Global asymptotic properties for a Leslie-Gower food chain model

  • Received: 01 July 2008 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : Primary: 92D30; Secondary: 34D20.

  • We study global asymptotic properties of a continuous time Leslie-Gower food chain model. We construct a Lyapunov function which enables us to establish global asymptotic stability of the unique coexisting equilibrium state.

    Citation: Andrei Korobeinikov, William T. Lee. Global asymptotic properties for a Leslie-Gower food chain model[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 585-590. doi: 10.3934/mbe.2009.6.585

    Related Papers:

    [1] Peng Feng . On a diffusive predator-prey model with nonlinear harvesting. Mathematical Biosciences and Engineering, 2014, 11(4): 807-821. doi: 10.3934/mbe.2014.11.807
    [2] Eduardo Gonzalez-Olivares, Alejandro Rojas-Palma . Global stability in a modified Leslie-Gower type predation model assuming mutual interference among generalist predators. Mathematical Biosciences and Engineering, 2020, 17(6): 7708-7731. doi: 10.3934/mbe.2020392
    [3] Lin Li, Wencai Zhao . Deterministic and stochastic dynamics of a modified Leslie-Gower prey-predator system with simplified Holling-type Ⅳ scheme. Mathematical Biosciences and Engineering, 2021, 18(3): 2813-2831. doi: 10.3934/mbe.2021143
    [4] Zhenzhen Shi, Huidong Cheng, Yu Liu, Yanhui Wang . Optimization of an integrated feedback control for a pest management predator-prey model. Mathematical Biosciences and Engineering, 2019, 16(6): 7963-7981. doi: 10.3934/mbe.2019401
    [5] Mengyun Xing, Mengxin He, Zhong Li . Dynamics of a modified Leslie-Gower predator-prey model with double Allee effects. Mathematical Biosciences and Engineering, 2024, 21(1): 792-831. doi: 10.3934/mbe.2024034
    [6] Christian Cortés García . Bifurcations in a discontinuous Leslie-Gower model with harvesting and alternative food for predators and constant prey refuge at low density. Mathematical Biosciences and Engineering, 2022, 19(12): 14029-14055. doi: 10.3934/mbe.2022653
    [7] Manoj K. Singh, Brajesh K. Singh, Poonam, Carlo Cattani . Under nonlinear prey-harvesting, effect of strong Allee effect on the dynamics of a modified Leslie-Gower predator-prey model. Mathematical Biosciences and Engineering, 2023, 20(6): 9625-9644. doi: 10.3934/mbe.2023422
    [8] Hongqiuxue Wu, Zhong Li, Mengxin He . Dynamic analysis of a Leslie-Gower predator-prey model with the fear effect and nonlinear harvesting. Mathematical Biosciences and Engineering, 2023, 20(10): 18592-18629. doi: 10.3934/mbe.2023825
    [9] Zhenliang Zhu, Yuming Chen, Zhong Li, Fengde Chen . Dynamic behaviors of a Leslie-Gower model with strong Allee effect and fear effect in prey. Mathematical Biosciences and Engineering, 2023, 20(6): 10977-10999. doi: 10.3934/mbe.2023486
    [10] Yangyang Li, Fengxue Zhang, Xianglai Zhuo . Flip bifurcation of a discrete predator-prey model with modified Leslie-Gower and Holling-type III schemes. Mathematical Biosciences and Engineering, 2020, 17(3): 2003-2015. doi: 10.3934/mbe.2020106
  • We study global asymptotic properties of a continuous time Leslie-Gower food chain model. We construct a Lyapunov function which enables us to establish global asymptotic stability of the unique coexisting equilibrium state.


  • This article has been cited by:

    1. Wen-Bin Yang, Yan-Ling Li, Jianhua Wu, Hai-Xia Li, Dynamics of a food chain model with ratio-dependent and modified Leslie-Gower functional responses, 2015, 20, 1553-524X, 2269, 10.3934/dcdsb.2015.20.2269
    2. Vasyl Martsenyuk, Aleksandra Kłos-Witkowska, Andriy Sverstiuk, Stability, bifurcation and transition to chaos in a model of immunosensor based on lattice differential equations with delay, 2018, 14173875, 1, 10.14232/ejqtde.2018.1.27
    3. H. M. Safuan, H. S. Sidhu, Z. Jovanoski, I. N. Towers, Impacts of Biotic Resource Enrichment on a Predator–Prey Population, 2013, 75, 0092-8240, 1798, 10.1007/s11538-013-9869-7
    4. Cruz Vargas-De-León, Lyapunov functions for two-species cooperative systems, 2012, 219, 00963003, 2493, 10.1016/j.amc.2012.08.084
    5. Chaity Ganguli, T. K. Kar, P. K. Mondal, Optimal harvesting of a prey–predator model with variable carrying capacity, 2017, 10, 1793-5245, 1750069, 10.1142/S1793524517500693
    6. Hamizah M. Safuan, Isaac N. Towers, Zlatko Jovanoski, Harvinder S. Sidhu, On travelling wave solutions of the diffusive Leslie–Gower model, 2016, 274, 00963003, 362, 10.1016/j.amc.2015.10.088
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(2876) PDF downloads(486) Cited by(6)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog