This paper considered a two-stage fourth-order modified explicit Euler/Crank-Nicolson numerical method for solving a time-variable fractional transport equation subject to suitable initial and boundary conditions. Both stability and error estimates of the new approach were deeply analyzed in the $ L^{\infty}(0, T; L^{2}) $-norm. The analysis suggests that the proposed technique is unconditionally stable and converges with order $ O(\max\{k^{2-\overline{\beta}}, k^{\frac{3}{2}}\}+h^{4}) $, where $ \overline{\beta} $ is a positive constant satisfying $ 0 < \overline{\beta} < 1 $, $ h $ and $ k $ are the space step and time step, respectively. This result indicates that the two-stage fourth-order formulation is fast and efficient. Numerical experiments were performed to verify the unconditional stability and convergence rate of the developed algorithm.
Citation: Eric Ngondiep, Areej A. Binsultan, Ibtisam M. Aldawish. A two-stage fourth-order modified explicit Euler/Crank-Nicolson approach for a time-variable fractional transport model[J]. AIMS Mathematics, 2025, 10(8): 18123-18155. doi: 10.3934/math.2025808
This paper considered a two-stage fourth-order modified explicit Euler/Crank-Nicolson numerical method for solving a time-variable fractional transport equation subject to suitable initial and boundary conditions. Both stability and error estimates of the new approach were deeply analyzed in the $ L^{\infty}(0, T; L^{2}) $-norm. The analysis suggests that the proposed technique is unconditionally stable and converges with order $ O(\max\{k^{2-\overline{\beta}}, k^{\frac{3}{2}}\}+h^{4}) $, where $ \overline{\beta} $ is a positive constant satisfying $ 0 < \overline{\beta} < 1 $, $ h $ and $ k $ are the space step and time step, respectively. This result indicates that the two-stage fourth-order formulation is fast and efficient. Numerical experiments were performed to verify the unconditional stability and convergence rate of the developed algorithm.
| [1] |
D. A. Benson, M. M. Meerschaert, J. Revielle, Fractional calculus in hydrologic modeling: A numerical perspective, Adv. Water Resour., 51 (2013), 479–497. http://dx.doi.org/10.1016/j.advwatres.2012.04.005 doi: 10.1016/j.advwatres.2012.04.005
|
| [2] |
S. Esmaili, M. R. Eslahchi, Application of collocation method for solving a parabolic-hyperbolic free boundary problem which models the growth of tumor with drug application, Math. Methods Appl. Sci., 40 (2017), 1711–1733. https://doi.org/10.1002/mma.4092 doi: 10.1002/mma.4092
|
| [3] |
X. Yang, Z. Zhang, Analysis of a new NFV scheme preserving DMP for two-dimensional sub-diffusion equation on distorted meshes, J. Sci. Comput., 99 (2024), 80. https://doi.org/10.1007/s10915-024-02511-7 doi: 10.1007/s10915-024-02511-7
|
| [4] |
L. Feng, F. Liu, I. Turner, L. Zheng, Novel numerical analysis of multi-term time fractional viscoelastic non-Newtonian fluid models for simulating unsteady and MHD and Couette flow of a generalized Oldroyd-B fluid, Fract. Calc. Appl. Anal., 21 (2018), 1073–1103. https://doi.org/10.1515/fca-2018-0058 doi: 10.1515/fca-2018-0058
|
| [5] |
V. R. Hosseini, A. A. Mehrizi, H. K. Maleh, M. Naddafi, A numerical solution of fractional reaction-convection-diffusion for modeling PEM fuel cells based on a meshless approach, Eng. Anal. Bound. Elem., 155 (2023), 707–716. https://doi.org/10.1016/j.enganabound.2023.06.016 doi: 10.1016/j.enganabound.2023.06.016
|
| [6] |
J. J. Yao, A. Kumar, S. Kumar, A fractional model to describe the Brownian motion of particles and its analytical solution, Adv. Mech. Eng., 7 (2015), 11. https://doi.org/10.1177/1687814015618874 doi: 10.1177/1687814015618874
|
| [7] |
G. S. Priya, P. Prakash, J. J. Nieto, Z. Kayar, High-order numerical scheme for the fractional heat equation with Dirichlet and Neumann boundary conditions, Numer. Heat Transfer Part B, 63 (2013), 540–559. https://doi.org/10.1080/10407790.2013.778719 doi: 10.1080/10407790.2013.778719
|
| [8] |
W. Zou, Y. Tang, V. R. Hosseini, The numerical meshless approach for solving the $2D$ time nonlinear multi-term fractional cable equation in complex geometries, Fractals, 30 (2022), 2240170. https://doi.org/10.1142/S0218348X22401703 doi: 10.1142/S0218348X22401703
|
| [9] | R. Schumer, D. A. Benson, M. M. Meerschaert, B. Baeumer, Fractal mobile/immobile solute transport, Water Resour. Res., 39 (2003). https://doi.org/10.1029/2003WR002141 |
| [10] |
H. Zhang, F. Liu, M. S. Phanikumar, M. M. Meerschaert, A novel numerical method for the time-variable fractional order mobile-immobile advection-dispersion model, Comput. Math. Appl., 66 (2013), 693–701. https://doi.org/10.1016/j.camwa.2013.01.031 doi: 10.1016/j.camwa.2013.01.031
|
| [11] |
A. Saadatmandi, M. Dehghan, M. R. Azizi, The Sinc-Legendre collocation method for a class of fractional convection-diffusion equations with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 17 (2012), 4125–4136. https://doi.org/10.1016/j.cnsns.2012.03.003 doi: 10.1016/j.cnsns.2012.03.003
|
| [12] |
M. R. Cui, Convergence analysis of high-order compact alternating direction implicit schemes for the two-dimensional time fractional diffusion equation, Numer. Algor., 62 (2013), 383–409. https://doi.org/10.1007/s11075-012-9589-3 doi: 10.1007/s11075-012-9589-3
|
| [13] |
G. H. Gao, Z. Z. Sun, A compact finite difference scheme for the fractional sub-diffusion equations, J. Comput. Phys., 230 (2011), 586–595. https://doi.org/10.1016/j.jcp.2010.10.007 doi: 10.1016/j.jcp.2010.10.007
|
| [14] |
Y. N. Zhang, Z. Z. Sun, X. Zhao, Compact alternating direction implicit scheme for the two-dimensional fractional diffusion-wave equation, SIAM J. Numer. Anal., 50 (2012), 1535–1555. https://doi.org/10.1137/110840959 doi: 10.1137/110840959
|
| [15] |
M. R. Cui, A high-order compact exponential scheme for the fractional convection-diffusion equation, J. Comput. Appl. Math., 255 (2014), 404–416. https://doi.org/10.1016/j.cam.2013.06.001 doi: 10.1016/j.cam.2013.06.001
|
| [16] |
P. Zhuang, F. Liu, V. Anh, I. Turner, New solution and analytical techniques of the implicit numerical method for the anomalous subdiffusion equation, SIAM J. Numer. Anal., 46 (2008), 1079–1095. https://doi.org/10.1137/060673114 doi: 10.1137/060673114
|
| [17] |
E. Ngondiep, A high-order numerical scheme for multidimensional convection-diffusion-reaction equation with time-fractional derivative, Numer. Algor., 94 (2023), 681–700. https://doi.org/10.1007/s11075-023-01516-x doi: 10.1007/s11075-023-01516-x
|
| [18] |
E. Ngondiep, A two-level fourth-order approach for time-fractional convection-diffusion-reaction equation with variable coefficients, Commun. Nonlinear Sci. Numer. Simul., 111 (2022), 106444. https://doi.org/10.1016/j.cnsns.2022.106444 doi: 10.1016/j.cnsns.2022.106444
|
| [19] |
E. Ngondiep, An efficient high-order two-level explicit/implicit numerical scheme for two-dimensional time fractional mobile/immobile advection-dispersion model, Int. J. Numer. Meth. Fluids, 96 (2024), 1305–1336. https://doi.org/10.1002/fld.5296 doi: 10.1002/fld.5296
|
| [20] |
E. Ngondiep, An efficient numerical approach for solving three-dimensional Black-Scholes equation with stochastic volatility, Math. Methods Appl. Sci., 48 (2025), 4769–4789. https://doi.org/10.1002/mma.10576 doi: 10.1002/mma.10576
|
| [21] |
M. Rostamian, A. Shahrezaee, A meshless method to the numerical solution of an inverse reaction-diffusion-convection problem, Int. J. Comput. Math., 94 (2017), 597–619. https://doi.org/10.1080/00207160.2015.1119816 doi: 10.1080/00207160.2015.1119816
|
| [22] |
M. Parvizi, M. R. Eslahchi, M. Dehghan, Numerical solution of fractional advection-diffusion equation with a nonlinear source term, Numer. Algor., 68 (2015), 601–629. https://doi.org/10.1007/s11075-014-9863-7 doi: 10.1007/s11075-014-9863-7
|
| [23] |
E. Ngondiep, An efficient high-order weak Galerkin finite element approach for Sobolev equation with variable matrix coefficients, Comput. Math. Appl., 180 (2025), 279–298. https://doi.org/10.1016/j.camwa.2025.01.013 doi: 10.1016/j.camwa.2025.01.013
|
| [24] |
E. Ngondiep, A high-order combined finite element/interpolation approach for solving nonlinear multidimensional generalized Benjamin-Bona-Mahony-Burgers' equations, Math. Comput. Simulation, 215 (2024), 560–577. https://doi.org/10.1016/j.matcom.2023.08.041 doi: 10.1016/j.matcom.2023.08.041
|
| [25] |
E. Ngondiep, A fast three-step second-order explicit numerical approach to investigating and forecasting the dynamic of corruption and poverty in Cameroon, Heliyon, 10 (2024), e38236. https://doi.org/10.1016/j.heliyon.2024.e38236 doi: 10.1016/j.heliyon.2024.e38236
|
| [26] |
A. C. R. Pillai, Fourth-order exponential finite difference methods for boundary value problems of convective diffusion type, Int. J. Numer. Methods Fluids, 37 (2001), 87–106. https://doi.org/10.1002/fld.167 doi: 10.1002/fld.167
|
| [27] |
Z. F. Tian, P. X. Yu, A high-order exponential scheme for solving 1D unsteady convection-diffusion equations, J. Comput. Appl. Math., 235 (2011), 2477–2491. https://doi.org/10.1016/j.cam.2010.11.001 doi: 10.1016/j.cam.2010.11.001
|
| [28] |
E. Ngondiep, An efficient two-level factored method for advection-dispersion problem with spatio-temporal coefficients and source terms, AIMS Mathematics, 8 (2023), 11498–11520. https://doi.org/10.3934/math.2023582 doi: 10.3934/math.2023582
|
| [29] |
Z. F. Tian, Y. B. Ge, A fourth-order compact ADI method for solving two-dimensional unsteady convection-diffusion problem, J. Comput. Appl. Math., 198 (2007), 268–286. https://doi.org/10.1016/j.cam.2005.12.005 doi: 10.1016/j.cam.2005.12.005
|
| [30] |
Q. Liu, F. Liu, I. Turner, V. Anh, Y. T. Gu, A RBF meshless approach for modeling a fractal mobile/immobile transport model, Appl. Math. Comput., 226 (2014), 336–347. https://doi.org/10.1016/j.amc.2013.10.008 doi: 10.1016/j.amc.2013.10.008
|
| [31] |
F. Liu, P. Zhuang, K. Burrage, Numerical methods and analysis for a class of fractional advection-dispersion models, Comput. Math. Appl., 64 (2012), 2990–3007. https://doi.org/10.1016/j.camwa.2012.01.020 doi: 10.1016/j.camwa.2012.01.020
|
| [32] |
T. B. Nguyen, B. Jang, A high-order predictor-corrector method for solving nonlinear differential equations of fractional order, Fract. Calc. Appl., Anal., 20 (2017), 447–476. https://doi.org/10.1515/fca-2017-0023 doi: 10.1515/fca-2017-0023
|
| [33] |
L. Guo, F. H. Zeng, I. Turner, K. Burrage, G. E. Karniadakis, Efficient multistep methods for tempered fractional calculus: Algorithms and simulations, SIAM J. Sci. Comput., 41 (2019), 2510–2535. https://doi.org/10.1137/18M1230153 doi: 10.1137/18M1230153
|
| [34] | D. A. Benson, M. M. Meerschaert, A simple and efficient random walk solution of multi-rate mobile/immobile mass transport equations, Adv. Water. Resources, 32 (2009), 532–539. |
| [35] |
X. Zhao, Z. Sun, G. E. Karniadakis, Second-order approximations for variable order fractional derivatives: Algorithms and applications, J. Comput. Phys., 293 (2015), 184–200. https://doi.org/10.1016/j.jcp.2014.08.015 doi: 10.1016/j.jcp.2014.08.015
|
| [36] |
M. Liu, Y. W. Du, H. Li, S. He, W. Gao, Finite difference/finite element method for a nonlinear time-fractional fourth-order reaction-diffusion problem, Comput. Math. Appl., 70 (2015), 573–591. https://doi.org/10.1016/j.camwa.2015.05.015 doi: 10.1016/j.camwa.2015.05.015
|
| [37] | E. Ngondiep, Spectral distribution in the eigenvalues sequence of product of g-Toeplitz structures, Numer. Math. Theor. Meth. Appl., 12 (2019), 750–777. |
| [38] |
Y. Saad, M. H. Schultz, GMRES: A generalized minimal residual algorithm for solving nonsymmetric linear systems, SIAM J. Sci. Stat. Comput., 7 (1986), 856–869. https://doi.org/10.1137/0907058 doi: 10.1137/0907058
|