We analyze a mathematical model for the dynamics of HIV infection that incorporates an age-dependent transactivation rate and reversion into latency. The basic reproduction number $ R_0 $ for viral infection has been determined, and it completely characterizes the global behavior of model solutions: If $ R_0 > 1 $, the infection is chronic, and if $ R_0 \leq 1 $, the infection is cleared. By constructing suitable Volterra-type Lyapunov functionals, it has been demonstrated that the corresponding equilibrium is globally stable in each of the two settings for $ R_0 $. We used the gamma distribution to define the age-dependent transactivation rate, which is the ratio of the probability density function to the complement of the cumulative distribution function. We present some numerical simulations in each of the two settings for the $ R_0 $ of the age-structured model, where the subsystem of ODE was solved by the fourth-order Runge–Kutta method and the hyperbolic partial differential equation (PDE) is solved by the Crank–Nicolson method, which is second-order in time and age. In conclusion, we have provided the complete classification for the global dynamics of the age-structured model. Possible strategies to control a viral infection have been identified through sensitivity analysis.
Citation: Luis X. Vivas-Cruz, Celia Martínez-Lázaro, Cruz Vargas-De-León. A mathematical and numerical study of an age-dependent transactivation model for dynamics of HIV infection[J]. AIMS Mathematics, 2025, 10(6): 14560-14595. doi: 10.3934/math.2025656
We analyze a mathematical model for the dynamics of HIV infection that incorporates an age-dependent transactivation rate and reversion into latency. The basic reproduction number $ R_0 $ for viral infection has been determined, and it completely characterizes the global behavior of model solutions: If $ R_0 > 1 $, the infection is chronic, and if $ R_0 \leq 1 $, the infection is cleared. By constructing suitable Volterra-type Lyapunov functionals, it has been demonstrated that the corresponding equilibrium is globally stable in each of the two settings for $ R_0 $. We used the gamma distribution to define the age-dependent transactivation rate, which is the ratio of the probability density function to the complement of the cumulative distribution function. We present some numerical simulations in each of the two settings for the $ R_0 $ of the age-structured model, where the subsystem of ODE was solved by the fourth-order Runge–Kutta method and the hyperbolic partial differential equation (PDE) is solved by the Crank–Nicolson method, which is second-order in time and age. In conclusion, we have provided the complete classification for the global dynamics of the age-structured model. Possible strategies to control a viral infection have been identified through sensitivity analysis.
| [1] | N. Bacaër, A short history of mathematical population dynamics, London: Springer, 618 (2011), 89–96. https://doi.org/10.1007/978-0-85729-115-8 |
| [2] | M. A. Nowak, R. M. May, Virus dynamics: mathematical principles of immunology and virology, New York: Oxford University Press, 2000. |
| [3] |
A. S. Perelson, Modelling viral and immune system dynamics, Nat. Rev. Immunol., 2 (2002), 28–36. https://doi.org/10.1038/nri700 doi: 10.1038/nri700
|
| [4] |
A. S. Perelson, P. W. Nelson, Mathematical analysis of HIV-I dynamics in vivo, SIAM Rev., 41 (1999), 3–44. https://doi.org/10.1137/S00361445983351 doi: 10.1137/S00361445983351
|
| [5] |
D. S. Callaway, A. S. Perelson, HIV-1 infection and low steady state viral loads, Bull. Math. Biol., 64 (2002), 29–64. https://doi.org/10.1006/bulm.2001.0266 doi: 10.1006/bulm.2001.0266
|
| [6] |
W. O. Kermack, A. G. McKendrick, Contributions to the mathematical theory of epidemics. Ⅱ.—The problem of endemicity, Proc. R. Soc. Lond. A, 138 (1932), 55–83. https://doi.org/10.1098/rspa.1932.0171 doi: 10.1098/rspa.1932.0171
|
| [7] |
R. M. Anderson, G. F. Medley, R. M. May, A. M. Johnson, A preliminary study of the transmission dynamics of the human immunodeficiency virus (HIV), the causative agent of AIDS, IMA J. Math. Appl. Med. Biol., 3 (1986), 229–263. https://doi.org/10.1093/imammb/3.4.229 doi: 10.1093/imammb/3.4.229
|
| [8] | D. Kirschner, Using mathematics to understand HIV immune dynamics, Notices AMS, 43 (1996), 191–202. |
| [9] |
P. W. Nelson, M. A. Gilchrist, D. Coombs, J. M. Hyman, A. S. Perelson, An age-structured model of HIV infection that allows for variations in the production rate of viral particles and the death rate of productively infected cells, Math. Biosci. Eng., 1 (2004), 267–288. https://doi.org/10.3934/mbe.2004.1.267 doi: 10.3934/mbe.2004.1.267
|
| [10] |
L. Rong, Z. Feng, A. S. Perelson, Mathematical analysis of age-structured HIV-1 dynamics with combination antiretroviral therapy, SIAM J. Appl. Math., 67 (2007), 731–756. https://doi.org/10.1137/060663945 doi: 10.1137/060663945
|
| [11] |
P. Magal, C. C. McCluskey, G. F. Webb, Lyapunov functional and global asymptotic stability for an infection-age model, Appl. Anal., 89 (2010), 1109–1140. https://doi.org/10.1080/00036810903208122 doi: 10.1080/00036810903208122
|
| [12] |
C. C. McCluskey, Delay versus age-of-infection-global stability, Appl. Math. Comput., 217 (2010), 3046–3049. https://doi.org/10.1016/j.amc.2010.08.037 doi: 10.1016/j.amc.2010.08.037
|
| [13] |
A. V. Melnik, A. Korobeinikov, Lyapunov functions and global stability for SIR and SEIR models with age-dependent susceptibility, Math. Biosci. Eng., 10 (2013), 369–378. https://doi.org/10.3934/mbe.2013.10.369 doi: 10.3934/mbe.2013.10.369
|
| [14] |
G. Huang, X. Liu, Y. Takeuchi, Lyapunov functions and global stability for age-structured HIV infection model, SIAM J. Appl. Math, 72 (2012), 25–38. https://doi.org/10.1137/110826588 doi: 10.1137/110826588
|
| [15] |
C. L. Althaus, R. J. De Boer, Intracellular transactivation of HIV can account for the decelerating decay of virus load during drug therapy, Mol. Syst. Biol., 6 (2010), 348. https://doi.org/10.1038/msb.2010.4 doi: 10.1038/msb.2010.4
|
| [16] |
M. S. Arif, K. Abodayeh, Y. Nawaz, Construction of a computational scheme for the fuzzy HIV/AIDS epidemic model with a nonlinear saturated incidence rate, Comput. Model. Eng. Sci., 138 (2024), 145–1425. https://doi.org/10.32604/cmes.2023.028946 doi: 10.32604/cmes.2023.028946
|
| [17] |
M. S. Arif, K. Abodayeh, Y. Nawaz, A hybrid SIR-fuzzy model for epidemic dynamics: a numerical study, Comput. Model. Eng. Sci., 139 (2024), 3417–3434. https://doi.org/10.32604/cmes.2024.046944 doi: 10.32604/cmes.2024.046944
|
| [18] | G. Webb, Theory of nonlinear age-dependent population dynamics, CRC Press, 1985. |
| [19] | J. A. J. Metz, O. Diekmann, The dynamics of physiologically structured populations, Springer, 68 (1986). https://doi.org/10.1007/978-3-662-13159-6 |
| [20] |
L. M. Abia, O. Angulo, J. C. López-Marcos, Age-structured population models and their numerical solution, Ecol. Model., 188 (2005), 112–136. https://doi.org/10.1016/j.ecolmodel.2005.05.007 doi: 10.1016/j.ecolmodel.2005.05.007
|
| [21] | Y. Kuang, Delay differential equations, New York: Academic press, 1993. |
| [22] |
R. J. H. Payne, M. A. Nowak, B. S. Blumberg, Analysis of a cellular model to account for the natural history of infection by the hepatitis B virus and its role in the development of primary hepatocellular carcinoma, J. Theor. Biol., 159 (1992), 215–240. https://doi.org/10.1016/S0022-5193(05)80703-9 doi: 10.1016/S0022-5193(05)80703-9
|
| [23] |
P. Wu, H. Zhao, Mathematical analysis of multi-target cells and multi-strain age-structured model with two HIV infection routes, Int. J. Biomath., 14 (2021), 2150057. https://doi.org/10.1142/S1793524521500571 doi: 10.1142/S1793524521500571
|
| [24] | G. D. Smith, Numerical solution of partial differential equations: finite difference methods, 3Eds., Clarendon Press, 1986 |
| [25] | R. J. LeVeque, Finite difference methods for ordinary and partial differential equations: steady-state and time-dependent problems, SIAM, 2007. |
| [26] | K. W. Morton, D. F. Mayers, Numerical solution of partial differential equations: an introduction, 2 Eds., Cambridge University Press, 2012. https://doi.org/10.1017/CBO9780511812248 |
| [27] |
J. Crank, P. Nicolson, A practical method for numerical evaluation of solutions of partial differential equations of the heat-conduction type, Adv. Comput. Math., 6 (1996), 207–226. https://doi.org/10.1007/BF02127704 doi: 10.1007/BF02127704
|
| [28] | E. Hairer, M. Roche, C. Lubich, The numerical solution of differential-algebraic systems by Runge-Kutta methods, Springer, 1989. https://doi.org/10.1007/BFb0093947 |
| [29] | J. C. Butcher, Numerical methods for ordinary differential equations, John Wiley & Sons, 2016. https://doi.org/10.1002/9781119121534 |
| [30] | P. D. Lax, R. D. Richtmyer, Survey of the stability of linear finite difference equations, Commun. Pure Appl. Math., 9 (1956), 267–293. |
| [31] | J. C. Strikwerda, Finite difference schemes and partial differential equations, SIAM, 2004. |
| [32] |
H. K. Rouf, F. Costen, S. G. Garcia, 3D Crank-Nicolson finite difference time domain method for dispersive media, Electron. Lett., 45 (2009), 961–962. https://doi.org/10.1049/el.2009.1940 doi: 10.1049/el.2009.1940
|
| [33] | J. Stoer, R. Bulirsch, Introduction to numerical analysis, New York: Springer, 1993. https://doi.org/10.1007/978-1-4757-2272-7 |
| [34] | N. J. Higham, Accuracy and stability of numerical algorithms, SIAM, 2002. |
| [35] | A. Quarteroni, R. Sacco, F. Saleri, Numerical mathematics, Springer Science & Business Media, 2006. |
| [36] |
A. Ostermann, M. Roche, Runge-Kutta methods for partial differential equations and fractional orders of convergence, Math. Comp., 59 (1992), 403–420. https://doi.org/10.1090/S0025-5718-1992-1142285-6 doi: 10.1090/S0025-5718-1992-1142285-6
|
| [37] | M. Martcheva, An introduction to mathematical epidemiology, New York: Springer, 2015. https://doi.org/10.1007/978-1-4899-7612-3 |
| [38] | A. L. Lloyd, Sensitivity of model-based epidemiological parameter estimation to model assumptions, In: Mathematical and statistical estimation approaches in epidemiology, Springer, 2009,123–141. https://doi.org/10.1007/978-90-481-2313-1_6 |
| [39] |
D. J. Leggat, K. W. Cohen, J. R. Willis, W. J. Fulp, A. C. Decamp, O. Kalyuzhniy, et al., Vaccination induces HIV broadly neutralizing antibody precursors in humans, Science, 378 (2022), eadd6502. https://doi.org/10.1126/science.add6502 doi: 10.1126/science.add6502
|
| [40] |
B. Buonomo, C. Vargas-De-León, Global stability for an HIV-1 infection model including an eclipse stage of infected cells, J. Math. Anal. Appl., 385 (2012), 709–720. https://doi.org/10.1016/j.jmaa.2011.07.006 doi: 10.1016/j.jmaa.2011.07.006
|
| [41] |
B. Perdiguero, B. Asbach, C. E. Gómez, J. Köstler, S. W. Barnett, M. Koutsoukos, et al., Early and long-term HIV-1 immunogenicity induced in macaques by the combined administration of DNA, NYVAC, and Env protein-based vaccine candidates: the AUP512 study, Front. Immunol., 13 (2022), 939627. https://doi.org/10.3389/fimmu.2022.939627 doi: 10.3389/fimmu.2022.939627
|