Research article

The moduli space of symplectic bundles over a compact Riemann surface and quaternionic structures

  • Received: 16 April 2025 Revised: 26 May 2025 Accepted: 06 June 2025 Published: 11 June 2025
  • MSC : 14H60, 14H10, 57R57

  • Let $ G = \text{Sp}(4, \mathbb{C}) $, $ K_G $ be a maximal compact subgroup of $ G $, $ H $ be the subgroup of $ G $ generated by one of the non-trivial elements of the quaternion group, viewed as a subgroup of $ G $, and $ X $ be a compact Riemann surface of genus $ g\geq 2 $. The main result of this paper proves that the forgetful map $ F:M(H)\to M(G) $ between moduli spaces of principal bundles over $ X $ induced by the inclusion $ H\hookrightarrow G $ is a closed embedding. From this, $ M(H) $ can be understood as a closed subvariety of $ M(G) $. Moreover, some applications of this result are provided. In particular, it is proved that the bundles in the image of $ F $ admit a quaternionic structure and also a reduction of the structure group to $ \text{Sp}(2, \mathbb{H}) $. From this, some topological constraints are given, including that the image of the forgetful map falls in a single connected component of $ M(G) $. In addition, some applications are provided concerning the representation space $ \mathcal{R}(\pi_1(X), K_G) $, which, by the Narasimhan-Seshadri-Ramanathan correspondence, is isomorphic to $ M(G) $. Specifically, the image of the forgetful map is proved to correspond to the fixed point subset of a certain subvariety of $ \mathcal{R}(\pi_1(X), K_G) $.

    Citation: Álvaro Antón-Sancho. The moduli space of symplectic bundles over a compact Riemann surface and quaternionic structures[J]. AIMS Mathematics, 2025, 10(6): 13451-13475. doi: 10.3934/math.2025604

    Related Papers:

  • Let $ G = \text{Sp}(4, \mathbb{C}) $, $ K_G $ be a maximal compact subgroup of $ G $, $ H $ be the subgroup of $ G $ generated by one of the non-trivial elements of the quaternion group, viewed as a subgroup of $ G $, and $ X $ be a compact Riemann surface of genus $ g\geq 2 $. The main result of this paper proves that the forgetful map $ F:M(H)\to M(G) $ between moduli spaces of principal bundles over $ X $ induced by the inclusion $ H\hookrightarrow G $ is a closed embedding. From this, $ M(H) $ can be understood as a closed subvariety of $ M(G) $. Moreover, some applications of this result are provided. In particular, it is proved that the bundles in the image of $ F $ admit a quaternionic structure and also a reduction of the structure group to $ \text{Sp}(2, \mathbb{H}) $. From this, some topological constraints are given, including that the image of the forgetful map falls in a single connected component of $ M(G) $. In addition, some applications are provided concerning the representation space $ \mathcal{R}(\pi_1(X), K_G) $, which, by the Narasimhan-Seshadri-Ramanathan correspondence, is isomorphic to $ M(G) $. Specifically, the image of the forgetful map is proved to correspond to the fixed point subset of a certain subvariety of $ \mathcal{R}(\pi_1(X), K_G) $.



    加载中


    [1] D. Mumford, Projective invariants of projective structures and applications, Proc. Int. Congr. Math., 1 (1962), 526–530.
    [2] M. S. Narasimhan, C. S. Seshadri, Stable and unitary vector bundles on a compact Riemann surface, Ann. Math., 82 (1965), 540–567. https://doi.org/10.2307/1970710 doi: 10.2307/1970710
    [3] A. Ramanathan, Moduli for principal bundles over algebraic curves. Ⅰ, P. Indian A.S.-Math. Sci., 106 (1966), 301–328. https://doi.org/10.1007/BF02867438 doi: 10.1007/BF02867438
    [4] A. Ramanathan, Moduli for principal bundles over algebraic curves. Ⅱ, P. Indian A.S.-Math. Sci., 106 (1966), 421–449. https://doi.org/10.1007/BF02837697 doi: 10.1007/BF02837697
    [5] G. Faltings, Stable $G$-bundles and projective connections, J. Algebraic Geom., 2 (1993), 507–568.
    [6] C. T. Simpson, Higgs bundles and local systems, Publ. Math. IHÉS, 75 (1992), 5–95. https://doi.org/10.1007/BF02698887 doi: 10.1007/BF02698887
    [7] D. Mumford, J. Fogarty, F. Kirwan, Geometric invariant theory, 3 Eds., Berlin: Springer-Verlag, 1994.
    [8] A. Ramanathan, Stable principal bundles on a compact Riemann surface, Math. Ann., 213 (1975), 129–152. https://doi.org/10.1007/BF01343949 doi: 10.1007/BF01343949
    [9] M. F. Atiyah, R. Bott, The Yang-Mills equations over Riemann surfaces, Philos. T. R. Soc. A, 308 (1982), 523–615. https://doi.org/10.1098/rsta.1983.0017 doi: 10.1098/rsta.1983.0017
    [10] M. Verbitsky, Hyperkähler manifolds with torsion, supersymmetry and Hodge theory, Asian J. Math., 6 (2002), 679–712. https://dx.doi.org/10.4310/AJM.2002.v6.n4.a5 doi: 10.4310/AJM.2002.v6.n4.a5
    [11] A. Swann, Hyperkähler and quaternionic Kähler geometry, Math. Ann., 289 (1991), 421–450. https://doi.org/10.1007/BF01446581 doi: 10.1007/BF01446581
    [12] O. Guichard, A. Wienhard, Anosov representations: Domains of discontinuity and applications, Invent. Math., 190 (2012), 357–438. https://doi.org/10.1007/s00222-012-0382-7 doi: 10.1007/s00222-012-0382-7
    [13] F. Labourie, Anosov flows, surface groups and curves in projective space, Invent. Math., 165 (2006), 51–114. https://doi.org/10.1007/s00222-005-0487-3 doi: 10.1007/s00222-005-0487-3
    [14] M. Cadek, M. Crabb, J. Vanzura, Quaternionic structures, Topol. Appl., 157 (2010), 2850–2863. https://doi.org/10.1016/j.topol.2010.09.005 doi: 10.1016/j.topol.2010.09.005
    [15] N. Hitchin, The self-duality equations on a Riemann surface, P. Lond. Math. Soc., 55 (1987), 59–126. https://doi.org/10.1112/plms/s3-55.1.59 doi: 10.1112/plms/s3-55.1.59
    [16] Á. Antón-Sancho, Fixed points of automorphisms of the vector bundle moduli space over a compact Riemann surface, Mediterr. J. Math., 21 (2024), 20. https://doi.org/10.1007/s00009-023-02559-z doi: 10.1007/s00009-023-02559-z
    [17] O. García-Prada, S. Ramanan, Involutions and higher order automorphisms of Higgs bundle moduli spaces, P. Lond. Math. Soc., 119 (2019), 681–732. https://doi.org/10.1112/plms.12242 doi: 10.1112/plms.12242
    [18] Á. Antón-Sancho, A construction of Shatz strata in the polystable $G_2$-bundles moduli space using Hecke curves, Electron. Res. Arch., 32 (2024), 6109–6119. https://doi.org/10.3934/era.2024283 doi: 10.3934/era.2024283
    [19] Á. Antón-Sancho, The $\mathbb{C}^*$-action and stratifications of the moduli space of semistable Higgs bundles of rank $5$, AIMS Math., 10 (2025), 3428–3456. https://doi.org/10.3934/math.2025159 doi: 10.3934/math.2025159
    [20] O. Serman, Moduli spaces of orthogonal and symplectic bundles over an algebraic curve, Compos. Math., 144 (2008), 721–733. https://doi.org/10.1112/S0010437X07003247 doi: 10.1112/S0010437X07003247
    [21] Á. Antón-Sancho, $\text{Sp}in(8, \mathbb{C})$-Higgs bundles and the Hitchin integrable system, Mathematics, 12 (2024), 3436. https://doi.org/10.3390/math12213436 doi: 10.3390/math12213436
    [22] A. Barajas, O. García-Prada, P. B. Gothen, I. Mundet, Non-connected Lie groups, twisted equivariant bundles and coverings, Geometriae Dedicata, 217 (2023), 27. https://doi.org/10.1007/s10711-022-00764-w doi: 10.1007/s10711-022-00764-w
    [23] Q. Liu, Algebraic geometry and arithmetic curves, Oxford: Oxford Graduate Texts in Mathematics, Oxford University Press, 2002.
    [24] G. Bellamy, T. Schedler, A new linear quotient of $\mathbb{C}^4$ admitting a symplectic resolution, Math. Z., 273 (2013), 753–769. https://doi.org/10.1007/s00209-012-1028-6 doi: 10.1007/s00209-012-1028-6
    [25] D. L. Gonçalves, J. Guaschi, The quaternion group as a subgroup of the sphere braid groups, B. Lond. Math. Soc., 39 (2007), 232–234. https://doi.org/10.1112/blms/bdl041 doi: 10.1112/blms/bdl041
    [26] T. J. Li, Quaternionic bundles and Betti numbers of symplectic 4-manifolds with Kodaira dimension zero, Int. Math. Res. Notices, 2006 (2006), 37385. https://doi.org/10.1155/IMRN/2006/37385 doi: 10.1155/IMRN/2006/37385
    [27] R. Quiroga-Barranco, Geometric structures on the quaternionic unit ball and slice regular Möbius transformations, Adv. Appl. Clifford Al., 34 (2024), 41. https://doi.org/10.1007/s00006-024-01343-w doi: 10.1007/s00006-024-01343-w
    [28] I. Chrysikos, V. Cortés, J. Gregorovič, Curvature of quaternionic skew-Hermitian manifolds and bundle constructions, Math. Nachr., 298 (2025), 87–112. https://doi.org/10.1002/mana.202400301 doi: 10.1002/mana.202400301
    [29] A. Verjovsky, A. Zenteno, Bianchi and Hilbert–Blumenthal quaternionic orbifolds, Geometriae Dedicata, 217 (2023), 108. https://doi.org/10.1007/s10711-023-00847-2 doi: 10.1007/s10711-023-00847-2
    [30] M. F. Atiyah, K-theory and reality, Q. J. Math., 17 (1966), 367–386. https://doi.org/10.1093/qmath/17.1.367 doi: 10.1093/qmath/17.1.367
    [31] B. C. Hall, Lie groups, Lie algebras, and representations, Switzerland: Graduate Texts in Mathematics, Springer, 2015. https://doi.org/10.1007/978-3-319-13467-3
    [32] J. Hilgert, K. H. Naab, Structure and geometry of Lie groups, New York: Springer Monographs in Mathematics, Springer, 2012. https://doi.org/10.1007/978-0-387-84794-8
    [33] A. W. Knapp, Lie groups beyond an introduction, Boston: Progress in Mathematics, Birkhäuser, 1996. https://doi.org/10.1007/978-1-4757-2453-0
    [34] J. F. Adams, Lectures on exceptional Lie groups, Chicago: University of Chicago Press, 1996.
    [35] M. Mimura, H. Toda, Homotopy groups of SU(3), SU(4) and Sp(2), J. Math. Kyoto U., 3 (1963), 217–250. https://doi.org/10.1215/kjm/1250524818 doi: 10.1215/kjm/1250524818
    [36] T. So, S. Theriault, The homotopy types of Sp(2)-gauge groups over closed simply connected four-manifolds, P. Steklov I. Math.+, 305 (2019), 287–304. https://doi.org/10.1134/S0081543819030179 doi: 10.1134/S0081543819030179
    [37] O. García-Prada, P. B. Gothen, I. Mundet, Higgs bundles and surface group representations in the real symplectic group, J. Topol., 6 (2013), 64–118. https://doi.org/10.1112/jtopol/jts030 doi: 10.1112/jtopol/jts030
    [38] S. K. Donaldson, A new proof of a theorem of Narasimhan and Seshadri, J. Differ. Geom., 18 (1983), 269–277. https://doi.org/10.4310/jdg/1214437664 doi: 10.4310/jdg/1214437664
    [39] C. T. Simpson, Constructing variations of Hodge structure using Yang-Mills theory and applications to uniformization, J. Am. Math. Soc., 1 (1988), 867–918. https://doi.org/10.1090/S0894-0347-1988-0944577-9 doi: 10.1090/S0894-0347-1988-0944577-9
    [40] O. García-Prada, P. B. Gothen, V. Muñoz, Betti numbers of the moduli space of rank $3$ parabolic Higgs bundles, Mem. Am. Math. Soc., 187 (2007), 879.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(630) PDF downloads(32) Cited by(2)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog