The calculation of the matrix sign function (MSF) is pivotal in numerous mathematical contexts, offering a matrix-based transformation that identifies the sign for every eigenvalue within an invertible matrix. This paper introduces a new iteration procedure tailored to effectively compute the MSF, with a particular focus on expanding the order of convergence. Our proposed solver achieves fourth-order convergence, rendering it effective for a broad spectrum of matrices. Numerical experiments for both real and complex matrices are included to support the derivations.
Citation: Ying Liu, Runqi Xue, Tao Liu, Shuai Wang, Stanford Shateyi. A quartically fast iteration solver with convergence analysis for numerically determining the sign of a matrix[J]. AIMS Mathematics, 2025, 10(6): 14055-14070. doi: 10.3934/math.2025632
The calculation of the matrix sign function (MSF) is pivotal in numerous mathematical contexts, offering a matrix-based transformation that identifies the sign for every eigenvalue within an invertible matrix. This paper introduces a new iteration procedure tailored to effectively compute the MSF, with a particular focus on expanding the order of convergence. Our proposed solver achieves fourth-order convergence, rendering it effective for a broad spectrum of matrices. Numerical experiments for both real and complex matrices are included to support the derivations.
| [1] | L. Hogben, Handbook of linear algebra, 2 Eds., New York: Chapman and Hall/CRC, 2013. https://doi.org/10.1201/b16113 |
| [2] |
E. D. Denman, A. N. Beavers, The matrix sign function and computations in systems, Appl. Math. Comput., 2 (1976), 63–94. https://doi.org/10.1016/0096-3003(76)90020-5 doi: 10.1016/0096-3003(76)90020-5
|
| [3] |
M. Kansal, V. Sharma, P. Sharma, L. Jäntschi, A globally convergent iterative method for matrix sign function and its application for determining the eigenvalues of a matrix pencil, Symmetry, 16 (2024), 481. https://doi.org/10.3390/sym16040481 doi: 10.3390/sym16040481
|
| [4] |
S. Wang, Z. Wang, W. Xie, Y. Qi, T. Liu, An accelerated sixth-order procedure to determine the matrix sign function computationally, Mathematics, 13 (2025), 1080. https://doi.org/10.3390/math13071080 doi: 10.3390/math13071080
|
| [5] |
J. D. Roberts, Linear model reduction and solution of the algebraic Riccati equation by use of the sign function, Int. J. Control, 32 (1980), 677–687. https://doi.org/10.1080/00207178008922881 doi: 10.1080/00207178008922881
|
| [6] | N. J. Higham, Functions of matrices: Theory and computation, Philadelphia: Society for Industrial and Applied Mathematics, 2008. https://doi.org/10.1137/1.9780898717778 |
| [7] |
A. R. Soheili, M. Amini, F. Soleymani, A family of Chaplygin–type solvers for Itô stochastic differential equations, Appl. Math. Comput., 340 (2019), 296–304. https://doi.org/10.1016/j.amc.2018.08.038 doi: 10.1016/j.amc.2018.08.038
|
| [8] |
A. R. Soheili, F. Toutounian, F. Soleymani, A fast convergent numerical method for matrix sign function with application in SDEs, J. Comput. Appl. Math., 282 (2015), 167–178. https://doi.org/10.1016/j.cam.2014.12.041 doi: 10.1016/j.cam.2014.12.041
|
| [9] |
J. Golzarpoor, D. Ahmed, S. Shateyi, Constructing a matrix mid-point iterative method for matrix square roots and applications, Mathematics, 10 (2022), 2200. https://doi.org/10.3390/math10132200 doi: 10.3390/math10132200
|
| [10] |
J. Saak, S. W. R. Werner, Using $L D L^T$ factorizations in Newton's method for solving general large-scale algebraic Riccati equations, Electron. Trans. Numer. Anal., 62 (2024), 95–118. https://doi.org/10.1553/etna_vol62s95 doi: 10.1553/etna_vol62s95
|
| [11] |
C. S. Kenney, A. J. Laub, Rational iterative methods for the matrix sign function, SIAM J. Matrix Anal. Appl., 12 (1991), 273–291. https://doi.org/10.1137/0612020 doi: 10.1137/0612020
|
| [12] |
D. Jung, C. Chun, A general approach for improving the Padé iterations for the matrix sign function, J. Comput. Appl. Math., 436 (2024), 115348. https://doi.org/10.1016/j.cam.2023.115348 doi: 10.1016/j.cam.2023.115348
|
| [13] |
F. Soleymani, P. S. Stanimirović, S. Shateyi, F. K. Haghani, Approximating the matrix sign function using a novel iterative method, Abstr. Appl. Anal., 2014 (2014), 105301. https://doi.org/10.1155/2014/105301 doi: 10.1155/2014/105301
|
| [14] |
O. Gomilko, F. Greco, K. Ziȩtak, A Padé family of iterations for the matrix sign function and related problems, Numer. Linear Algebra Appl., 19 (2012), 585–605. https://doi.org/10.1002/nla.786 doi: 10.1002/nla.786
|
| [15] |
A. Cordero, F. Soleymani, J. R. Torregrosa, M. Zaka Ullah, Numerically stable improved Chebyshev–Halley type schemes for matrix sign function, J. Comput. Appl. Math., 318 (2017), 189–198. https://doi.org/10.1016/j.cam.2016.10.025 doi: 10.1016/j.cam.2016.10.025
|
| [16] | J. F. Traub, Iterative methods for the solution of equations, New York: Prentice-Hall, 1964. |
| [17] |
M. Z. Ullah, S. M. Alaslani, F. O. Mallawi, F. Ahmad, S. Shateyi, M. Asma, A fast and efficient Newton-type iterative scheme to find the sign of a matrix, AIMS Mathematics, 8 (2023), 19264–19274. https://doi.org/10.3934/math.2023982 doi: 10.3934/math.2023982
|
| [18] |
F. Soleymani, A. Kumar, A fourth-order method for computing the sign function of a matrix with application in the Yang–Baxter-like matrix equation, Comput. Appl. Math., 38 (2019), 64. https://doi.org/10.1007/s40314-019-0816-6 doi: 10.1007/s40314-019-0816-6
|
| [19] | R. Bhatia, Matrix analysis, New York: Springer, 1997. https://doi.org/10.1007/978-1-4612-0653-8 |
| [20] |
L. Shi, M. Z. Ullah, H. K. Nashine, M. Alansari, S. Shateyi, An enhanced numerical iterative method for expanding the attraction basins when computing matrix signs of invertible matrices, Fractal Fract., 7 (2023), 684. https://doi.org/10.3390/fractalfract7090684 doi: 10.3390/fractalfract7090684
|
| [21] |
Y. Feng, A. Z. Othman, An accelerated iterative method to find the sign of a nonsingular matrix with quartical convergence, Iran. J. Sci., 47 (2023), 1359–1366. https://doi.org/10.1007/s40995-023-01506-7 doi: 10.1007/s40995-023-01506-7
|
| [22] | B. Iannazzo, Numerical solution of certain nonlinear matrix equations, PhD Thesis, Universita Degli Studi di Pisa, Pisa, Italy, 2007. |
| [23] | G. W. Stewart, Introduction to matrix computations, New York: Academic Press, 1973. |
| [24] | S. Mangano, Mathematica cookbook, O'Reilly Media, 2010. |
| [25] | H. Brezis, Functional analysis, Sobolev spaces and partial differential equations, New York: Springer, 2011. https://doi.org/10.1007/978-0-387-70914-7 |
| [26] | K. Yosida, Functional analysis, Berlin, Heidelberg: Springer, 1995. https://doi.org/10.1007/978-3-642-61859-8 |
| [27] | W. Rudin, Functional analysis, McGraw Hill, 1991. |