Research article Special Issues

Nonlinear wave dynamics in dispersive media: analytical insights from the nonlinear modified generalized Vakhnenko equation

  • Received: 27 April 2025 Revised: 16 July 2025 Accepted: 17 July 2025 Published: 22 July 2025
  • MSC : 34G20, 35C05, 35C07

  • This investigation explores the nonlinear modified generalized Vakhnenko (NMGV) equation, a pivotal model of nonlinear wave interactions within nonlinear dispersive media. The equation represents an extension of the classical Vakhnenko framework, integrating higher-order nonlinearities that significantly impact wave propagation. Comprehending these effects is essential for propelling the advancement of nonlinear wave theory in mathematical physics and engineering contexts. Utilizing the Khater Ⅲ method, we derive exact solutions that encapsulate the salient features of the NMGV equation's wave configurations. The research unveils innovative soliton-like solutions, shedding light on the intricate nonlinear mechanisms at play. These findings underscore the efficacy of the proposed methodology in addressing intricate nonlinear systems and highlight its applicability to analogous nonlinear evolution equations. By introducing novel analytical solutions, this study enriches the comprehension of dispersive wave phenomena and offers valuable insights for future research in nonlinear wave dynamics.

    Citation: Dan Chen. Nonlinear wave dynamics in dispersive media: analytical insights from the nonlinear modified generalized Vakhnenko equation[J]. AIMS Mathematics, 2025, 10(7): 16407-16413. doi: 10.3934/math.2025734

    Related Papers:

  • This investigation explores the nonlinear modified generalized Vakhnenko (NMGV) equation, a pivotal model of nonlinear wave interactions within nonlinear dispersive media. The equation represents an extension of the classical Vakhnenko framework, integrating higher-order nonlinearities that significantly impact wave propagation. Comprehending these effects is essential for propelling the advancement of nonlinear wave theory in mathematical physics and engineering contexts. Utilizing the Khater Ⅲ method, we derive exact solutions that encapsulate the salient features of the NMGV equation's wave configurations. The research unveils innovative soliton-like solutions, shedding light on the intricate nonlinear mechanisms at play. These findings underscore the efficacy of the proposed methodology in addressing intricate nonlinear systems and highlight its applicability to analogous nonlinear evolution equations. By introducing novel analytical solutions, this study enriches the comprehension of dispersive wave phenomena and offers valuable insights for future research in nonlinear wave dynamics.



    加载中


    [1] B. Swati, P. Amit, A novel expansion method and its application to two nonlinear evolution equations arising in ocean engineering, Phys. Scr., 100 (2025), 025221. http://doi.org/10.1088/1402-4896/ada3f5 doi: 10.1088/1402-4896/ada3f5
    [2] Z. Li, Optical solutions of the nonlinear Kodama equation with M-truncated derivative via the extended ($G'/G$)-expansion method, Fractal Fract., 9 (2025), 300. https://doi.org/10.3390/fractalfract9050300 doi: 10.3390/fractalfract9050300
    [3] H. Alotaibi, Traveling wave solutions to the nonlinear evolution equation using expansion method and addendum to Kudryashov's method, Symmetry, 11 (2021), 2126. https://doi.org/10.3390/sym13112126 doi: 10.3390/sym13112126
    [4] Z. Li, E. Hussain, Qualitative analysis and traveling wave solutions of a (3+1)-dimensional generalized nonlinear Konopelchenko-Dubrovsky-Kaup-Kupershmidt system, Fractal Fract., 9 (2025), 285. https://doi.org/10.3390/fractalfract9050285 doi: 10.3390/fractalfract9050285
    [5] J. J. Cheng, H. Q. Zhang, The Wronskian technique for nonlinear evolution equations, Chinese Phys. B, 25 (2016), 010506. https://doi.org/10.1088/1674-1056/25/1/010506 doi: 10.1088/1674-1056/25/1/010506
    [6] H. Tchokouansi, E. T. Felenou, R. T. Techidjio, V. K. Kuetche, T. B. Bouetou, Traveling magnetic wave motion in ferrites: impact of inhomogeneous exchange effects, Chaos Soliton Fract., 121 (2019), 1–5. https://doi.org/10.1016/j.chaos.2019.01.032 doi: 10.1016/j.chaos.2019.01.032
    [7] V. A. Vakhnenko, Solitons in a nonlinear model medium, J. Phys. A: Math. Gen., 25 (1992), 4181. https://doi.org/10.1088/0305-4470/25/15/025 doi: 10.1088/0305-4470/25/15/025
    [8] E. J. Parkes, The stability of solutions of Vakhnenko's equation, J. Phys. A: Math. Gen., 26 (1993), 6469. https://doi.org/10.1088/0305-4470/26/22/040 doi: 10.1088/0305-4470/26/22/040
    [9] N. Sirendaoreji, Unified Riccati equation expansion method and its application to two new classes of Benjamin-Bona-Mahony equations, Nonlinear Dyn., 89 (2017), 333–344. https://doi.org/10.1007/s11071-017-3457-6 doi: 10.1007/s11071-017-3457-6
    [10] M. M. Miah, H. M. S. Ali, M. A. Akbar, A. Majid Wazwaz, Some applications of the (G'/G, 1/G)-expansion method to find new exact solutions of NLEEs, Eur. Phys. J. Plus, 132 (2017), 252. https://doi.org/10.1140/epjp/i2017-11571-0 doi: 10.1140/epjp/i2017-11571-0
    [11] F. Mahmud, M. Samsuzzoha, M. A. Akbar, The generalized Kudryashov method to obtain exact traveling wave solutions of the PHI-four equation and the Fisher equation, Results Phys., 7 (2017), 4296–4302. https://doi.org/10.1016/j.rinp.2017.10.049 doi: 10.1016/j.rinp.2017.10.049
    [12] H. M. Baskonus, D. A. Koç, H. Bulut, Dark and new travelling wave solutions to the nonlinear evolution equation, Optik, 127 (2016), 8043–8055. https://doi.org/10.1016/j.ijleo.2016.05.132 doi: 10.1016/j.ijleo.2016.05.132
    [13] B. Ayhan, M. N. Özer, A. Bekir, Method of multiple scales and travelling wave solutions for (2+1)-dimensional KdV type nonlinear evolution equations, Z. Naturforsch A, 71 (2016), 703–713. https://doi.org/10.1515/zna-2016-0123 doi: 10.1515/zna-2016-0123
    [14] M. M. A. Khater, Numerical validation of analytical solutions for the Kairat evolution equation, Int. J. Theor. Phys., 63 (2024), 259. https://doi.org/10.1007/s10773-024-05797-3 doi: 10.1007/s10773-024-05797-3
    [15] A. J. Morrison, E. J. Parkes, The N-soliton solution of the modified generalised Vakhnenko equation (a new nonlinear evolution equation), Chaos Soliton Fract., 16 (2003), 13–26. https://doi.org/10.1016/S0960-0779(02)00314-4 doi: 10.1016/S0960-0779(02)00314-4
    [16] A. M. Wazwaz, N-soliton solutions for the Vakhnenko equation and its generalized forms, Phys. Scr., 82 (2010), 065006. https://doi.org/10.1088/0031-8949/82/06/065006 doi: 10.1088/0031-8949/82/06/065006
    [17] J. Q. Mo, Approximation of the soliton solution for the generalized Vakhnenko equation, Chinese Phys. B, 18 (2009), 4608. https://doi.org/10.1088/1674-1056/18/11/002 doi: 10.1088/1674-1056/18/11/002
    [18] A. El-Nahhas, Analytic approximations for the one-loop soliton solution of the Vakhnenko equation, Chaos Soliton Fract., 40 (2009), 2257–2264. https://doi.org/10.1016/j.chaos.2007.10.013 doi: 10.1016/j.chaos.2007.10.013
    [19] W. A. Li, H. Chen, G. C. Zhang, The ($ \omega $/g)-expansion method and its application to Vakhnenko equation, Chinese Phys. B, 18 (2009), 400. https://doi.org/10.1088/1674-1056/18/2/004 doi: 10.1088/1674-1056/18/2/004
    [20] E. Yusufoǧlu, A. Bekir, The tanh and the sine-cosine methods for exact solutions of the MBBM and the Vakhnenko equations, Chaos Soliton Fract., 38 (2008), 1126–1133. https://doi.org/10.1016/j.chaos.2007.02.004 doi: 10.1016/j.chaos.2007.02.004
    [21] V. K. Kuetche, T. B. Bouetou, T. C. Kofane, On soliton structure of isospectral Vakhnenko equation: WKI-eigenvalue problem, Phys. Lett. A, 372 (2008), 4891–4897. https://doi.org/10.1016/j.physleta.2008.05.031 doi: 10.1016/j.physleta.2008.05.031
    [22] Z. Zhang, Q. Bi, Multiple-mode wave solutions in Vakhnenko equation, Phys. Lett. A, 372 (2008), 3243–3252. https://doi.org/10.1016/j.physleta.2008.01.059 doi: 10.1016/j.physleta.2008.01.059
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(485) PDF downloads(28) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog