The aim of this research article was to explore the framework of elliptic-valued metric spaces and establish novel common fixed point theorems for a wide range of generalized contraction mappings. Our findings provide a significant extension and unification of existing fixed point results, offering more refined mathematical tools for analyzing nonlinear problems in abstract spaces. To illustrate the effectiveness of our theorems, we present a concrete example that underscores the originality of our approach. Additionally, we highlight the practical significance of our main result by applying it to solve a nonlinear Fredholm integral equation of the second kind, which plays a crucial role in climate modeling. This equation is essential for understanding temperature distribution dynamics and feedback mechanisms within Earth's energy balance system. By bridging theoretical developments in metric space theory with real-world climate applications, this study contributes to both mathematical research and environmental science.
Citation: Badriah Alamri. Fixed point theory in elliptic-valued metric spaces: applications to Fredholm integral equations and climate change analysis[J]. AIMS Mathematics, 2025, 10(6): 14222-14247. doi: 10.3934/math.2025641
The aim of this research article was to explore the framework of elliptic-valued metric spaces and establish novel common fixed point theorems for a wide range of generalized contraction mappings. Our findings provide a significant extension and unification of existing fixed point results, offering more refined mathematical tools for analyzing nonlinear problems in abstract spaces. To illustrate the effectiveness of our theorems, we present a concrete example that underscores the originality of our approach. Additionally, we highlight the practical significance of our main result by applying it to solve a nonlinear Fredholm integral equation of the second kind, which plays a crucial role in climate modeling. This equation is essential for understanding temperature distribution dynamics and feedback mechanisms within Earth's energy balance system. By bridging theoretical developments in metric space theory with real-world climate applications, this study contributes to both mathematical research and environmental science.
| [1] | R. Bombelli, L'algebra, Bologna, Italy, 1572. |
| [2] |
A. A. Harkin, J. B. Harkin, Geometry of generalized complex numbers, Math. Mag., 77 (2004), 118–129. https://doi.org/10.1080/0025570X.2004.11953236 doi: 10.1080/0025570X.2004.11953236
|
| [3] | W. K. Clifford, Mathematical papers, New York: Chelsea, 1968. |
| [4] |
K. Zindler, Geometrie der dynamen, Monatsh. Math. Phys., 14 (1903), A70–A75. https://doi.org/10.1007/BF01707030 doi: 10.1007/BF01707030
|
| [5] |
M. M. Frechet, Sur quelques points du calcul fonctionnel, Rend. Circ. Mat. Palermo, 22 (1906), 1–72. https://doi.org/10.1007/BF03018603 doi: 10.1007/BF03018603
|
| [6] | S. Banach, Sur les opérations dans les ensembles abstraits et leur application aux equations intégrales, Fund. Math., 3 (1922), 133–181. |
| [7] | B. Fisher, Mappings satisfying a rational inequality, Bull. Math. Soc. Sci. Math. R. S. Roumanie, 24 (1980), 247–251. |
| [8] |
A. Azam, B. Fisher, M. Khan, Common fixed point theorems in complex valued metric spaces, Numer. Funct. Anal. Optim., 32 (2011), 243–253. https://doi.org/10.1080/01630563.2011.533046 doi: 10.1080/01630563.2011.533046
|
| [9] |
L. G. Huang, X. Zhang, Cone metric spaces and fixed point theorems of contractive mappings, J. Math. Anal. Appl., 332 (2007), 1468–1476. https://doi.org/10.1016/j.jmaa.2005.03.087 doi: 10.1016/j.jmaa.2005.03.087
|
| [10] |
F. Rouzkard, M. Imdad, Some common fixed point theorems on complex valued metric spaces, Comput. Math. Appl., 64 (2012), 1866–1874. https://doi.org/10.1016/j.camwa.2012.02.063 doi: 10.1016/j.camwa.2012.02.063
|
| [11] |
W. Sintunavarat, P. Kumam, Generalized common fixed point theorems in complex valued metric spaces and applications, J. Inequal. Appl., 2012 (2012), 1–12. https://doi.org/10.1186/1029-242X-2012-84 doi: 10.1186/1029-242X-2012-84
|
| [12] |
J. Ahmad, A. E. Al-Mazrooei, H. Aydi, M. De La Sen, Rational contractions on complex-valued extended $b$-metric spaces and an application, AIMS Math., 8 (2023), 3338–3352. https://doi.org/10.3934/math.2023172 doi: 10.3934/math.2023172
|
| [13] |
N. Mlaiki, T. Abdeljawad, W. Shatanawi, H. Aydi, Y. U. Gaba, On complex-valued triple controlled metric spaces and applications, J. Funct. Spaces, 2021 (2021), 5563456. https://doi.org/10.1155/2021/5563456 doi: 10.1155/2021/5563456
|
| [14] |
M. Öztürk, I. A. Kösal, H. H. Kösal, Coincidence and common fixed point theorems via $\mathcal{C}$-class functions in elliptic valued metric spaces, An. St. Univ. Ovidius Constanta, 29 (2021), 165–182. https://doi.org/10.2478/auom-2021-0011 doi: 10.2478/auom-2021-0011
|
| [15] |
B. Alamri, Fixed-point results in elliptic-valued metric spaces with applications, Axioms, 14 (2025), 1–19. https://doi.org/10.3390/axioms14010046 doi: 10.3390/axioms14010046
|
| [16] |
S. K. Ghosh, O. Ege, J. Ahmad, A. Aloqaily, N. Mlaiki, On elliptic valued $b$-metric spaces and some new fixed point results with an application, AIMS Math., 9 (2024), 17184–17204. https://doi.org/10.3934/math.2024835 doi: 10.3934/math.2024835
|
| [17] |
J. Ahmad, C. Klin-eam, A. Azam, Common fixed points for multivalued mappings in complex valued metric spaces with applications, Abstr. Appl. Anal., 2013 (2013), 854965. https://doi.org/10.1155/2013/854965 doi: 10.1155/2013/854965
|
| [18] |
A. Azam, J. Ahmad, P. Kumam, Common fixed point theorems for multi-valued mappings in complex-valued metric spaces, J. Inequal. Appl., 2013 (2013), 1–12. https://doi.org/10.1186/1029-242X-2013-578 doi: 10.1186/1029-242X-2013-578
|
| [19] |
K. Sitthikul, S. Saejung, Some fixed point theorems in complex valued metric spaces, Fixed Point Theory Appl., 2012 (2012), 1–11. https://doi.org/10.1186/1687-1812-2012-189 doi: 10.1186/1687-1812-2012-189
|
| [20] | H. Kaper, H. Engler, Mathematics and climate, Philadelphia: Society for Industrial and Applied Mathematics, 2013. |
| [21] | V. P. Dymnikov, A. N. Filatov, Mathematics of climate modeling, Boston: Birkhäuser, 1997. |
| [22] | G. Lohmann, Mathematics and climate change, In: Handbook of the mathematics of the arts and sciences, Cham: Springer, 2021, 1–32. https://doi.org/10.1007/978-3-319-70658-0_145-1 |
| [23] |
S. A. Al-Mezel, H. H. Alsulami, E. Karapınar, F. Khojasteh, A note on fixed point results in complex-valued metric spaces, J. Inequal. Appl., 2015 (2015), 1–11. https://doi.org/10.1186/s13660-015-0550-6 doi: 10.1186/s13660-015-0550-6
|
| [24] |
G. R. North, R. F. Cahalan, J. A. Coakley Jr., Energy balance climate models, Rev. Geophys., 19 (1981), 91–121. https://doi.org/10.1029/RG019i001p00091 doi: 10.1029/RG019i001p00091
|
| [25] | H. A. Dijkstra, Nonlinear climate dynamics, Cambridge University Press, 2013. https://doi.org/10.1017/CBO9781139034135 |