On the global dynamics of a model for tumor immunotherapy

  • Received: 01 January 2009 Accepted: 29 June 2018 Published: 01 June 2009
  • MSC : Primary: 37N25, 62P10; Secondary: 35B40.

  • Understanding the dynamics of human hosts and tumors is of critical importance. A mathematical model was developed that explored the immune response to tumors that was used to study a special type of treatment [3]. This treatment approach uses elements of the host to boost its immune response in the hopes that the host can clear the tumor. This model was extensively studied using numerical simulation, however no global analytical results were originally presented. In this work we explore the global dynamics to show under what conditions tumor clearance can be achieved.

    Citation: Denise E. Kirschner, Alexei Tsygvintsev. On the global dynamics of a model for tumor immunotherapy[J]. Mathematical Biosciences and Engineering, 2009, 6(3): 573-583. doi: 10.3934/mbe.2009.6.573

    Related Papers:

    [1] Ernesto A. B. F. Lima, Patrick N. Song, Kirsten Reeves, Benjamin Larimer, Anna G. Sorace, Thomas E. Yankeelov . Predicting response to combination evofosfamide and immunotherapy under hypoxic conditions in murine models of colon cancer. Mathematical Biosciences and Engineering, 2023, 20(10): 17625-17645. doi: 10.3934/mbe.2023783
    [2] Eric Salgado, Yanguang Cao . Pharmacokinetics and pharmacodynamics of therapeutic antibodies in tumors and tumor-draining lymph nodes. Mathematical Biosciences and Engineering, 2021, 18(1): 112-131. doi: 10.3934/mbe.2021006
    [3] Yixun Xing, Casey Moore, Debabrata Saha, Dan Nguyen, MaryLena Bleile, Xun Jia, Robert Timmerman, Hao Peng, Steve Jiang . Mathematical modeling of the synergetic effect between radiotherapy and immunotherapy. Mathematical Biosciences and Engineering, 2025, 22(5): 1206-1225. doi: 10.3934/mbe.2025044
    [4] K. E. Starkov, Svetlana Bunimovich-Mendrazitsky . Dynamical properties and tumor clearance conditions for a nine-dimensional model of bladder cancer immunotherapy. Mathematical Biosciences and Engineering, 2016, 13(5): 1059-1075. doi: 10.3934/mbe.2016030
    [5] Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth . A phase-field model for non-small cell lung cancer under the effects of immunotherapy. Mathematical Biosciences and Engineering, 2023, 20(10): 18670-18694. doi: 10.3934/mbe.2023828
    [6] Yu Jiang, Lijuan Lin, Huiming Lv, He Zhang, Lili Jiang, Fenfen Ma, Qiuyue Wang, Xue Ma, Shengjin Yu . Immune cell infiltration and immunotherapy in hepatocellular carcinoma. Mathematical Biosciences and Engineering, 2022, 19(7): 7178-7200. doi: 10.3934/mbe.2022339
    [7] Xiaowei Zhang, Jiayu Tan, Xinyu Zhang, Kritika Pandey, Yuqing Zhong, Guitao Wu, Kejun He . Aggrephagy-related gene signature correlates with survival and tumor-associated macrophages in glioma: Insights from single-cell and bulk RNA sequencing. Mathematical Biosciences and Engineering, 2024, 21(2): 2407-2431. doi: 10.3934/mbe.2024106
    [8] OPhir Nave, Shlomo Hareli, Miriam Elbaz, Itzhak Hayim Iluz, Svetlana Bunimovich-Mendrazitsky . BCG and IL − 2 model for bladder cancer treatment with fast and slow dynamics based on SPVF method—stability analysis. Mathematical Biosciences and Engineering, 2019, 16(5): 5346-5379. doi: 10.3934/mbe.2019267
    [9] Chunpei Ou, Qin Peng, Changchun Zeng . An integrative prognostic and immune analysis of PTPRD in cancer. Mathematical Biosciences and Engineering, 2022, 19(6): 5361-5379. doi: 10.3934/mbe.2022251
    [10] Bin Ma, Lianqun Cao, Yongmin Li . A novel 10-gene immune-related lncRNA signature model for the prognosis of colorectal cancer. Mathematical Biosciences and Engineering, 2021, 18(6): 9743-9760. doi: 10.3934/mbe.2021477
  • Understanding the dynamics of human hosts and tumors is of critical importance. A mathematical model was developed that explored the immune response to tumors that was used to study a special type of treatment [3]. This treatment approach uses elements of the host to boost its immune response in the hopes that the host can clear the tumor. This model was extensively studied using numerical simulation, however no global analytical results were originally presented. In this work we explore the global dynamics to show under what conditions tumor clearance can be achieved.


  • This article has been cited by:

    1. Konstantin E. Starkov, Luis N. Coria, Global dynamics of the Kirschner–Panetta model for the tumor immunotherapy, 2013, 14, 14681218, 1425, 10.1016/j.nonrwa.2012.10.006
    2. Alberto d’Onofrio, 2013, Chapter 7, 978-1-4614-1444-5, 111, 10.1007/978-1-4614-1445-2_7
    3. N. S. Ravindran, M. Mohamed Sheriff, P. Krishnapriya, Analysis of tumour-immune evasion with chemo-immuno therapeutic treatment with quadratic optimal control, 2017, 11, 1751-3758, 480, 10.1080/17513758.2017.1381280
    4. Zvia Agur, Moran Elishmereni, Urszula Foryś, Yuri Kogan, Accelerating the Development of Personalized Cancer Immunotherapy by Integrating Molecular Patients’ Profiles with Dynamic Mathematical Models, 2020, 108, 0009-9236, 515, 10.1002/cpt.1942
    5. Alexei Tsygvintsev, Simeone Marino, Denise E. Kirschner, 2013, Chapter 13, 978-1-4614-4177-9, 367, 10.1007/978-1-4614-4178-6_13
    6. Regina Padmanabhan, Nader Meskin, Ala-Eddin Al Moustafa, 2021, Chapter 2, 978-981-15-8639-2, 15, 10.1007/978-981-15-8640-8_2
    7. Mitra Shojania Feizabadi, Tarynn M Witten, Modeling drug resistance in a conjoint normal-tumor setting, 2015, 12, 1742-4682, 10.1186/1742-4682-12-3
    8. Liuyong Pang, Sanhong Liu, Xinan Zhang, Tianhai Tian, Mathematical modeling and dynamic analysis of anti-tumor immune response, 2020, 62, 1598-5865, 473, 10.1007/s12190-019-01292-9
    9. Konstantin E. Starkov, Alexander P. Krishchenko, Ultimate dynamics of the Kirschner–Panetta model: Tumor eradication and related problems, 2017, 381, 03759601, 3409, 10.1016/j.physleta.2017.08.048
    10. Alberto d’Onofrio, Francesca Gatti, Paola Cerrai, Luca Freschi, Delay-induced oscillatory dynamics of tumour–immune system interaction, 2010, 51, 08957177, 572, 10.1016/j.mcm.2009.11.005
    11. F. A. Rihan, D. H. Abdelrahman, F. Al-Maskari, F. Ibrahim, M. A. Abdeen, Delay Differential Model for Tumour-Immune Response with Chemoimmunotherapy and Optimal Control, 2014, 2014, 1748-670X, 1, 10.1155/2014/982978
    12. Sumana Ghosh, Sandip Banerjee, Mathematical modeling of cancer–immune system, considering the role of antibodies, 2018, 137, 1431-7613, 67, 10.1007/s12064-018-0261-x
    13. Konstantin E. Starkov, On dynamic tumor eradication conditions under combined chemical/anti-angiogenic therapies, 2018, 382, 03759601, 387, 10.1016/j.physleta.2017.12.025
    14. P. Krishnapriya, M. Pitchaimani, Optimal control of mixed immunotherapy and chemotherapy of tumours with discrete delay, 2017, 5, 2195-268X, 872, 10.1007/s40435-015-0221-y
    15. Andrea Minelli, Francesco Topputo, Franco Bernelli-Zazzera, Controlled Drug Delivery in Cancer Immunotherapy: Stability, Optimization, and Monte Carlo Analysis, 2011, 71, 0036-1399, 2229, 10.1137/100815190
    16. Stable periodic oscillations in a two-stage cancer model of tumor and immune system interactions, 2012, 9, 1551-0018, 347, 10.3934/mbe.2012.9.347
    17. Shiferaw Feyissa, Sandip Banerjee, Delay-induced oscillatory dynamics in humoral mediated immune response with two time delays, 2013, 14, 14681218, 35, 10.1016/j.nonrwa.2012.05.001
    18. Renee Brady, Heiko Enderling, Mathematical Models of Cancer: When to Predict Novel Therapies, and When Not to, 2019, 81, 0092-8240, 3722, 10.1007/s11538-019-00640-x
    19. Amine Hamdache, Smahane Saadi, A stochastic nominal control optimizing the adoptive immunotherapy for cancer using tumor-infiltrating lymphocytes, 2017, 5, 2195-268X, 783, 10.1007/s40435-016-0228-z
    20. F. Adi-Kusumo, L. Aryati, S. Risdayati, S. Norhidayah, Hopf Bifurcation on a Cancer Therapy Model by Oncolytic Virus Involving the Malignancy Effect and Therapeutic Efficacy, 2020, 2020, 0161-1712, 1, 10.1155/2020/4730715
    21. Azadeh Aghaeeyan, Mohammad Javad Yazdanpanah, Jamshid Hadjati, A New Tumor-Immunotherapy Regimen based on Impulsive Control Strategy, 2020, 57, 17468094, 101763, 10.1016/j.bspc.2019.101763
    22. F.A. Rihan, D.H. Abdel Rahman, S. Lakshmanan, A.S. Alkhajeh, A time delay model of tumour–immune system interactions: Global dynamics, parameter estimation, sensitivity analysis, 2014, 232, 00963003, 606, 10.1016/j.amc.2014.01.111
    23. Marc E. Songolo, Issa Ramadhani, Analysis of a mathematical model for cancer treatment by the nonstandard finite difference methods, 2017, 23, 1023-6198, 1222, 10.1080/10236198.2017.1318863
    24. Giulio Caravagna, Alberto d’Onofrio, Paolo Milazzo, Roberto Barbuti, Tumour suppression by immune system through stochastic oscillations, 2010, 265, 00225193, 336, 10.1016/j.jtbi.2010.05.013
    25. Murad Shibli, In Vivo Dynamic Image Characterization of Brain Tumor Growth Using Singular Value Decomposition and Eigenvalues, 2011, 04, 1937-6871, 187, 10.4236/jbise.2011.43026
    26. KONSTANTIN E. STARKOV, ALEXANDER YU. POGROMSKY, ON THE GLOBAL DYNAMICS OF THE OWEN–SHERRATT MODEL DESCRIBING THE TUMOR–MACROPHAGE INTERACTIONS, 2013, 23, 0218-1274, 1350020, 10.1142/S021812741350020X
    27. Gord Fishell, Adam Kepecs, Interneuron Types as Attractors and Controllers, 2020, 43, 0147-006X, 1, 10.1146/annurev-neuro-070918-050421
    28. Alexei Tsygvintsev, Sandip Banerjee, Bounded immune response in immunotherapy described by the deterministic delay Kirschner–Panetta model, 2014, 35, 08939659, 90, 10.1016/j.aml.2013.11.006
    29. Konstantin E. Starkov, Alexander P. Krishchenko, On the global dynamics of one cancer tumour growth model, 2014, 19, 10075704, 1486, 10.1016/j.cnsns.2013.09.023
    30. Amine Hamdache, Smahane Saadi, Ilias Elmouki, Nominal and neighboring-optimal control approaches to the adoptive immunotherapy for cancer, 2016, 4, 2195-268X, 346, 10.1007/s40435-015-0205-y
    31. Murad Al-Shibli, Generalized electro-biothermo-fluidic and dynamicalmodeling of cancer growth: state-feedback controlled cesium therapy approach, 2011, 04, 1937-6871, 569, 10.4236/jbise.2011.49073
    32. Yueping Dong, Rinko Miyazaki, Yasuhiro Takeuchi, Mathematical modeling on helper T cells in a tumor immune system, 2014, 19, 1553-524X, 55, 10.3934/dcdsb.2014.19.55
    33. Florent Feudjio Kemwoue, Vandi Deli, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Jules Fossi Tagne, Jacques Atangana, Dynamics of cancerous tumors under the effect of delayed information: mathematical and electronic study, 2022, 2195-268X, 10.1007/s40435-022-01031-2
    34. Abdulkareem Afolabi Ibrahim, Normah Maan, Khairunadwa Jemon, Afeez Abidemi, Global Stability and Thermal Optimal Control Strategies for Hyperthermia Treatment of Malignant Tumors, 2022, 10, 2227-7390, 2188, 10.3390/math10132188
    35. Giulio Caravagna, Roberto Barbuti, Alberto d'Onofrio, Fine-tuning anti-tumor immunotherapies via stochastic simulations, 2012, 13, 1471-2105, 10.1186/1471-2105-13-S4-S8
    36. Florent Feudjio Kemwoue, Vandi Deli, Hélène Carole Edima, Joseph Marie Mendimi, Carlos Lawrence Gninzanlong, Mireille Mbou Dedzo, Jules Fossi Tagne, Jacques Atangana, Effects of delay in a biological environment subject to tumor dynamics, 2022, 158, 09600779, 112022, 10.1016/j.chaos.2022.112022
    37. Sulasri Suddin, Fajar Adi-Kusumo, Lina Aryati, Sining Zheng, Reaction-Diffusion on a Spatial Mathematical Model of Cancer Immunotherapy with Effector Cells and IL-2 Compounds’ Interactions, 2021, 2021, 1687-9651, 1, 10.1155/2021/5535447
    38. N. DARANDIS, M. NAZARI, A NEW MATHEMATICAL MODELING AND SUB-OPTIMAL CHEMOTHERAPY OF CANCER, 2021, 29, 0218-3390, 647, 10.1142/S0218339021500133
    39. EYMARD HERNÁNDEZ-LÓPEZ, MAYRA NÚÑEZ-LÓPEZ, MARCOS A. CAPISTRÁN, STOCHASTIC DYNAMICS BETWEEN THE IMMUNE SYSTEM AND CANCER CELLS WITH ALLEE EFFECT AND IMMUNOTHERAPY, 2023, 31, 0218-3390, 1125, 10.1142/S0218339023500420
    40. Md. Ahsan Ullah, Uzzwal Kumar Mallick, Waleed Adel, Mathematical Modeling and Analysis on the Effects of Surgery and Chemotherapy on Lung Cancer, 2023, 2023, 1687-0042, 1, 10.1155/2023/4201373
    41. Andreas Wagner, Pirmin Schlicke, Marvin Fritz, Christina Kuttler, J. Tinsley Oden, Christian Schumann, Barbara Wohlmuth, A phase-field model for non-small cell lung cancer under the effects of immunotherapy, 2023, 20, 1551-0018, 18670, 10.3934/mbe.2023828
    42. Gladis Torres-Espino, Claudio Vidal, Dynamics aspects and bifurcations of a tumor-immune system interaction under stationary immunotherapy, 2024, 00255564, 109145, 10.1016/j.mbs.2024.109145
    43. Aqeel Ahmad, Muhammad Owais Kulachi, Muhammad Farman, Moin-ud-Din Junjua, Muhammad Bilal Riaz, Sidra Riaz, Muntazir Hussain, Mathematical modeling and control of lung cancer with IL2 cytokine and anti-PD-L1 inhibitor effects for low immune individuals, 2024, 19, 1932-6203, e0299560, 10.1371/journal.pone.0299560
    44. Kottakkaran Sooppy Nisar, Muhammad Owais Kulachi, Aqeel Ahmad, Muhammad Farman, Muhammad Saqib, Muhammad Umer Saleem, Fractional order cancer model infection in human with CD8+ T cells and anti-PD-L1 therapy: simulations and control strategy, 2024, 14, 2045-2322, 10.1038/s41598-024-66593-x
    45. Parvaiz Ahmad Naik, Muhammad Owais Kulachi, Aqeel Ahmad, Muhammad Farman, Faiza Iqbal, Muhammad Taimoor, Zhengxin Huang, Modeling different strategies towards control of lung cancer: leveraging early detection and anti-cancer cell measures, 2024, 1025-5842, 1, 10.1080/10255842.2024.2404540
    46. Clara Burgos, Juan Carlos Cortés, Sergio. Díez-Domingo, Elena López-Navarro, Jose Villanueva-Tarazona, Rafael Jacinto Villanueva, A computational probabilistic procedure to quantify the time of breast cancer recurrence after chemotherapy administration, 2024, 188, 09600779, 115546, 10.1016/j.chaos.2024.115546
  • Reader Comments
  • © 2009 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(4046) PDF downloads(725) Cited by(46)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog