The quotient hyperfield is a landmark on the borderline of fields and hyperfields. In this paper, which is the second part of our previously published paper, all the hyperfields of order 7 are constructed, enumerated, and presented. While doing so, an important family of 7-element canonical hypergroups was revealed. The study of these hyperfields proved the existence of both quotient and non-quotient ones among them. Their construction became feasible because it is based on a new definition of the hyperfield with less axioms, which is introduced in this paper following our proof that the axiom of reversibility can derive from the remaining axioms of the hyperfield. Hence, the processing power needed for a computer to test whether a structure is a hyperfield or not, is much less. This paper also presents properties and provides examples of skew hyperfields, strongly canonical hyperfields/hyperrings, and superiorly canonical hyperfields/hyperrings that wrap up and complete the previously published first part's conclusions and results.
Citation: Christos G. Massouros, Gerasimos G. Massouros. On the borderline of fields and hyperfields, part Ⅱ – Enumeration and classification of the hyperfields of order 7[J]. AIMS Mathematics, 2025, 10(9): 21287-21421. doi: 10.3934/math.2025951
The quotient hyperfield is a landmark on the borderline of fields and hyperfields. In this paper, which is the second part of our previously published paper, all the hyperfields of order 7 are constructed, enumerated, and presented. While doing so, an important family of 7-element canonical hypergroups was revealed. The study of these hyperfields proved the existence of both quotient and non-quotient ones among them. Their construction became feasible because it is based on a new definition of the hyperfield with less axioms, which is introduced in this paper following our proof that the axiom of reversibility can derive from the remaining axioms of the hyperfield. Hence, the processing power needed for a computer to test whether a structure is a hyperfield or not, is much less. This paper also presents properties and provides examples of skew hyperfields, strongly canonical hyperfields/hyperrings, and superiorly canonical hyperfields/hyperrings that wrap up and complete the previously published first part's conclusions and results.
| [1] |
C. G. Massouros, G. G. Massouros, On the borderline of fields and hyperfields, Mathematics, 11 (2023), 1289. https://doi.org/10.3390/math11061289 doi: 10.3390/math11061289
|
| [2] | F. Marty, Sur une généralisation de la notion de groupe, In: 8th Congress Math. Scandinaves, 1934, 45–49. |
| [3] | M. Krasner, Approximation des corps valués complets de caractéristique p≠0 par ceux de caractéristique 0, Colloque d' Algèbre Supérieure (Bruxelles, Decembre 1956); Centre Belge de Recherches Mathématiques, Établissements Ceuterick, Louvain, Librairie Gauthier-Villars: Paris, France, 1957,129–206. |
| [4] | C. G. Massouros, On connections between vector spaces and hypercompositional structures. Ital. J. Pure Appl. Math., 34 (2015), 133–150. |
| [5] |
C. Massouros, G. Massouros, An overview of the foundations of the hypergroup theory, Mathematics, 9 (2021), 1014. https://doi.org/10.3390/math9091014 doi: 10.3390/math9091014
|
| [6] |
C. G. Massouros, On the semi-subhypergroups of a hypergroup, Int. J. Math. Math. Sci., 14 (1991), 293–304. https://doi.org/10.1155/S0161171291000340 doi: 10.1155/S0161171291000340
|
| [7] |
M. Krasner, A class of hyperrings and hyperfields, Int. J. Math. Math. Sci., 6 (1983), 307–312. https://doi.org/10.1155/S0161171283000265 doi: 10.1155/S0161171283000265
|
| [8] |
M. Akian, S. Gaubert, L. Rowen, Semiring systems arising from hyperrings, J. Pure Appl. Algebra, 228 (2024), 107584. https://doi.org/10.1016/j.jpaa.2023.107584 doi: 10.1016/j.jpaa.2023.107584
|
| [9] |
A. Fayazi, T. Nozari, R. Ameri, M. Norouzi, On multi-hyperrings, Jordan J. Math. Stat., 17 (2024), 65–83. https://doi.org/10.47013/17.1.4 doi: 10.47013/17.1.4
|
| [10] |
M. Hamidi, I. Cristea, Hyperideal-based zero-divisor graph of the general hyperring Zn, AIMS Mathematics, 9 (2024), 15891–15910. https://doi.org/10.3934/math.2024768 doi: 10.3934/math.2024768
|
| [11] |
E. Türkmen, B. N. Türkmen, H. Bordbar, A hyperstructural approach to semisimplicity, Axioms, 13 (2024), 81. https://doi.org/10.3390/axioms13020081 doi: 10.3390/axioms13020081
|
| [12] |
E. Türkmen, B. N. Türkmen, H. Bordbar, A characterization of normal injective and normal projective hypermodules, Axioms, 13 (2024), 410. https://doi.org/10.3390/axioms13060410 doi: 10.3390/axioms13060410
|
| [13] |
D. E. Kędzierski, A. Linzi, H. Stojałowska, Characteristic, C-characteristic and positive cones in hyperfields, Mathematics, 11 (2023), 779. https://doi.org/10.3390/math11030779 doi: 10.3390/math11030779
|
| [14] |
H. Bordbar, Torsion elements and torsionable hypermodules, Mathematics, 11 (2023), 4525. http://dx.doi.org/10.3390/math11214525 doi: 10.3390/math11214525
|
| [15] |
H. Bordbar, S. Jančic-Rašović, I. Cristea, Regular local hyperrings and hyperdomains, AIMS Mathematics, 7 (2022), 20767–20780, https://doi.org/10.3934/math.20221138 doi: 10.3934/math.20221138
|
| [16] | M. Akian, S. Gaubert, L. Rowen, Linear algebra over T-pairs, 2024, arXiv: 2310.05257. https://doi.org/10.48550/arXiv.2310.05257 |
| [17] | L. H. Rowen, Tensor products of bimodules and bimodule pairs over monoids, 2024, arXiv: 410.00992. https://doi.org/10.48550/arXiv.2410.00992 |
| [18] | L. H. Rowen, Residue structures, 2024, arXiv: 2403.09467. https://doi.org/10.48550/arXiv.2403.09467 |
| [19] | R. M. K. S Rathnayaka, N. Ramaruban, Hyperideal structure of Krasner's induced quotient hyperrings, Vavuniya J. Sci., 1 (2022), 1–8. |
| [20] |
S. Gunn, Tropical extensions and Baker-Lorscheid multiplicities for idylls, Commun. Algebra, 53 (2025), 63–89. https://doi.org/10.1080/00927872.2024.2372376 doi: 10.1080/00927872.2024.2372376
|
| [21] |
K. M. A. Roberto, K. R. P. Santos, H. L. Mariano, On non-commutativemulti-rings with involution, Mathematics, 12 (2024), 2931. https://doi.org/10.3390/math12182931 doi: 10.3390/math12182931
|
| [22] |
S. Sh. Mousavi, M. Jafarpour, I. Cristea, From HX-Groups to HX-Polygroups, Axioms, 13 (2024), 7. https://doi.org/10.3390/axioms13010007 doi: 10.3390/axioms13010007
|
| [23] | J. Mittas, Hypergroupes canoniques. Math. Balk., 2 (1972), 165–179. |
| [24] | J. Mittas, Hypergroupes polysymetriques canoniques, In: Proceedings of the Atti del Convegno su Ipergruppi, Altre Strutture Multivoche e loro Applicazioni, Udine, Italy, 15–18 October 1985, 1–25. |
| [25] | J. Mittas, Hypergroupes canoniques values et hypervalues—Hypergroupes fortement et superieurement canoniques. Bull. Greek Math. Soc., 23 (1982), 55–88. |
| [26] | C. G. Massouros, Methods of constructing hyperfields, Int. J. Math. Math. Sci., 8 (1985), 725–728. |
| [27] | M. Krasner, Cours d' Algebre superieure, Theories des valuation et de Galois, Cours Fac. Sci. L' Univ. Paris, 1967–1968, 1–305. |
| [28] | C. G. Massouros, Constructions of hyperfields, Math. Balk., 5 (1991), 250–257. |
| [29] | M. Aigner, G. M. Ziegler, Every finite division ring is a field, In: Proofs from THE BOOK, Berlin, Heidelberg: Springer, 2018, 35–38. https://doi.org/10.1007/978-3-662-57265-8_6 |
| [30] | C. Massouros, On the theory of hyperrings and hyperfields. Algebra i Logika, 24 (1985), 728–742. |
| [31] | C. G. Massouros, A class of hyperfields and a problem in the theory of fields, Mathematica Montisnigri, 1 (1993), 73–84. |
| [32] | A. Nakassis, Recent results in hyperring and hyperfield theory, Int. J. Math. Math. Sci., 11 (1988), 209-220. |
| [33] |
J. Tolliver An equivalence between two approaches to limits of local fields. J. Number Theory, 166 (2016), 473–492. https://doi.org/10.1016/j.jnt.2016.02.015 doi: 10.1016/j.jnt.2016.02.015
|
| [34] |
J. Lee, Hyperfields, truncated DVRs, and valued fields, J. Number Theory, 212 (2020), 40–71. https://doi.org/10.1016/j.jnt.2019.10.019 doi: 10.1016/j.jnt.2019.10.019
|
| [35] |
K. Kuhlmann, A. Linzi, H. Stojałowska, Orderings and valuations in hyperfields, J. Algebra, 611 (2022), 399–421. https://doi.org/10.1016/j.jalgebra.2022.08.006 doi: 10.1016/j.jalgebra.2022.08.006
|
| [36] | A. Linzi, P. Touchard, On the hyperfields associated to valued fields, 2022, arXiv: 2211.05082. https://doi.org/10.48550/arXiv.2211.05082 |
| [37] | A. Linzi, Notes on valuation theory for Krasner hyperfields, 2023, arXiv: 2301.08639v1. https://doi.org/10.48550/arXiv.2301.08639. |
| [38] | J. Mittas, Contributions a la théorie des hypergroupes, hyperanneaux, et les hypercorps hypervalues, C. R. Acad. Sci. Paris, 272 (1971), 3–6. |
| [39] | J. Mittas, Certains hypercorps et hyperanneaux définis à partir de corps et anneaux ordonnés, Bull. Math. de la Soc Sci. Math. de la R. S. Roumanie, t. 15 (1971), 371–378. |
| [40] | J. Mittas, Hypergroupes canoniques values et hypervalues, Math. Balk., 1 (1971), 181–185. |
| [41] | J. Mittas, Contribution à la théorie des structures ordonnées et des structures valuées, Proc. Acad. Athens, 48 (1973), 318–331. |
| [42] | J. Mittas, Certaines remarques sur les hypergroupes canoniques hypervaluables et fortement canoniques. Riv. Mat. Pura Appl., 9 (1991), 61–67. |
| [43] | J. Mittas, Hypergroupes canoniques hypervalues, C. R. Acad. Sci. Paris, 271 (1970), 4–7. |
| [44] | J. Mittas, Sur les structures hypercompositionnelles, Algebraic Hyperstructures and Applications. In: Proceedings of the 4th Int. Cong., Xanthi, Greece, June 27–30, 1990; Singapore: World Scientific, 1991, 9–31. |
| [45] | J. Mittas, Sur les hyperanneaux et les hypercorps, Math. Balk., 3 (1973), 368–382. |
| [46] | O. Viro, Hyperfields for tropical geometry I. hyperfields and dequantization, 2010, arXiv: 1006.3034. https://doi.org/10.48550/arXiv.1006.3034. |
| [47] |
O. Y. Viro, On basic concepts of tropical geometry, Proc. Steklov Inst. Math., 273 (2011), 252–282. https://doi.org/10.1134/S0081543811040134 doi: 10.1134/S0081543811040134
|
| [48] | M. Baker, N. Bowler, Matroids over hyperfields, 2017, arXiv: 1601.01204. https://doi.org/10.48550/arXiv.1601.01204 |
| [49] | J. Jun, Geometry of hyperfields, 2017, arXiv: 1707.09348. https://doi.org/10.48550/arXiv.1707.09348 |
| [50] |
O. Lorscheid, Tropical geometry over the tropical hyperfield, Rocky Mountain J. Math., 52 (2022), 189–222. https://doi.org/10.1216/rmj.2022.52.189 doi: 10.1216/rmj.2022.52.189
|
| [51] | D. Hobby, J. Jun, Nontrivial solutions for homogeneous linear equations over some non-quotient hyperfields, 2023, arXiv: 2306.13232. https://doi.org/10.48550/arXiv.2306.13232 |
| [52] | C. G. Massouros, Hypergroups and their applications, Ph. D. Thesis, National Technical University of Athens, Greece, 1988. |
| [53] | C. G. Massouros, On the result of the difference of a subgroup of the multiplicative group of a field from itself, In: Proceedings of the 6th International Congruence on Algebraic Hyperstructures and Applications, Alexandroupolis, Greece: mocritous Univercity of Thrace Press, 1997, 89–101. |
| [54] | C. G. Massouros, Getting a field from differences of its multiplicative subgroups. Bull. Polytech. Inst. Iasi Sect. Math. Theor. Mech. Phys., 46 (2000), 1–17. |
| [55] |
C. G. Massouros, A field theory problem relating to questions in hyperfield theory, AIP Conf. Proc., 1389 (2011), 1852–1855. https://doi.org/10.1063/1.3636971 doi: 10.1063/1.3636971
|
| [56] | V. Bergelson, D. B. Shapiro, Multiplicative subgroups of finite index in a ring, Proc. Amer. Math. Soc., 116 (1992), 885–896. |
| [57] | G. Turnwald, Multiplicative subgroups of finite index in a division ring, Proc. Amer. Math. Soc., 120 (1994), 377–381. |
| [58] | M. De Salvo, D. Freni, Semi-ipergruppi e ipergruppi ciclici, Atti Sem. Mat. Fis. Univ. Modena, 30 (1981), 44–59. |
| [59] | R. Migliorato, Ipergruppi di cardinalità 3 e isomorfismi di ipergruppoidi commutativi totalmente regolari, Atti Convegno su Ipergruppi, Udine, Italy, October 15–18, 1985,131–136. |
| [60] | G. Nordo, An algorithm on number of isomorphism classes of hypergroups of order 3, Ital. J. Pure Appl. Math., 2 (1997), 37–42. |
| [61] |
C. Tsitouras, C. G. Massouros, On enumeration of hypergroups of order 3, Comput. Math. Appl., 59 (2010), 519–523. https://doi.org/10.1016/j.camwa.2009.06.013 doi: 10.1016/j.camwa.2009.06.013
|
| [62] | M. De Salvo, D. Freni, G. Lo Faro, Hypergroups of type u on the right of size five. Part two, Matematički Vesnik, 60 (2008), 23–45. |
| [63] |
M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, Isomorphism classes of the hypergroups of type U on the right of size five, Comput Math Appl, 58 (2009), 390–402. https://doi.org/10.1016/j.camwa.2009.03.090 doi: 10.1016/j.camwa.2009.03.090
|
| [64] |
M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, Fully simple semihypergroups, transitive digraphs, and Sequence A000712, J. Algebra, 415 (2014), 65–87. https://doi.org/10.1016/j.jalgebra.2014.05.033 doi: 10.1016/j.jalgebra.2014.05.033
|
| [65] |
M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, On hypergroups with a β-class of finite height, Symmetry, 12 (2020), 168. https://doi.org/10.3390/sym12010168 doi: 10.3390/sym12010168
|
| [66] |
M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, 1-hypergroups of small sizes, Mathematics, 9 (2021), 108. https://doi.org/10.3390/math9020108 doi: 10.3390/math9020108
|
| [67] |
M. De Salvo, D. Fasino, D. Freni, G. Lo Faro, G-Hypergroups: Hypergroups with a group-isomorphic heart. Mathematics, 10 (2022), 240. https://doi.org/10.3390/math10020240 doi: 10.3390/math10020240
|
| [68] |
A. C. Sonea, I. Cristea, The class equation and the commutativity degree for complete hypergroups, Mathematics, 8 (2020), 2253. https://doi.org/10.3390/math8122253 doi: 10.3390/math8122253
|
| [69] |
M. Iranmanesh, M. Jafarpour, H. Aghabozorgi, J. M. Zhan, Classification of Krasner hyperfields of order 4, Acta Math. Sin. (English Ser.), 36 (2020), 889–902. https://doi.org/10.1007/s10114-020-8282-z doi: 10.1007/s10114-020-8282-z
|
| [70] |
R. Ameri, M. Eyvazi, S. Hoskova-Mayerova, Advanced results in enumeration of hyperfields, AIMS Mathematics, 5 (2020), 6552–6579. https://doi.org/10.3934/math.2020422 doi: 10.3934/math.2020422
|
| [71] | Z. Liu, Finite hyperfields with order n≤5, 2020, arXiv: 2004.07241. https://doi.org/10.48550/arXiv.2004.07241 |
| [72] |
M. Baker, T. Jin, On the structure of hyperfields obtained as quotients of fields, Proc. Amer. Math. Soc., 149 (2021), 63–70. https://doi.org/10.1090/proc/15207 doi: 10.1090/proc/15207
|
| [73] | C. Massouros, C. Tsitouras, S. Voliotis, Square roots of total boolean matrices: Enumeration issues, In: 2009 16th International Conference on Systems, Signals and Image Processing, Chalkida, Greece, 2009. https://doi.org/10.1109/IWSSIP.2009.5367718 |
| [74] | C. G. Massouros, C. G. Tsitouras, Enumeration of hypercompositional structures defined by binary relations, Ital. J. Pure Appl. Math., 28 (2011), 43–54. |
| [75] |
C. Tsitouras, C. G. Massouros, Enumeration of rosenberg type hypercompositional structures defined by binary relations, Eur. J. Combin., 33 (2012), 1777–1786, https://doi.org/10.1016/j.ejc.2012.03.032. doi: 10.1016/j.ejc.2012.03.032
|
| [76] |
C. G. Massouros, N. Yaqoob, On the theory of left/right almost groups and hypergroups with their relevant enumerations, Mathematics, 9 (2021), 1828. https://doi.org/10.3390/math9151828. doi: 10.3390/math9151828
|
| [77] |
C. G. Massouros, On the enumeration of rigid hypercompositional structures, AIP Conf. Proc., 1648 (2015), 740005. https://doi.org/10.1063/1.4912960 doi: 10.1063/1.4912960
|
| [78] |
C. G. Massouros, G. G. Massouros, On 2-element fuzzy and mimic fuzzy hypergroups, AIP Conf. Proc., 1479 (2012), 2213–2216. https://doi.org/10.1063/1.4756632 doi: 10.1063/1.4756632
|
| [79] |
I. Cristea, M. Jafarpour, S. S. Mousavi, A. Soleymani, Enumeration of Rosenberg hypergroups, Comput. Math. Appl., 60 (2010), 2753–2763. https://doi.org/10.1016/j.camwa.2010.09.027 doi: 10.1016/j.camwa.2010.09.027
|
| [80] | M. Jafarpour, I. Cristea, A. Tavakoli, A method to compute the number of regular reversible Rosenberg hypergroup, ARS Comb., 128 (2018), 309–329. |
| [81] | S. Mirvakili, K. Hamidizadeh, R. Manaviyat, Classifications of unitary Krasner hyperrings of small order, Facta Universitatis (NIS) Ser. Math. Inform., 39 (2024), 481–492. https://doi.org/10.22190/FUMI230819033M |
| [82] | C. G. Massouros, Canonical and join hypergroups, An. Sti. Univ. Al. I. Cuza Iasi, 42 (1996), 175–186. |
| [83] | W. Prenowitz, J. Jantosciak, Geometries and join spaces, J. Reine Angew. Math., 257 (1972), 100–128. |
| [84] | J. Jantosciak, A brief survey of the theory of join spaces. In: Proceedings of the 5th Intern. Congress on Algebraic Hyperstructures and Applications, Iasi, Romania, 4–10 July 1993; Hadronic Press: Palm Harbor, FL, USA, 1994,109–122. |
| [85] | S. Wolfram, The mathematica book, 5 Eds., Wolfram Media, 2003. |