This study investigates anomalous heat transfer in a radiative mixed convection flow of water-based drilling nanofluid (NF) immersed in a Darcy–Brinkman permeable medium. Since the underground fluids are exposed to anomalous temperatures, the extraction of gases and petroleum from rocks and soil requires the drilling fluids to have temperature-dependent viscosity and thermal conductivity. The variable thermal conductivity and viscosity of the drilling fluid provide resistance to high temperatures and pressure. Therefore, the objective of this study was to investigate anomalous heat transfer subject to frictional heating, melting heat, thermal radiation, and magnetic fields. Using the Brinkman–Maxwell–Garnett model, the effective thermophysical properties of drilling NF are considered. The computational performance of drilling NF is investigated using the Adams–Bashforth predictor and corrector approach. The findings suggest that the volume percentage and free convection parameter increases the Nusselt number considerably. The thickness of the boundary layer is increased by a higher permeability parameter, whereas the Darcy number exhibits the opposite tendency. Fluid velocity and skin friction are reduced by the magnetic number, whereas the temperature profile is raised by increases in the radiation parameter and the volume percentage of nanoparticles. The rate of heat transmission becomes significant in the scenario of variable characteristics.
Citation: Fisal Asiri. Numerical analysis of heat transfer in a mixed-convection flow of drilling nanofluid embedded in a Darcy-Brinkman permeable medium with variables viscosity and thermal conductivity[J]. AIMS Mathematics, 2025, 10(8): 17459-17482. doi: 10.3934/math.2025780
This study investigates anomalous heat transfer in a radiative mixed convection flow of water-based drilling nanofluid (NF) immersed in a Darcy–Brinkman permeable medium. Since the underground fluids are exposed to anomalous temperatures, the extraction of gases and petroleum from rocks and soil requires the drilling fluids to have temperature-dependent viscosity and thermal conductivity. The variable thermal conductivity and viscosity of the drilling fluid provide resistance to high temperatures and pressure. Therefore, the objective of this study was to investigate anomalous heat transfer subject to frictional heating, melting heat, thermal radiation, and magnetic fields. Using the Brinkman–Maxwell–Garnett model, the effective thermophysical properties of drilling NF are considered. The computational performance of drilling NF is investigated using the Adams–Bashforth predictor and corrector approach. The findings suggest that the volume percentage and free convection parameter increases the Nusselt number considerably. The thickness of the boundary layer is increased by a higher permeability parameter, whereas the Darcy number exhibits the opposite tendency. Fluid velocity and skin friction are reduced by the magnetic number, whereas the temperature profile is raised by increases in the radiation parameter and the volume percentage of nanoparticles. The rate of heat transmission becomes significant in the scenario of variable characteristics.
| [1] | K. Hiemenz, Die Grenzschicht an einem in den gleichformigen Flussigkeitsstrom eingetauchten geraden Kreiszylinder, Dinglers Polytech. J., 326 (1911), 311. Available from: https://cir.nii.ac.jp/crid/1573668924607721856. |
| [2] |
F. Homann, Der Einfluß großer Zähigkeit bei der Strömung um den Zylinder und um die Kugel, ZAMM, 16 (1936), 153–164. https://doi.org/10.1002/zamm.19360160304 doi: 10.1002/zamm.19360160304
|
| [3] |
L. Howarth F. R. S., CXLIV. The boundary layer in three dimensional flow.—Part Ⅱ. The flow near a stagnation point, London, Edinburgh Dublin Philos. Mag. J. Sci., 42 (2009), 1433–1440. https://doi.org/10.1080/14786445108560962 doi: 10.1080/14786445108560962
|
| [4] |
A. Davey, D. Schofield, Three-dimensional flow near a two-dimensional stagnation point, J. Fluid Mech., 28 (1967), 149–151. https://doi.org/10.1017/S0022112067001958 doi: 10.1017/S0022112067001958
|
| [5] |
N. Bachok, A. Ishak, I. Pop, Boundary layer stagnation-point flow and heat transfer over an exponentially stretching/shrinking sheet in a nanofluid, Int. J. Heat Mass Transfer, 55 (2012), 8122–8128. https://doi.org/10.1016/j.ijheatmasstransfer.2012.08.051 doi: 10.1016/j.ijheatmasstransfer.2012.08.051
|
| [6] |
G. C. Dash, R. S. Tripathy, M. M. Rashidi, S. R. Mishra, Numerical approach to boundary layer stagnation-point flow past a stretching/shrinking sheet, J. Mol. Liq., 221 (2016), 860–866. https://doi.org/10.1016/j.molliq.2016.06.072 doi: 10.1016/j.molliq.2016.06.072
|
| [7] | L. Ali, R. Apsari, A. Abbas, P. Tak, Entropy generation on the dynamics of volume fraction of nano-particles and coriolis force impacts on mixed convective nanofluid flow with significant magnetic effect, Numer. Heat Transfer, Part A: Appl., 2024, 1–16, https://doi.org/10.1080/10407782.2024.2360652 |
| [8] | S. U. S. Choi, J. A. Eastman, Enhancing thermal conductivity of fluids with nanoparticles, 1995. Available from: https://ecotert.com/pdf/196525_From_unt-edu.pdf. |
| [9] |
C. Liu, M. Khan, M. Ramzan, Y. Chu, S. Kadry, M. Y. Malik, et al., Nonlinear radiative Maxwell nanofluid flow in a Darcy–Forchheimer permeable media over a stretching cylinder with chemical reaction and bioconvection, Sci. Rep., 11 (2021), 9391. https://doi.org/10.1038/s41598-021-88947-5 doi: 10.1038/s41598-021-88947-5
|
| [10] |
P. K. Pattnaik, S. R. Mishra, O. Anwar Bég, U. F. Khan, J. C. Umavathi, Axisymmetric radiative titanium dioxide magnetic nanofluid flow on a stretching cylinder with homogeneous/heterogeneous reactions in Darcy-Forchheimer porous media: Intelligent nanocoating simulation, Mater. Sci. Eng. : B, 277 (2022), 115589. https://doi.org/10.1016/j.mseb.2021.115589 doi: 10.1016/j.mseb.2021.115589
|
| [11] |
A. M. Sedki, Effect of thermal radiation and chemical reaction on MHD mixed convective heat and mass transfer in nanofluid flow due to nonlinear stretching surface through porous medium, Results Mater., 16 (2022), 100334. https://doi.org/10.1016/j.rinma.2022.100334 doi: 10.1016/j.rinma.2022.100334
|
| [12] |
N. Anjum, W. A. Khan, A. Hobiny, M. Azam, M. Waqas, M. Irfan, Numerical analysis for thermal performance of modified Eyring Powell nanofluid flow subject to activation energy and bioconvection dynamic, Case Stud. Therm. Eng., 39 (2022), 102427. https://doi.org/10.1016/j.csite.2022.102427 doi: 10.1016/j.csite.2022.102427
|
| [13] |
Y. Bai, Q. Tang, Y. Zhang, Unsteady MHD oblique stagnation slip flow of Oldroyd-B nanofluids by coupling Cattaneo-Christov double diffusion and Buongiorno model, Chinese J. Phys., 79 (2022), 451–470. https://doi.org/10.1016/j.cjph.2022.09.013 doi: 10.1016/j.cjph.2022.09.013
|
| [14] |
M. I. Asjad, M. Zahid, M. Inc, D. Baleanu, B. Almohsen, Impact of activation energy and MHD on Williamson fluid flow in the presence of bioconvection, Alex. Eng. J., 61 (2022), 8715–8727. https://doi.org/10.1016/j.aej.2022.02.013 doi: 10.1016/j.aej.2022.02.013
|
| [15] |
F. Mabood, M. D. Shamshuddin, S. R. Mishra, Characteristics of thermophoresis and Brownian motion on radiative reactive micropolar fluid flow towards continuously moving flat plate: HAM solution, Math. Comput. Simul., 191 (2022), 187–202. https://doi.org/10.1016/j.matcom.2021.08.004 doi: 10.1016/j.matcom.2021.08.004
|
| [16] |
S. A. Khan, T. Hayat, A. Alsaedi, B. Ahmad, Heat and mass transfer enhancement in nonlinear mixed convective flow: Buongiorno model and melting heat phenomenon, Int. Commun. Heat Mass Transfer, 153 (2024), 107330. https://doi.org/10.1016/j.icheatmasstransfer.2024.107330 doi: 10.1016/j.icheatmasstransfer.2024.107330
|
| [17] | S. Rehman, M. Boujelbene, M. Waqas, On the augmentation of heat transfer with hybrid nanofluid containing microorganisms on flat plate under thermal radiation, using mixtures models, Energy Environ., 2024. https://doi.org/10.1177/0958305X241244487 |
| [18] |
J. Tian, S. Rehman, M. Saqib, A. G. Shah, T. H. AlAbdulaal, Entropy generation and heat transport performance of a partially ionized viscoelastic tri-hybrid nanofluid flow over a convectively heated cylinder, Case Stud. Therm. Eng., 60 (2024), 104623. https://doi.org/10.1016/j.csite.2024.104623 doi: 10.1016/j.csite.2024.104623
|
| [19] |
S. Shen, S. Rehman, S. O. Shah, F. Albouchi, S. Rauf, Entropy optimization and heat transfer in thin film flow of electromagnetic micropolar nanofluid using Maxwell–Bruggeman and Krieger–Dougherty models, Alex. Eng. J., 106 (2024), 71–86. https://doi.org/10.1016/j.aej.2024.06.075 doi: 10.1016/j.aej.2024.06.075
|
| [20] |
J. Abdo, M. D. Haneef, Clay nanoparticles modified drilling fluids for drilling of deep hydrocarbon wells, Appl. Clay Sci., 86 (2013), 76–82. https://doi.org/10.1016/j.clay.2013.10.017 doi: 10.1016/j.clay.2013.10.017
|
| [21] |
I. Khan, A. Hussanan, M. Saqib, S. Shafie, Convective Heat Transfer in Drilling Nanofluid with Clay Nanoparticles: Applications in Water Cleaning Process, BioNanoSci., 9 (2019), 453–460. https://doi.org/10.1007/s12668-019-00623-1 doi: 10.1007/s12668-019-00623-1
|
| [22] | G. Cheraghian, Application of Nano-Particles of Clay to Improve Drilling Fluid, Int. J. Nanosci. Nanotechnol., 13 (2017), 177–186. |
| [23] |
K. S. Nisar, D. Khan, A. Khan, W. A. Khan, I. Khan, A. M. Aldawsari, Entropy Generation and Heat Transfer in Drilling Nanoliquids with Clay Nanoparticles, Entropy, 21 (2019), 1226. https://doi.org/10.3390/e21121226 doi: 10.3390/e21121226
|
| [24] |
S. Elattar, U. Khan, A. Zaib, A. Ishak, N. Alwadai, H. Albalawi, Radiative flow of clay nanoparticles on the lubricity of Williamson drilling fluids across a vertical surface in a Darcy-Brinkman porous medium, Chinese J. Phys., 92 (2024), 701–720. https://doi.org/10.1016/j.cjph.2024.08.031 doi: 10.1016/j.cjph.2024.08.031
|
| [25] |
H. A. Isede, A. Adeniyan, Mixed convection flow and heat transfer of chemically reactive drilling liquids with clay nanoparticles subject to radiation absorption, Ain Shams Eng. J., 12 (2021), 4167–4180. https://doi.org/10.1016/j.asej.2021.04.030 doi: 10.1016/j.asej.2021.04.030
|
| [26] |
A. Ali, M. I. Asjad, M. Usman, M. Inc, Numerical Solutions of a Heat Transfer for Fractional Maxwell Fluid Flow with Water Based Clay Nanoparticles; A Finite Difference Approach, Fractal Fract., 5 (2021), 242. https://doi.org/10.3390/fractalfract5040242 doi: 10.3390/fractalfract5040242
|
| [27] |
J. Kayalvizhi, A. G. V. Kumar, H. F. Öztop, N. Sene, N. H. Abu-Hamdeh, Heat Transfer Enhancement through Thermodynamical Activity of H2O/Clay Nanofluid Flow over an Infinite Upright Plate with Caputo Fractional-Order Derivative, Energies, 15 (2022), 6082. https://doi.org/10.3390/en15166082 doi: 10.3390/en15166082
|
| [28] |
L. Ali, P. Kumar, H. Poonia, S. Areekara, R. Apsari, The significant role of Darcy–Forchheimer and thermal radiation on Casson fluid flow subject to stretching surface: A case study of dusty fluid, Mod. Phys. Lett. B, 38 (2024), 2350215. https://doi.org/10.1142/S0217984923502159 doi: 10.1142/S0217984923502159
|
| [29] |
S. Mukhopadhyay, Natural convection flow on a sphere through porous medium in presence of heat source/sink near a stagnation point, Math. Modell. Anal., 13 (2008), 513–520. https://doi.org/10.3846/1392-6292.2008.13.513-520 doi: 10.3846/1392-6292.2008.13.513-520
|
| [30] |
H. Rosali, A. Ishak, I. Pop, Mixed Convection Stagnation-Point Flow Over a Vertical Plate with Prescribed Heat Flux Embedded in a Porous Medium: Brinkman-Extended Darcy Formulation, Transp. Porous. Med., 90 (2011), 709–719. https://doi.org/10.1007/s11242-011-9809-7 doi: 10.1007/s11242-011-9809-7
|
| [31] |
S. Mukhopadhyay, Upper-Convected Maxwell Fluid Flow over an Unsteady Stretching Surface Embedded in Porous Medium Subjected to Suction/Blowing, Zeitschrift für Naturforschung A, 67 (2012), 641–646. https://doi.org/10.5560/zna.2012-0075 doi: 10.5560/zna.2012-0075
|
| [32] |
Q. Wang, K. Wang, P. Li, Forced convective heat and mass transfer in a bidisperse porous parallel-plate channel with a first order reaction on the wall, Therm. Sci. Eng. Prog., 13 (2019), 100369. https://doi.org/10.1016/j.tsep.2019.100369 doi: 10.1016/j.tsep.2019.100369
|
| [33] |
A. Zaib, R. U. Haq, A. J. Chamkha, Mixed convective flow of a Casson fluid over a vertical plate in Darcy-Brinkman porous medium with slips, JPM, 24 (2021), 1–11. https://doi.org/10.1615/JPorMedia.2020025172 doi: 10.1615/JPorMedia.2020025172
|
| [34] |
C. Y. Wang, Darcy-Brinkman flow in a rotating channel filled with an anisotropic porous medium, JPM, 25 (2022), 31–40. https://doi.org/10.1615/JPorMedia.2021038567 doi: 10.1615/JPorMedia.2021038567
|
| [35] |
A. Adil, T. Baig, F. Jamil, M. Farhan, M. Shehryar, H. M. Ali, et al., Nanoparticle-based cutting fluids in drilling: A recent review, Int. J. Adv. Manuf. Technol., 131 (2024), 2247–2264. https://doi.org/10.1007/s00170-023-11048-2 doi: 10.1007/s00170-023-11048-2
|
| [36] |
M. Al-Shargabi, S. Davoodi, D. A. Wood, A. Al-Musai, V. S. Rukavishnikov, K. M. Minaev, Nanoparticle applications as beneficial oil and gas drilling fluid additives: A review, J. Mol. Liq., 352 (2022), 118725. https://doi.org/10.1016/j.molliq.2022.118725 doi: 10.1016/j.molliq.2022.118725
|
| [37] |
A. Razaq, T. Hayat, S. A. Khan, Entropy generated nonlinear mixed convective beyond constant characteristics nanomaterial wedge flow, Int. Commun. Heat Mass Transfer, 159 (2024), 108000. https://doi.org/10.1016/j.icheatmasstransfer.2024.108000 doi: 10.1016/j.icheatmasstransfer.2024.108000
|
| [38] |
T. Gupta, A. K. Pandey, M. Kumar, Numerical study for temperature-dependent viscosity based unsteady flow of GP-MoS2/C2H6O2-H2O over a porous stretching sheet, Numer. Heat Transfer, Part A: Appl., 85 (2024), 1063–1084. https://doi.org/10.1080/10407782.2023.2195689 doi: 10.1080/10407782.2023.2195689
|
| [39] |
M. Farooq, A. Anjum, S. Rehman, M. Y. Malik, Entropy analysis in thermally stratified Powell-Eyring magnesium-blood nanofluid convection past a stretching surface, Int. Commun. Heat Mass Transfer, 138 (2022), 106375. https://doi.org/10.1016/j.icheatmasstransfer.2022.106375 doi: 10.1016/j.icheatmasstransfer.2022.106375
|
| [40] |
S. Rehman, Z. khan, H. Ali, U. Riaz, F. Albouchi, Role of nanomaterial on irreversibility and heat transport due to stretching surface driven blood flow in the view of Buongiorno and Tiwari-Das models, Ain Shams Eng. J., 15 (2024), 102747. https://doi.org/10.1016/j.asej.2024.102747 doi: 10.1016/j.asej.2024.102747
|
| [41] |
S. Rehman, M. Shamshad, S. Nasr, S. Abdullaev, Thermal characteristics of MHD CoFe2O4/ water nanofluids flow past a stretching/shrinking wedge in the view of Cattaneo-Christov heat flux, Case Stud. Therm. Eng., 56 (2024), 104225. https://doi.org/10.1016/j.csite.2024.104225 doi: 10.1016/j.csite.2024.104225
|
| [42] |
N. Khemiri, S. Rehman, T. Saidani, V. Tirth, Heat transfer analysis of radiated thin-film flow of couple-stress nanofluid embedded in a Darcy-Forchheimer medium with Newtonian heating effects, Nucl. Eng. Technol., 57 (2025), 103510. https://doi.org/10.1016/j.net.2025.103510 doi: 10.1016/j.net.2025.103510
|
| [43] |
A. Mishra, Analysis of radiative Ellis hybrid nanofluid flow over a stretching/shrinking cylinder embedded in a porous medium with slip condition, Multiscale Multidiscip., Model. Exp. Des., 8 (2025), 282. https://doi.org/10.1007/s41939-025-00871-7 doi: 10.1007/s41939-025-00871-7
|
| [44] |
A. Mishra, Analysis of waste discharge concentration in radiative hybrid nanofluid flow over a stretching/shrinking sheet with chemical reaction, Mech. Time-Depend. Mater., 29 (2024), 7. https://doi.org/10.1007/s11043-024-09752-x doi: 10.1007/s11043-024-09752-x
|
| [45] |
A. Alsaedi, S. A. Khan, T. Hayat, Cattaneo-Christov double diffusive and model development for entropy optimized flow of Reiner-Rivlin material in thermal system and environmental effect, Alex. Eng. J., 72 (2023), 67–82. https://doi.org/10.1016/j.aej.2023.03.079 doi: 10.1016/j.aej.2023.03.079
|
| [46] |
C. M. Mohana, B. R. Kumar, Shape effects of Darcy–Forchheimer unsteady three-dimensional CdTe-C/H2O hybrid nanofluid flow over a stretching sheet with convective heat transfer, Phys. Fluids, 35 (2023), 092002. https://doi.org/10.1063/5.0168503 doi: 10.1063/5.0168503
|
| [47] |
N. M. Hafez, E. N. Thabet, Z. Khan, A. M. Abd-Alla, S. H. Elhag, Electroosmosis‐modulated Darcy–Forchheimer flow of Casson nanofluid over stretching sheets in the presence of Newtonian heating, Case Stud. Therm. Eng., 53 (2024), 103806. https://doi.org/10.1016/j.csite.2023.103806 doi: 10.1016/j.csite.2023.103806
|
| [48] |
A. Rehman, D. Khan, I. Mahariq, M. Abdelghany Elkotb, T. Elnaqeeb, Viscous dissipation effects on time-dependent MHD Casson nanofluid over stretching surface: A hybrid nanofluid study, J. Mol. Liq., 408 (2024), 125370. https://doi.org/10.1016/j.molliq.2024.125370 doi: 10.1016/j.molliq.2024.125370
|
| [49] |
M. J. Babu, N. Sandeep, 3D MHD slip flow of a nanofluid over a slendering stretching sheet with thermophoresis and Brownian motion effects, J. Mol. Liq., 222 (2016), 1003–1009. https://doi.org/10.1016/j.molliq.2016.08.005 doi: 10.1016/j.molliq.2016.08.005
|
| [50] |
S. E. Awan, M. Awais, M. Asif, Z. Raja, N. Parveen, H. M. Ali, et al., Numerical Treatment for Dynamics of Second Law Analysis and Magnetic Induction Effects on Ciliary Induced Peristaltic Transport of Hybrid Nanomaterial, Front. Phys., 9 (2021), 631903. https://doi.org/10.3389/fphy.2021.631903 doi: 10.3389/fphy.2021.631903
|
| [51] |
S. E. Awan, M. A. Z. Raja, F. Gul, Z. A. Khan, A. Mehmood, M. Shoaib, Numerical Computing Paradigm for Investigation of Micropolar Nanofluid Flow Between Parallel Plates System with Impact of Electrical MHD and Hall Current, Arab. J. Sci. Eng., 46 (2021), 645–662. https://doi.org/10.1007/s13369-020-04736-8 doi: 10.1007/s13369-020-04736-8
|
| [52] |
S. Nadeem, S. Ashiq, M. Ali, Williamson Fluid Model for the Peristaltic Flow of Chyme in Small Intestine, Math. Probl. Eng., 2012 (2012), 479087. https://doi.org/10.1155/2012/479087 doi: 10.1155/2012/479087
|
| [53] |
K. A. Khan, M. Vivas-Cortez, K. Ishfaq, M. F. Javed, N. Raza, K. S. Nisar, et al., Exploring the numerical simulation of Maxwell nanofluid flow over a stretching sheet with the influence of chemical reactions and thermal radiation, Results Phys., 60 (2024), 107635. https://doi.org/10.1016/j.rinp.2024.107635 doi: 10.1016/j.rinp.2024.107635
|
| [54] |
T. Hayat, M. Farooq, A. Alsaedi, Z. Iqbal, Melting Heat Transfer in the Stagnation Point Flow of Powell–Eyring Fluid, J. Thermophys. Heat Transfer, 27 (2013), 761–766. https://doi.org/10.2514/1.T4059 doi: 10.2514/1.T4059
|
| [55] |
A. S. Dogonchi, D. D. Ganji, Effect of Cattaneo–Christov heat flux on buoyancy MHD nanofluid flow and heat transfer over a stretching sheet in the presence of Joule heating and thermal radiation impacts, Indian J. Phys., 92 (2018), 757–766. https://doi.org/10.1007/s12648-017-1156-2 doi: 10.1007/s12648-017-1156-2
|
| [56] |
M. M. Rashidi, M. Ali, N. Freidoonimehr, B. Rostami, M. A. Hossain, Mixed convective heat transfer for MHD viscoelastic fluid flow over a porous wedge with thermal radiation. Adv. Mech. Eng., 6 (2014), 735939. https://doi.org/10.1155/2014/735939 doi: 10.1155/2014/735939
|
| [57] |
R. J. P. Gowda, R. N. Kumar, B. C. Prasannakumara, B. Nagaraja, B. J. Gireesha, Exploring magnetic dipole contribution on ferromagnetic nanofluid flow over a stretching sheet: An application of Stefan blowing, J. Mol. Liq. 335 (2021), 116215. https://doi.org/10.1016/j.molliq.2021.116215 doi: 10.1016/j.molliq.2021.116215
|
| [58] |
M. Waqas, S. Jabeen, T. Hayat, M. I. Khan, A. Alsaedi, Modeling and analysis for magnetic dipole impact in nonlinear thermally radiating Carreau nanofluid flow subject to heat generation, J. Magn. Magn. Mater., 485 (2019), 197–204. https://doi.org/10.1016/j.jmmm.2019.03.040 doi: 10.1016/j.jmmm.2019.03.040
|
| [59] |
N. Khemiri, S. Rehman, T. Saidani, V. Tirth, Heat transfer analysis of radiated thin-film flow of couple-stress nanofluid embedded in a Darcy-Forchheimer medium with Newtonian heating effects, Nucl. Eng. Technol., 57 (2025), 103510. https://doi.org/10.1016/j.net.2025.103510 doi: 10.1016/j.net.2025.103510
|
| [60] |
S. Rehman, Boundary layer slip flow and heat-mass transfer of radiated water based nanofluid over a permeable disk: Darcy-Forchheimer model and activation energy, Chaos, Solitons Fractals, 192 (2025), 116097. https://doi.org/10.1016/j.chaos.2025.116097 doi: 10.1016/j.chaos.2025.116097
|