The training phase of the random 3-satisfiability problem in discrete Hopfield neural networks aims to identify more satisfying clauses, enhancing synaptic weight for energy function computation and minimizing network energy. The primary challenge lies in designing synaptic weights that can be dynamically optimized to adapt to various formula structures while ensuring complete clause satisfaction and avoiding local optima. This enables an optimal balance between clause satisfaction and network convergence performance. To address this challenge, this paper first proposes a method for determining synaptic weights during the training phase based on the logical relationships between clauses and variables, simplifying the computation process and improving solution efficiency. Second, the hybrid firefly algorithm is employed during the training phase to optimize the number of satisfied clauses. This is achieved through a balance of global and local search mechanisms and a diversity maintenance strategy, facilitating the identification of more satisfied clauses, thereby leading to the generation of high-quality synaptic weights. Consequently, during the retrieval phase of the network, local field updates are executed based on these synaptic weights to find the optimal neuron states, thereby minimizing the energy function and improving global convergence performance. To evaluate the effectiveness of the hybrid firefly algorithm and the simplification of synaptic weight computation, we employed a comprehensive performance evaluation framework composed of maximum fitness, fitness ratio, entropy-adjusted diversity metrics, weight error, global minima ratio, energy error, similarity indices, and runtime. Experimental results indicate that the proposed model outperforms both traditional discrete Hopfield neural network random 3-satisfiability models and those that combine election algorithms with discrete Hopfield neural network random 3-satisfiability models across multiple performance metrics.
Citation: Xiaoya Chen, Saratha Sathasivam. A hybrid firefly algorithm for synaptic weight optimization in discrete Hopfield neural networks applied to random 3-satisfiability problems[J]. AIMS Mathematics, 2025, 10(6): 14840-14892. doi: 10.3934/math.2025667
The training phase of the random 3-satisfiability problem in discrete Hopfield neural networks aims to identify more satisfying clauses, enhancing synaptic weight for energy function computation and minimizing network energy. The primary challenge lies in designing synaptic weights that can be dynamically optimized to adapt to various formula structures while ensuring complete clause satisfaction and avoiding local optima. This enables an optimal balance between clause satisfaction and network convergence performance. To address this challenge, this paper first proposes a method for determining synaptic weights during the training phase based on the logical relationships between clauses and variables, simplifying the computation process and improving solution efficiency. Second, the hybrid firefly algorithm is employed during the training phase to optimize the number of satisfied clauses. This is achieved through a balance of global and local search mechanisms and a diversity maintenance strategy, facilitating the identification of more satisfied clauses, thereby leading to the generation of high-quality synaptic weights. Consequently, during the retrieval phase of the network, local field updates are executed based on these synaptic weights to find the optimal neuron states, thereby minimizing the energy function and improving global convergence performance. To evaluate the effectiveness of the hybrid firefly algorithm and the simplification of synaptic weight computation, we employed a comprehensive performance evaluation framework composed of maximum fitness, fitness ratio, entropy-adjusted diversity metrics, weight error, global minima ratio, energy error, similarity indices, and runtime. Experimental results indicate that the proposed model outperforms both traditional discrete Hopfield neural network random 3-satisfiability models and those that combine election algorithms with discrete Hopfield neural network random 3-satisfiability models across multiple performance metrics.
| [1] | S. Haykin, Neural networks and learning machines, Pearson Education. Inc., New Jersey, 2009. Available from: http://dai.fmph.uniba.sk/courses/NN/haykin.neural-networks.3ed.2009. |
| [2] |
J. J. Hopfield, Neural networks and physical systems with emergent collective computational abilities, P. Natl. Acad. Sci., 79 (1982), 2554−2558. https://doi.org/10.1073/PNAS.79.8.2554 doi: 10.1073/PNAS.79.8.2554
|
| [3] | W. A. T. W. Abdullah, Logic programming on a neural network, Int. J. Intell. Syst., 7 (1992), 513−519. |
| [4] |
S. Sathasivam, M. A. Mansor, M. S. M. Kasihmuddin, H. Abubakar, Election algorithm for random k satisfiability in the Hopfield neural network, Processes, 8 (2020), 568. https://doi.org/10.3390/pr8050568 doi: 10.3390/pr8050568
|
| [5] |
M. M. Bazuhair, S. Z. M. Jamaludin, N. E. Zamri, M. S. M. Kasihmuddin, M. A. Mansor, A. Alway, et al., Novel Hopfield neural network model with election algorithm for random 3 satisfiability, Processes, 9 (2021), 1292. https://doi.org/10.3390/pr9081292 doi: 10.3390/pr9081292
|
| [6] |
Y. Guo, N. E. Zamri, M. S. M. Kasihmuddin, A. Alway, M. A. Mansor, J. Li, et al., Dual optimization approach in discrete Hopfield neural network, Appl. Soft Comput., 164 (2024), 111929. https://doi.org/10.1016/j.asoc.2024.111929 doi: 10.1016/j.asoc.2024.111929
|
| [7] |
R. Storn, K. Price, Differential evolution—a simple and efficient heuristic for global optimization over continuous spaces, J. Global Optim., 11 (1997), 341−359. https://doi.org/10.1023/A:1008202821328 doi: 10.1023/A:1008202821328
|
| [8] |
L. Zhang, L. Liu, X. S. Yang, Y. Dai, A novel hybrid firefly algorithm for global optimization, PloS One, 11 (2016), e0163230. https://doi.org/10.1371/journal.pone.0163230 doi: 10.1371/journal.pone.0163230
|
| [9] | X. S. Yang, Nature-inspired metaheuristic algorithms, Luniver press, 2010. |
| [10] |
I. Fister, I. Fister Jr, X. S. Yang, J. Brest, A comprehensive review of firefly algorithms, Swarm Evol. Comput., 13 (2013), 34−46. https://doi.org/10.1016/j.swevo.2013.06.001 doi: 10.1016/j.swevo.2013.06.001
|
| [11] |
S. L. Tilahun, J. M. T. Ngnotchouye, Firefly algorithm for discrete optimization problems: A survey, KSCE J. Civil Eng., 21 (2017), 535−545. https://doi.org/10.1007/s12205-017-1501-1 doi: 10.1007/s12205-017-1501-1
|
| [12] |
C. Feng, S. Sathasivam, N. Roslan, M. Velavan, 2-SAT discrete Hopfield neural networks optimization via Crow search and fuzzy dynamical clustering approach, AIMS Math., 9 (2024), 9232−9266. https://doi.org/10.3934/math.2024450 doi: 10.3934/math.2024450
|
| [13] |
L. C. Lujano-Hernandez, J. M. Munoz-Pacheco, V. T. Pham, A fully piecewise linear Hopfield neural network with simplified mixed-mode activation function: dynamic analysis and analog implementation, Nonlinear Dynam., 2025, 1−22. https://doi.org/10.1007/s11071-025-11099-y doi: 10.1007/s11071-025-11099-y
|
| [14] |
D. Alsadie, M. Alsulami, Enhancing workflow efficiency with a modified firefly algorithm for hybrid cloud edge environments, Sci. Rep., 14 (2024), 24675. https://doi.org/10.1038/s41598-024-75859-3 doi: 10.1038/s41598-024-75859-3
|
| [15] | W. A. T. W. Abdullah, The logic of neural networks, Phys. Lett. A, 176 (1993), 202−206. |
| [16] | S. Sathasivam, Learning in the recurrent Hopfield network, In: 2008 fifth international conference on computer graphics, imaging and visualization, IEEE, 2008,323−328. https://doi.org/10.1109/CGIV.2008.14 |
| [17] |
S. Sathasivam, W. A. T. W. Abdullah, Logic mining in neural network: Reverse analysis method, Computing, 91 (2011), 119−133. https://doi.org/10.1007/s00607-010-0117-9 doi: 10.1007/s00607-010-0117-9
|
| [18] | M. S. M. Kasihmuddin, M. A. Mansor, S. Sathasivam, Bezier curves satisfiability model in enhanced Hopfield network, Int. J. Intell. Syst. Appl., 8 (2016), 9. |
| [19] |
M. A. Mansor, M. S. M. Kasihmuddin, S. Sathasivam, Enhanced Hopfield network for pattern satisfiability optimization, Int. J. Intell. Syst. Appl., 8 (2016), 27. http://dx.doi.org/10.5815/ijisa.2016.11.04 doi: 10.5815/ijisa.2016.11.04
|
| [20] |
S. Sathasivam, M. A. Mansor, A. I. M. Ismail, S. Z. M. Jamaludin, M. S. M. Kasihmuddin, M. Mamat, Novel random k satisfiability for k≤ 2 in Hopfield neural network, Sains Malays., 49 (2020), 2847−2857. http://dx.doi.org/10.17576/jsm-2020-4911-23 doi: 10.17576/jsm-2020-4911-23
|
| [21] |
S. A. Karim, N. E. Zamri, A. Alway, M. S. M. Kasihmuddin, A. I. M. Ismail, M. A. Mansor, et al., Random satisfiability: A higher-order logical approach in discrete Hopfield neural network, IEEE Access, 9 (2021), 50831−50845. https://doi.org/10.1109/ACCESS.2021.3068998 doi: 10.1109/ACCESS.2021.3068998
|
| [22] |
H. Abubakar, M. L. Danrimi, Hopfield type of artificial neural network via election algorithm as heuristic search method for random Boolean k satisfiability, Int. J. Comput. Digital Syst., 2021. https://doi.org/10.12785/ijcds/100163 doi: 10.12785/ijcds/100163
|
| [23] | H. Abubakar, A. S. Masanawa, S. Yusuf, G. I. Boaku, Optimal representation to high order random Boolean k satisability via election algorithm as heuristic search approach in Hopeld neural networks, J. Nigerian Soc. Phys. Sci., 2021,201−208. |
| [24] | H. Abubakar, A. Muhammad, S. Bello, Ants colony optimization algorithm in the Hopfield neural network for agricultural soil fertility reverse analysis, Iraqi J. Comput. Sci. Math., 3 (2022), 32−42. |
| [25] |
S. A. Karim, M. S. M. Kasihmuddin, S. Sathasivam, M. A. Mansor, S. Z. M. Jamaludin, M. R. Amin, A novel multi-objective hybrid election algorithm for higher-order random satisfiability in discrete Hopfield neural network, Mathematics, 10 (2022), 1963. https://doi.org/10.3390/math10121963 doi: 10.3390/math10121963
|
| [26] | S. A. Karim, M. S. M. Kasihmuddin, M. Mansor, S. Z. M. Jamaludin, N. E. Zamri, M. R. Amin, A socio-inspired hybrid election algorithm for random k satisfiability in discrete Hopfield neural network, In: AIP Conference Proceedings, 2895 (2024). https://doi.org/10.1063/5.0194531 |
| [27] |
H. Abubakar, S. Sathasivam, M. A. Mansor, M. S. M. Kasihmuddin, Modified election algorithm in accelerating the performance of Hopfield neural network for random k-satisfiability, Preprints, 2020. https://doi.org/10.20944/preprints202001.0365.v1 doi: 10.20944/preprints202001.0365.v1
|
| [28] | S. A. Karim, Multi-objective hybrid election algorithm for random K satisfiability in discrete hopfield neural network, Doctoral dissertation, 2023. |
| [29] |
V. Kumar, D. D. Kumar, A systematic review on firefly algorithm: Past, present, and future, Arch. Comput. Method. E., 28 (2021), 3269−3291. https://doi.org/10.1007/s11831-020-09498-y doi: 10.1007/s11831-020-09498-y
|
| [30] | Y. K. Saheed, A binary firefly algorithm based feature selection method on high dimensional intrusion detection data, In: Illumination of artificial intelligence in cybersecurity and forensics, Cham: Springer International Publishing, 2022,273−288. https://doi.org/10.1007/978-3-030-93453-8_12 |
| [31] |
K. Kumari, J. P. Singh, Multi-modal cyber-aggression detection with feature optimization by firefly algorithm, Multimedia Syst., 28 (2022), 1951−1962. https://doi.org/10.1007/s00530-021-00785-7 doi: 10.1007/s00530-021-00785-7
|
| [32] |
Y. Zhang, X. F. Song, D. W. Gong, A return-cost-based binary firefly algorithm for feature selection, Inform. Sci., 418 (2017), 561−574. https://doi.org/10.1016/j.ins.2017.08.047 doi: 10.1016/j.ins.2017.08.047
|
| [33] | R. F. Najeeb, B. N. Dhannoon, A feature selection approach using binary firefly algorithm for network intrusion detection system, ARPN J. Eng. Appl. Sci., 13 (2018), 2347−2352. |
| [34] |
K. Chandrasekaran, S. P. Simon, N. P. Padhy, Binary real coded firefly algorithm for solving unit commitment problem, Inform. Sci., 249 (2013), 67−84. https://doi.org/10.1016/j.ins.2013.06.022 doi: 10.1016/j.ins.2013.06.022
|
| [35] |
R. O. N. O. H. Kennedy, G. Kamucha, Comparison of hybrid firefly algorithms for binary and continuous optimization problems in a TV white space network, WSEAS Trans. Commun., 19 (2020), 155−172. https://doi.org/10.37394/23204.2020.19.18 doi: 10.37394/23204.2020.19.18
|
| [36] |
K. M. Alwan, A. H. AbuEl-Atta, H. H. Zayed, Feature selection models based on hybrid firefly algorithm with mutation operator for network intrusion detection, Int. J. Intell. Eng. Syst., 14 (2021). https://doi.org/10.22266/ijies2021.0228.19 doi: 10.22266/ijies2021.0228.19
|
| [37] |
R. Z. Al-Abdallah, A. S. Jaradat, I. A. Doush, Y. A. Jaradat, A binary classifier based on firefly algorithm, Jordanian J. Comput. Info., 3 (2017). https://doi.org/10.5455/jjcit.71-1501152301 doi: 10.5455/jjcit.71-1501152301
|
| [38] | M. A. Z. A. Sofiane, D. Zouache, Binary firefly algorithm for feature selection in classification, In: 2019 international conference on theoretical and applicative aspects of computer science (ICTAACS), IEEE, 1 (2019). https://doi.org/10.1109/ICTAACS48474.2019.8988137 |
| [39] |
O. S. Qasim, N. M. Noori, A new hybrid algorithm based on binary gray wolf optimization and firefly algorithm for features selection, Asian-Eur. J. Math., 14 (2021), 2150172. https://doi.org/10.1142/S1793557121501722 doi: 10.1142/S1793557121501722
|
| [40] |
W. Xie, L. Wang, K. Yu, T. Shi, W. Li, Improved multi-layer binary firefly algorithm for optimizing feature selection and classification of microarray data, Biomed. Signal Proces., 79 (2023), 104080. https://doi.org/10.1016/j.bspc.2022.104080 doi: 10.1016/j.bspc.2022.104080
|
| [41] |
S. G. Devi, M. Sabrigiriraj, A hybrid multi‐objective firefly and simulated annealing based algorithm for big data classification, Concurr. Comp.-Pract. E., 31 (2019), e4985. https://doi.org/10.1002/cpe.4985 doi: 10.1002/cpe.4985
|
| [42] |
M. F. P. Costa, A. M. A. Rocha, R. B. Francisco, E. M. Fernandes, Heuristic‐based firefly algorithm for bound constrained nonlinear binary optimization, Adv. Oper. Res., 2014 (2014), 215182. https://doi.org/10.1155/2014/215182 doi: 10.1155/2014/215182
|
| [43] | K. Mourad, R. Boudour, A modified binary firefly algorithm to solve hardware/software partitioning problem, Informatica, 45 (2021). |
| [44] |
R. Goel, R. Maini, A hybrid of ant colony and firefly algorithms (HAFA) for solving vehicle routing problems, J. Comput. Sci., 25 (2018), 28−37. https://doi.org/10.1016/j.jocs.2017.12.012 doi: 10.1016/j.jocs.2017.12.012
|
| [45] |
A. E. S. Ezugwu, M. B. Agbaje, N. Aljojo, R. Els, H. Chiroma, M. A. Elaziz, A comparative performance study of hybrid firefly algorithms for automatic data clustering, IEEE Access, 8 (2020), 121089−121118. https://doi.org/10.1109/ACCESS.2020.3006173 doi: 10.1109/ACCESS.2020.3006173
|
| [46] |
M. Y. I. Idris, M. N. B. Ayub, H. A. Shehadeh, U. Ali, Hybrid firefly algorithm and sperm swarm optimization algorithm using Newton-Raphson method (HFASSON) and its application in CR-VANET, arXiv preprint, 2025. https://doi.org/10.48550/arXiv.2502.01053 doi: 10.48550/arXiv.2502.01053
|
| [47] |
R. G. Jeroslow, J. Wang, Solving propositional satisfiability problems, Ann. Math. Artif. Intel., 1 (1990), 167−87. https://doi.org/10.1007/BF01531077 doi: 10.1007/BF01531077
|
| [48] | J. Marques-Silva, Practical applications of Boolean satisfiability, In: 2008 9th International Workshop on Discrete Event Systems, IEEE, 2008, 74−80. https://doi.org/10.1109/WODES.2008.4605925 |
| [49] | S. A. Cook, The complexity of theorem-proving procedures, In: Logic, Automata, and Computational Complexity: The Works of Stephen A. Cook, 2023,143−152. https://doi.org/10.1145/800157.805047 |
| [50] |
J. J. Hopfield, D. W. Tank, "Neural" computation of decisions in optimization problems, Biol. Cybern., 52 (1985), 141−152. https://doi.org/10.1007/BF00339943 doi: 10.1007/BF00339943
|
| [51] |
J. J. Hopfield, Neurons with graded response have collective computational properties like those of two-state neurons, P. Natl. Acad. Sci., 81 (1984), 3088−3092. https://doi.org/10.1073/pnas.81.10.3088 doi: 10.1073/pnas.81.10.3088
|
| [52] |
C. E. Shannon, A mathematical theory of communication, Bell Syst. Tech. J., 27 (1948), 379−423. https://doi.org/10.1002/j.1538-7305.1948.tb01338.x doi: 10.1002/j.1538-7305.1948.tb01338.x
|
| [53] | K. Deb, Nonlinear goal programming using multi-objective genetic algorithms, J. Oper. Res. Soc., 52 (2001), 291−302. https://www.jstor.org/stable/254066 |
| [54] | C. H. Papadimitriou, Computational complexity Addison-Wesley reading, Massachusetts Google Scholar, 1994. |
| [55] | M. R. Gary, D. S. Johnson, Computers and intractability: A guide to the theory of NP-completeness, WH Freman and Co., 1979. |
| [56] |
H. Ma, H. Wei, Y. Tian, R. Cheng, X. Zhang, A multi-stage evolutionary algorithm for multi-objective optimization with complex constraints, Inform. Sci., 560 (2021), 68−91. https://doi.org/10.1016/j.ins.2021.01.029 doi: 10.1016/j.ins.2021.01.029
|
| [57] |
A. Zhou, B. Y. Qu, H. Li, S. Z. Zhao, P. N. Suganthan, Q. Zhang, Multiobjective evolutionary algorithms: A survey of the state of the art, Swarm Evol. Comput., 1 (2011), 32−49. https://doi.org/10.1016/j.swevo.2011.03.001 doi: 10.1016/j.swevo.2011.03.001
|
| [58] |
V. Osuna-Enciso, E. Cuevas, B. M. Castañeda, A diversity metric for population-based metaheuristic algorithms, Inform. Sci., 586 (2022), 192−208. https://doi.org/10.1016/j.ins.2021.11.073 doi: 10.1016/j.ins.2021.11.073
|
| [59] |
C. J. Willmott, K. Matsuura, Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance, Clim. Res., 30 (2005), 79−82. https://doi.org/10.3354/CR030079 doi: 10.3354/CR030079
|
| [60] | N. E. Zamri, A. Alway, A. Mansor, M. S. M. Kasihmuddin, S. Sathasivam, Modified imperialistic competitive algorithm in Hopfield neural network for Boolean three satisfiability logic mining, Pertanika J. Sci. Tech., 28 (2020). |
| [61] |
E. De Santis, A. Martino, A. Rizzi, On component-wise dissimilarity measures and metric properties in pattern recognition, PeerJ Comput. Sci., 8 (2022), e1106. https://doi.org/10.7717/peerj-cs.1106 doi: 10.7717/peerj-cs.1106
|
| [62] |
S. A. Karim, N. E. Zamri, A. Alway, M. S. M. Kasihmuddin, A. I. M. Ismail, M. A. Mansor, et al., Random satisfiability: A higher-order logical approach in discrete Hopfield neural network, IEEE Access, 9 (2021), 50831−50845. https://doi.org/10.1109/ACCESS.2021.3068998 doi: 10.1109/ACCESS.2021.3068998
|
| [63] | R. M. Karp, Reducibility among combinatorial problems, Springer Berlin Heidelberg, 2010,219−241. Available from: https://www.mendeley.com/catalogue/4a2bffde-6de3-3f46-a030-a9b57f8fd14f/. |
| [64] | S. A. Cook, The complexity of theorem proving procedures, In: Proceedings of the third annual ACM symposium on Theory of computing, New York, 1971,151−158. https://doi.org/10.1145/800157.805047 |
| [65] | C. P. Gomes, B. Selman, H. Kautz, Boosting combinatorial search through randomization, AAAI/IAAI, 98 (1998), 431−437. |
| [66] |
Z. C. Zhou, D. Y. Xu, L. J. Lu, Strictly regular random (3, s)-SAT model and its phase transition phenomenon, J. Beijing Univ. Aeronaut. Astronaut., 42 (2016), 2563−2571. https://doi.org/10.13700/j.bh.1001-5965.2015.0845(inChinese) doi: 10.13700/j.bh.1001-5965.2015.0845(inChinese)
|
| [67] | A. Alway, N. E. Zamri, M. S. M. Kasihmuddin, A. Mansor, S. Sathasivam, Palm oil trend analysis via logic mining with discrete hopfield neural network, Pertanika J. Sci. Tech., 28 (2020). |
| [68] |
X. Xie, S. Sathasivam, H. Ma, Modeling of 3 SAT discrete Hopfield neural network optimization using genetic algorithm optimized K-modes clustering, AIMS Math., 9 (2024), 28100−28129. https://doi.org/10.3934/math.20241363 doi: 10.3934/math.20241363
|