This manuscript deals with proving certain metrical fixed-point findings for a class of generalized contractions involving a couple $ (\psi, \varphi) $ of test functions employing a local class of transitive relation. The outcomes investigated herein refine, modify, unify, and sharpen various existing outcomes. To attest the accuracy of our outcomes, we provide a few examples. By means of our outcomes, we impart an explanation of the reality of a solution to a boundary value problem.
Citation: Abdul Wasey, Wan Ainun Mior Othman, Esmail Alshaban, Kok Bin Wong, Adel Alatawi. Proinov-type relational contractions and applications to boundary value problems[J]. AIMS Mathematics, 2025, 10(6): 13393-13408. doi: 10.3934/math.2025601
This manuscript deals with proving certain metrical fixed-point findings for a class of generalized contractions involving a couple $ (\psi, \varphi) $ of test functions employing a local class of transitive relation. The outcomes investigated herein refine, modify, unify, and sharpen various existing outcomes. To attest the accuracy of our outcomes, we provide a few examples. By means of our outcomes, we impart an explanation of the reality of a solution to a boundary value problem.
| [1] | S. Banach, Sur les operations dans les ensembles abstraits et leur application aux equations intgrales, Fund. Math., 3 (1922), 133–181. http://eudml.org/doc/213289 |
| [2] |
D. W. Boyd, J. S. W. Wong, On nonlinear contractions, Proc. Amer. Math. Soc., 20 (1969), 458–464. https://doi.org/10.1090/S0002-9939-1969-0239559-9 doi: 10.1090/S0002-9939-1969-0239559-9
|
| [3] | Y. I. Alber, S. Guerre-Delabriere, Principle of weakly contractive maps in Hilbert spaces, In: New Results in Operator Theory and Its Applications, Basel: Birkhäuser, 1997, 7–22. https://doi.org/10.1007/978-3-0348-8910-0_2 |
| [4] |
L. B. Ćirić, A generalization of Banach's contraction principle, Proc. Amer. Math. Soc., 45 (1974), 267–273. https://doi.org/10.2307/2040075 doi: 10.2307/2040075
|
| [5] |
W. A. Kirk, Fixed points of asymptotic contractions, J. Math. Anal. Appl., 277 (2003), 645–650. https://doi.org/10.1016/S0022-247X(02)00612-1 doi: 10.1016/S0022-247X(02)00612-1
|
| [6] |
P. N. Dutta, B. S. Choudhury, A generalisation of contraction principle in metric spaces, Fixed Point Theory Appl., 2008 (2008), 406368. https://doi.org/10.1155/2008/406368 doi: 10.1155/2008/406368
|
| [7] |
J. Jachymski, Remarks on contractive conditions of integral type, Nonlinear Anal.-Theor., 71 (2009), 1073–1081. https://doi.org/10.1016/j.na.2008.11.046 doi: 10.1016/j.na.2008.11.046
|
| [8] |
A. Amini-Harandi, A. Petruşel, A fixed point theorem by altering distance technique in complete metric spaces, Miskolc Math. Notes, 14 (2013), 11–17. https://doi.org/10.18514/MMN.2013.600 doi: 10.18514/MMN.2013.600
|
| [9] | M. Berzig, Generalization of the Banach contraction principle, (2013), arXiv: 1310.0995v1. |
| [10] |
P. D. Proinov, Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 22 (2020), 21. https://doi.org/10.1007/s11784-020-0756-1 doi: 10.1007/s11784-020-0756-1
|
| [11] |
J. Górnicki, Fixed point theorems in preordered sets, J. Fixed Point Theory Appl., 23 (2021), 71. https://doi.org/10.1007/s11784-021-00909-6 doi: 10.1007/s11784-021-00909-6
|
| [12] |
O. Popescu, Some remarks on the paper Fixed point theorems for generalized contractive mappings in metric spaces, J. Fixed Point Theory Appl., 23 (2021), 72. https://doi.org/10.1007/s11784-021-00908-7 doi: 10.1007/s11784-021-00908-7
|
| [13] |
I. M. Olaru, N. A. Secelean, A new approach of some contractive mappings on metric spaces, Mathematics, 9 (2021), 1433. https://doi.org/10.3390/math9121433 doi: 10.3390/math9121433
|
| [14] |
A. F. R. L. de Hierro, A. Fulga, E. Karapınar, N. Shahzad, Proinov-type fixed-point results in non-Archimedean fuzzy metric spaces, Mathematics, 9 (2021), 1594. https://doi.org/10.3390/math9141594 doi: 10.3390/math9141594
|
| [15] |
P. Găvruţa, L. Manolescu, New classes of Picard operators, J. Fixed Point Theory Appl., 24 (2022), 56. https://doi.org/10.1007/s11784-022-00973-6 doi: 10.1007/s11784-022-00973-6
|
| [16] |
A. Alam, M. Imdad, Relation-theoretic contraction principle, J. Fixed Point Theory Appl., 17 (2015), 693–702. https://doi.org/10.1007/s11784-015-0247-y doi: 10.1007/s11784-015-0247-y
|
| [17] |
A. Alam, M. Imdad, Relation-theoretic metrical coincidence theorems, Filomat, 31 (2017), 4421–4439. https://doi.org/10.2298/FIL1714421A doi: 10.2298/FIL1714421A
|
| [18] |
A. Alam, M. Imdad, Nonlinear contractions in metric spaces under locally $T$-transitive binary relations, Fixed Point Theory, 19 (2018), 13–24. https://doi.org/10.24193/fpt-ro.2018.1.02 doi: 10.24193/fpt-ro.2018.1.02
|
| [19] |
M. Arif, M. Imdad, A. Alam, Fixed point theorems under locally $T$-transitive binary relations employing Matkowski contractions, Miskolc Math. Notes, 23 (2022), 71–83. https://doi.org/10.18514/MMN.2022.3220 doi: 10.18514/MMN.2022.3220
|
| [20] |
E. A. Algehyne, N. H. Altaweel, M. Areshi, F. A. Khan, Relation-theoretic almost $\phi$-contractions with an application to elastic beam equations, AIMS Mathematics, 8 (2023), 18919–18929. https://doi.org/10.3934/math.2023963 doi: 10.3934/math.2023963
|
| [21] |
A. Alamer, F. A. Khan, Boyd-Wong type functional contractions under locally transitive binary relation with applications to boundary value problems, AIMS Mathematics, 9 (2024), 6266–6280. https://doi.org/10.3934/math.2024305 doi: 10.3934/math.2024305
|
| [22] | S. Lipschitz, Schaum's outlines of set theory and related topics, New York: McGraw-Hill, 1967. |
| [23] | B. Kolman, R. C. Busby, S. C. Ross, Discrete mathematical structures, 4 Eds., New Jersey: Prentice Hall, 1999. |
| [24] | M. Turinici, Contractive operators in relational metric spaces, In: Handbook of functional equations, New York: Springer, 2014,419–458. https://doi.org/10.1007/978-1-4939-1246-9_18 |
| [25] |
J. J. Nieto, R. Rodriguez-López, Existence and uniqueness of fixed point in partially ordered sets and applications to ordinary differential equations, Acta Math. Sin.-English Ser., 23 (2007), 2205–2212. https://doi.org/10.1007/s10114-005-0769-0 doi: 10.1007/s10114-005-0769-0
|