We study global asymptotic properties of a continuous time
Leslie-Gower food chain model. We construct a Lyapunov function which
enables us to establish global asymptotic stability of the unique
coexisting equilibrium state.
Citation: Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 585-590. doi: 10.3934/mbe.2009.6.585
Related Papers:
[1] |
Peng Feng .
On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences and Engineering, 2014, 11(4): 807-821.
doi: 10.3934/mbe.2014.11.807
|
[2] |
Eduardo Gonzalez-Olivares, Alejandro Rojas-Palma .
Global stability in a modified Leslie-Gower type predation model assuming mutual interference among generalist predators. Mathematical Biosciences and Engineering, 2020, 17(6): 7708-7731.
doi: 10.3934/mbe.2020392
|
[3] |
Lin Li, Wencai Zhao .
Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type Ⅳ scheme. Mathematical Biosciences and Engineering, 2021, 18(3): 2813-2831.
doi: 10.3934/mbe.2021143
|
[4] |
Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang .
Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981.
doi: 10.3934/mbe.2019401
|
[5] |
Mengyun Xing, Mengxin He, Zhong Li .
Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831.
doi: 10.3934/mbe.2024034
|
[6] |
Christian Cortés García .
Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055.
doi: 10.3934/mbe.2022653
|
[7] |
Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani .
Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644.
doi: 10.3934/mbe.2023422
|
[8] |
Hongqiuxue Wu, Zhong Li, Mengxin He .
Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629.
doi: 10.3934/mbe.2023825
|
[9] |
Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen .
Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999.
doi: 10.3934/mbe.2023486
|
[10] |
Yangyang Li, Fengxue Zhang, Xianglai Zhuo .
Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type III schemes. Mathematical Biosciences and Engineering, 2020, 17(3): 2003-2015.
doi: 10.3934/mbe.2020106
|
Abstract
We study global asymptotic properties of a continuous time
Leslie-Gower food chain model. We construct a Lyapunov function which
enables us to establish global asymptotic stability of the unique
coexisting equilibrium state.