach, Neutrophil granulocytes-Trojan horses for Leishmania major and other intracellular microbes?, Trends Microbiol., 5 (2003), 210-214. doi: 10.1016/S0966-842X(03)00075-1
|
| [13] | M. Martínez-López, M. Soto, S. Iborra, D. Sancho, Leishmania Hijacks Myeloid Cells for Immune Escape, Front. Microbiol., 9 (2018), 883. |
| [14] |
L. Guizani-Tabbane, K. Ben-Aissa, M. Belghith, A. Sassi, K. Dellagi, Leishmania major amastigotes induce p50/c-Rel NF-κB transcription factor in human macrophages: involvement in cytokine synthesis, Infect. Immun., 72 (2004), 2582-2589. doi: 10.1128/IAI.72.5.2582-2589.2004
|
| [15] |
L. Reiling, M. Chrobak, C. Schmetz, J. Clos, Overexpression of a single Leishmania major gene enhances parasite infectivity in vivo and in vitro, Mol. Microbiol., 76 (2010), 1175-1190. doi: 10.1111/j.1365-2958.2010.07130.x
|
| [16] |
L. Basmaciyan, N. Azas, M. Casanova, A potential acetyltransferase involved in Leishmania major metacaspase-dependent cell death, Parasite. Vector., 12 (2019), 266. doi: 10.1186/s13071-019-3526-4
|
| [17] |
L. U. Buxbaum, H. Denise, G. H. Coombs, J. Alexander, J. C. Mottram, P. Scott, Cysteine protease B of Leishmania mexicana inhibits host Th1 responses and protective immunity, J. Immunol., 171 (2003), 3711-3717. doi: 10.4049/jimmunol.171.7.3711
|
| [18] |
G. Gupta, S. Oghumu, A. R. Satoskar, Mechanisms of immune evasion in leishmaniasis, Adv. Appl. Microbiol., 82 (2013), 155-184. doi: 10.1016/B978-0-12-407679-2.00005-3
|
| [19] |
S. K. Mittal, P. A. Roche, Suppression of antigen presentation by IL-10, Curr. Opin. Immunol., 34 (2015), 22-27. doi: 10.1016/j.coi.2014.12.009
|
| [20] |
E. N. Loría-Cervera, F. J. Andrade-Narváez, Animal models for the study of leishmaniasis immunology, Rev. Inst. Med. Trop. Sao Paulo, 56 (2014), 1-11. doi: 10.1590/S0036-46652014000100001
|
| [21] |
E. R. Mears, F. Modabber, R. Don, G. E. Johnson, A review: the current in vivo models for the discovery and utility of new anti-leishmanial drugs targeting cutaneous leishmaniasis, PLoS Negl. Trop. Dis., 9 (2015), e0003889. doi: 10.1371/journal.pntd.0003889
|
| [22] |
C. Loeuillet, A. L. Bañuls, M. Hide, Study of Leishmania pathogenesis in mice: experimental considerations, Parasite. Vector., 9 (2016), 144. doi: 10.1186/s13071-016-1413-9
|
| [23] |
B. Pérez-Cabezas, P. Cecílio, T. B. Gaspar, F. Gärtner, R. Vasconcellos, A. Cordeiro-da-Silva, Understanding resistance vs. susceptibility in visceral Leishmaniasis using Mouse models of Leishmania infantum infection, Front. Cell. Infect. Mi., 9 (2019), 30. doi: 10.3389/fcimb.2019.00030
|
| [24] |
L. U. Buxbaum, P. Scott, Interleukin 10- and Fcγ Receptor-deficient mice resolve Leishmania mexicana lesions, Infect. Immun., 73 (2005), 2101-2108. doi: 10.1128/IAI.73.4.2101-2108.2005
|
| [25] |
B. N. Thomas, L. U. Buxbaum, FcgammaRIII mediates immunoglobulin G-induced interleukin- 10 and is required for chronic Leishmania mexicana lesions, Infect. Immun., 76 (2008), 623-631. doi: 10.1128/IAI.00316-07
|
| [26] |
J. V. Ravetch, S. Bolland, IgG Fc receptors, Annu. Rev. Immunol., 19 (2001), 275-290. doi: 10.1146/annurev.immunol.19.1.275
|
| [27] |
N. Chu, B. N. Thomas, S. R. Patel, L. U. Buxbaum, IgG1 is pathogenic in Leishmania mexicana infection, J. Immunol., 185 (2010), 6939-6946. doi: 10.4049/jimmunol.1002484
|
| [28] |
H. Mayer, K. S. Zaenker, U. an der Heiden, A basic mathematical model of immune response, Chaos, 5 (1995), 155-161. doi: 10.1063/1.166098
|
| [29] | N. Burić, M. Mudrrinic, N. Vasović, Time delay in a basic model of the immune response, Chaos, Solotons Fract., 12 (2001), 483-489. |
| [30] |
K. Wang, W. Wang, H. Pang, X. Liu, Complex dynamic behavior in a viral model with delayed immune response, Physica D, 226 (2007), 197-208. doi: 10.1016/j.physd.2006.12.001
|
| [31] |
B. Su, W. Zhou, K. S. Dorman, D. E. Jones, Mathematicatical modelling of immune response in tissues, Comput. Math. Method. M., 10 (2009), 9-38. doi: 10.1080/17486700801982713
|
| [32] |
J. P. Mendonca, I. Gleria, M. L. Lyra, Delay-induced bifurcations and chaos in a two-dimensional model for the immune response, Physica A, 517 (2019), 484-490. doi: 10.1016/j.physa.2018.11.039
|
| [33] |
B. M. Länger, C. Pou-Barreto, C. González-Alcón, B. Valladares, B. Wimmer, N. V. Torres, Modeling of leishmaniasis infection dynamics: novel application to the design of effective therapies, BMC Syst. Biol., 6 (2012), 1. doi: 10.1186/1752-0509-6-1
|
| [34] |
H. A. L. Ribeiro, T. U. Maioli, L. M. de Freitas, P. Tieri, F. Castiglione, Modeling immune response to Leishmania species indicates Adenosine as an important inhibitor of Th-cell activation, Front. Cell. Infect. Mi., 71 (2017), 309. doi: 10.3389/fcimb.2017.00309
|
| [35] |
N. Siewe, A. A. Yakubu, A. R. Satoskar, A. Friedman, Granuloma formation in leishmaniasis: A mathematical model, J. Theor. Biol., 412 (2017), 48-60. doi: 10.1016/j.jtbi.2016.10.004
|
| [36] |
M. C. de Almeida, H. N. N. Moreira, A mathematical model of immune response in cutaneous leishmaniasis, J. Biol. Syst., 15 (2007), 313-354. doi: 10.1142/S0218339007002209
|