Research article Special Issues

A quartically fast iteration solver with convergence analysis for numerically determining the sign of a matrix

  • Published: 18 June 2025
  • MSC : 41A25, 65F60

  • The calculation of the matrix sign function (MSF) is pivotal in numerous mathematical contexts, offering a matrix-based transformation that identifies the sign for every eigenvalue within an invertible matrix. This paper introduces a new iteration procedure tailored to effectively compute the MSF, with a particular focus on expanding the order of convergence. Our proposed solver achieves fourth-order convergence, rendering it effective for a broad spectrum of matrices. Numerical experiments for both real and complex matrices are included to support the derivations.

    Citation: Ying Liu, Runqi Xue, Tao Liu, Shuai Wang, Stanford Shateyi. A quartically fast iteration solver with convergence analysis for numerically determining the sign of a matrix[J]. AIMS Mathematics, 2025, 10(6): 14055-14070. doi: 10.3934/math.2025632

    Related Papers:

  • The calculation of the matrix sign function (MSF) is pivotal in numerous mathematical contexts, offering a matrix-based transformation that identifies the sign for every eigenvalue within an invertible matrix. This paper introduces a new iteration procedure tailored to effectively compute the MSF, with a particular focus on expanding the order of convergence. Our proposed solver achieves fourth-order convergence, rendering it effective for a broad spectrum of matrices. Numerical experiments for both real and complex matrices are included to support the derivations.



    加载中


    [1] L. Hogben, Handbook of linear algebra, 2 Eds., New York: Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b16113
    [2] E. D. Denman, A. N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput., 2 (1976), 63–94. https://doi.org/10.1016/0096-3003(76)90020-5 doi: 10.1016/0096-3003(76)90020-5
    [3] M. Kansal, V. Sharma, P. Sharma, L. Jäntschi, A globally convergent iterative method for matrix sign function and its application for determining the eigenvalues of a matrix pencil, Symmetry, 16 (2024), 481. https://doi.org/10.3390/sym16040481 doi: 10.3390/sym16040481
    [4] S. Wang, Z. Wang, W. Xie, Y. Qi, T. Liu, An accelerated sixth-order procedure to determine the matrix sign function computationally, Mathematics, 13 (2025), 1080. https://doi.org/10.3390/math13071080 doi: 10.3390/math13071080
    [5] J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Int. J. Control, 32 (1980), 677–687. https://doi.org/10.1080/00207178008922881 doi: 10.1080/00207178008922881
    [6] N. J. Higham, Functions of matrices: Theory and computation, Philadelphia: Society for Industrial and Applied Mathematics, 2008. https://doi.org/10.1137/1.9780898717778
    [7] A. R. Soheili, M. Amini, F. Soleymani, A family of Chaplygin–type solvers for Itô stochastic differential equations, Appl. Math. Comput., 340 (2019), 296–304. https://doi.org/10.1016/j.amc.2018.08.038 doi: 10.1016/j.amc.2018.08.038
    [8] A. R. Soheili, F. Toutounian, F. Soleymani, A fast convergent numerical method for matrix sign function with application in SDEs, J. Comput. Appl. Math., 282 (2015), 167–178. https://doi.org/10.1016/j.cam.2014.12.041 doi: 10.1016/j.cam.2014.12.041
    [9] J. Golzarpoor, D. Ahmed, S. Shateyi, Constructing a matrix mid-point iterative method for matrix square roots and applications, Mathematics, 10 (2022), 2200. https://doi.org/10.3390/math10132200 doi: 10.3390/math10132200
    [10] J. Saak, S. W. R. Werner, Using $L D L^T$ factorizations in Newton's method for solving general large-scale algebraic Riccati equations, Electron. Trans. Numer. Anal., 62 (2024), 95–118. https://doi.org/10.1553/etna_vol62s95 doi: 10.1553/etna_vol62s95
    [11] C. S. Kenney, A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl., 12 (1991), 273–291. https://doi.org/10.1137/0612020 doi: 10.1137/0612020
    [12] D. Jung, C. Chun, A general approach for improving the Padé iterations for the matrix sign function, J. Comput. Appl. Math., 436 (2024), 115348. https://doi.org/10.1016/j.cam.2023.115348 doi: 10.1016/j.cam.2023.115348
    [13] F. Soleymani, P. S. Stanimirović, S. Shateyi, F. K. Haghani, Approximating the matrix sign function using a novel iterative method, Abstr. Appl. Anal., 2014 (2014), 105301. https://doi.org/10.1155/2014/105301 doi: 10.1155/2014/105301
    [14] O. Gomilko, F. Greco, K. Ziȩtak, A Padé family of iterations for the matrix sign function and related problems, Numer. Linear Algebra Appl., 19 (2012), 585–605. https://doi.org/10.1002/nla.786 doi: 10.1002/nla.786
    [15] A. Cordero, F. Soleymani, J. R. Torregrosa, M. Zaka Ullah, Numerically stable improved Chebyshev–Halley type schemes for matrix sign function, J. Comput. Appl. Math., 318 (2017), 189–198. https://doi.org/10.1016/j.cam.2016.10.025 doi: 10.1016/j.cam.2016.10.025
    [16] J. F. Traub, Iterative methods for the solution of equations, New York: Prentice-Hall, 1964.
    [17] M. Z. Ullah, S. M. Alaslani, F. O. Mallawi, F. Ahmad, S. Shateyi, M. Asma, A fast and efficient Newton-type iterative scheme to find the sign of a matrix, AIMS Mathematics, 8 (2023), 19264–19274. https://doi.org/10.3934/math.2023982 doi: 10.3934/math.2023982
    [18] F. Soleymani, A. Kumar, A fourth-order method for computing the sign function of a matrix with application in the Yang–Baxter-like matrix equation, Comput. Appl. Math., 38 (2019), 64. https://doi.org/10.1007/s40314-019-0816-6 doi: 10.1007/s40314-019-0816-6
    [19] R. Bhatia, Matrix analysis, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0653-8
    [20] L. Shi, M. Z. Ullah, H. K. Nashine, M. Alansari, S. Shateyi, An enhanced numerical iterative method for expanding the attraction basins when computing matrix signs of invertible matrices, Fractal Fract., 7 (2023), 684. https://doi.org/10.3390/fractalfract7090684 doi: 10.3390/fractalfract7090684
    [21] Y. Feng, A. Z. Othman, An accelerated iterative method to find the sign of a nonsingular matrix with quartical convergence, Iran. J. Sci., 47 (2023), 1359–1366. https://doi.org/10.1007/s40995-023-01506-7 doi: 10.1007/s40995-023-01506-7
    [22] B. Iannazzo, Numerical solution of certain nonlinear matrix equations, PhD Thesis, Universita Degli Studi di Pisa, Pisa, Italy, 2007.
    [23] G. W. Stewart, Introduction to matrix computations, New York: Academic Press, 1973.
    [24] S. Mangano, Mathematica cookbook, O'Reilly Media, 2010.
    [25] H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7
    [26] K. Yosida, Functional analysis, Berlin, Heidelberg: Springer, 1995. https://doi.org/10.1007/978-3-642-61859-8
    [27] W. Rudin, Functional analysis, McGraw Hill, 1991.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(702) PDF downloads(25) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(4)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog