Research article

Modeling of air pollution and Lossalae data by using new classes of skew bivariate family distribution and extreme distributions

  • Published: 06 June 2025
  • MSC : 62E10, 62F10, 62H12, 62P12

  • Adding two more parameters for shaping provides a flexible way to make any basic bivariate distribution function (df) more adaptable. The extended bivariate dfs can better handle different kinds of bivariate data by including these parameters. They can handle a wide range of skewness and kurtosis indices well. The innovation lies in introducing a novel multiplicative bivariate stable-symmetric normal (MBSSN) distribution with two parameters, extending the conventional bivariate standard normal distribution. We conducted a detailed examination of the statistical properties of the MBSSN family and compared it to other significant competitors, such as generalized families of bivariate dfs, using real-world data like air pollution. The findings underscore the advantages and effectiveness of the MBSSN family in capturing the nuances of diverse datasets. We also applied the same methodology to develop a new two-parameter extension for two variations of bivariate extreme value distributions, which we then useed to analyze Lossalae datasets. This extension showcases the versatility and practicality of the proposed approach across different scenarios and distribution types.

    Citation: Osama Mohareb, Oluwafemi Samson Balogun, Zeinab Youssef, Mohamed Yusuf, Mahmoud E. Bakr, Mohammad Abiad, Yusra A. Tashkandy. Modeling of air pollution and Lossalae data by using new classes of skew bivariate family distribution and extreme distributions[J]. AIMS Mathematics, 2025, 10(6): 12980-13005. doi: 10.3934/math.2025584

    Related Papers:

  • Adding two more parameters for shaping provides a flexible way to make any basic bivariate distribution function (df) more adaptable. The extended bivariate dfs can better handle different kinds of bivariate data by including these parameters. They can handle a wide range of skewness and kurtosis indices well. The innovation lies in introducing a novel multiplicative bivariate stable-symmetric normal (MBSSN) distribution with two parameters, extending the conventional bivariate standard normal distribution. We conducted a detailed examination of the statistical properties of the MBSSN family and compared it to other significant competitors, such as generalized families of bivariate dfs, using real-world data like air pollution. The findings underscore the advantages and effectiveness of the MBSSN family in capturing the nuances of diverse datasets. We also applied the same methodology to develop a new two-parameter extension for two variations of bivariate extreme value distributions, which we then useed to analyze Lossalae datasets. This extension showcases the versatility and practicality of the proposed approach across different scenarios and distribution types.



    加载中


    [1] A. Azzalini, A class of distributions which includes the normal ones, Scand. J. Stat., 12 (1985), 171–178.
    [2] A. Azzalini, A. D. Valle, The multivariate skew-normal distribution, Biometrika, 83 (1996), 715–726. https://doi.org/10.1093/biomet/83.4.715 doi: 10.1093/biomet/83.4.715
    [3] H. M. Barakat, A new method for adding two parameters to a family of distributions with application to the average and exponential families, Stat. Methods Appl., 24 (2015), 359–372. https://doi.org/10.1007/s10260-014-0265-8 doi: 10.1007/s10260-014-0265-8
    [4] H. M. Barakat, O. M. Khaled, Toward the establishment of a family of distributions that may fit any dataset, Commun. Stat. Simul. Comput., 46 (2017), 6129–6143. https://doi.org/10.1080/03610918.2016.1197245 doi: 10.1080/03610918.2016.1197245
    [5] H. M. Barakat, O. M. Khaled, N. Khalil, New families of distributions for modeling bivariate data, with applications, J. Math. Stat., 14 (2018), 79–87. https://doi.org/10.3844/jmssp.2018.79.87 doi: 10.3844/jmssp.2018.79.87
    [6] H. M. Barakat, A. W. Aboutahoun, N. El kadar, A new extended mixture skew normal distribution, with applications, Rev. Colomb. Estad., 42 (2019), 167–183. https://doi.org/10.15446/rce.v42n2.70087 doi: 10.15446/rce.v42n2.70087
    [7] H. M. Barakat, O. M. Khaled, N. Khalil, Modern techniques in data analysis, with application to the water pollution, Proc. Latvian Acad. Sci., 72 (2018), 184–192. https://doi.org/10.2478/prolas-2018-0005 doi: 10.2478/prolas-2018-0005
    [8] H. M. Barakat, E. M. Nigm, O. M. Khaled, Statistical techniques for modelling extreme value data and related applications, Cambridge Scholars Publishing, 2019.
    [9] H. M. Barakat, A. W. Aboutahoun, N. N. El-kadar, On some generalized families arising from mixture normal distribution with application, Commun. Stat. Simul. Comput., 50 (2021), 198–216. https://doi.org/10.1080/03610918.2018.1554110 doi: 10.1080/03610918.2018.1554110
    [10] A. I. Aguirre-Salado, S. Venancio-Guzmán, C. A. Aguirre-Salado, A. Santiago-Santos, A novel tree ensemble model to approximate the generalized extreme value distribution parameters of the pm 2.5 maxima in the mexico city metropolitan area, Mathematics, 10 (2022), 2056. https://doi.org/10.3390/math10122056 doi: 10.3390/math10122056
    [11] N. Markovich, M. Vaičiulis, Extreme value statistics for evolving random networks, Mathematics, 11 (2023), 2171. https://doi.org/10.3390/math11092171 doi: 10.3390/math11092171
    [12] J. Galambos, Order statistics of samples from multivariate distributions, J. Am. Stat. Assoc., 70 (1975), 674–680. https://doi.org/10.1080/01621459.1975.10482493 doi: 10.1080/01621459.1975.10482493
    [13] O. M. Khaled, H. Mohamed Barakat, N. Khalil Rakha, Improved inference for the generalized Pareto distribution under linear, power, and exponential normalization, Kybernetika, 58 (2022), 883–902. https://doi.org/10.14736/kyb-2022-6-0883 doi: 10.14736/kyb-2022-6-0883
    [14] H. Haj Ahmad, E. M. Almetwally, D. A. Ramadan, Investigating the relationship between processor and memory reliability in data science: A bivariate model approach, Mathematics, 11 (2023), 2142. https://doi.org/10.3390/math11092142 doi: 10.3390/math11092142
    [15] M. E. Qura, A. Fayomi, M. Kilai, E. M. Almetwally, Bivariate power Lomax distribution with medical applications, PLOS One, 18 (2023), e0282581. https://doi.org/10.1371/journal.pone.0282581 doi: 10.1371/journal.pone.0282581
    [16] E. S. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, Bivariate Chen distribution based on copula function: Properties and application of diabetic nephropathy, J. Stat. Theory Pract., 16 (2022), 54. https://doi.org/10.1007/s42519-022-00275-7 doi: 10.1007/s42519-022-00275-7
    [17] J. Pikands, Multivariate extreme value distributions, Bull. Int. Statist. Inst., 1981 (1981), 859–878.
    [18] J. A. Tawn, Bivariate extreme value theory: Models and estimation, Biometrika, 75 (1988), 397–415. https://doi.org/10.2307/2336591 doi: 10.2307/2336591
    [19] H. Mayer, Air pollution in cities, Atmos. Environ., 33 (1999), 4029–4037. https://doi.org/10.1016/S1352-2310(99)00144-2 doi: 10.1016/S1352-2310(99)00144-2
    [20] S. Yue, J. Wang, A comparison of two bivariate extreme value distributions, Stoch. Env. Res. Risk A., 18 (2004), 61–66. https://doi.org/10.1007/s00477-003-0124-x doi: 10.1007/s00477-003-0124-x
    [21] E. S. A. El-Sherpieny, H. Z. Muhammed, E. M. Almetwally, Data analysis by adaptive progressive hybrid censored under bivariate model, Ann. Data Sci., 11 (2024), 507–548. https://doi.org/10.1007/s40745-022-00455-z doi: 10.1007/s40745-022-00455-z
    [22] P. Shi, A multivariate analysis of intercompany loss triangles, J. Risk Insur., 84 (2017), 717–737. https://doi.org/10.1111/jori.12102 doi: 10.1111/jori.12102
    [23] K. V. Mardia, Applications of some measures of multivariate skewness and kurtosis in testing normality and robustness studies, Sankhya B, 36 (1974), 115–128.
    [24] R. E. Quandt, J. B. Ramsey, Estimating mixtures of normal distributions and switching regressions, J. Am. Stat. Assoc., 73 (1978), 730–738. https://doi.org/10.1080/01621459.1978.10480085 doi: 10.1080/01621459.1978.10480085
    [25] T. I. Lin, J. C. Lee, S. Y. Yen, Finite mixture modeling using the skew-normal distribution, Stat. Comput., 17 (2007), 81–92. https://doi.org/10.1007/s11222-006-9005-8 doi: 10.1007/s11222-006-9005-8
    [26] J. W. Tukey, Modern techniques in data analysis, In: Proceedings of the NSF-Sponsored Regional Research Conference, 1977.
    [27] R. R. Wilcox, Simulation results on solutions to the multivariate Behrens-Fisher problem via trimmed means, Statistician, 44 (1995), 213–225. https://doi.org/10.2307/2348445 doi: 10.2307/2348445
    [28] C. Field, M. G. Genton, The multivariate g-and-h distribution, Technometrics, 48 (2006), 104–111.
    [29] D. C. Hoaglin, Summarizing shape numerically: The g-and-h distributions, In: Exploring data tables, trends, and shapes, 2006,461–513. https://doi.org/10.1002/9781118150702.ch11
    [30] H. Akaike, Information theory and the maximum likelihood principle, In: Proceedings of the Second International Symposium on Information Theory, 1973.
    [31] G. Schwarz, Estimating the dimension of a model, Ann. Stat., 6 (1978), 461–464. https://doi.org/10.1214/aos/1176344136 doi: 10.1214/aos/1176344136
    [32] H. Teicher, Identifiability of finite mixtures, Ann. Math. Statist., 34 (1963), 1265–1269. https://doi.org/10.1214/aoms/1177703862 doi: 10.1214/aoms/1177703862
    [33] N. Ho, X. Nguyen, Singularity structures and impacts on parameter estimation in finite mixtures of distributions, SIAM J. Math. Data Sci., 1 (2019), 4. https://doi.org/10.1137/18M122947X doi: 10.1137/18M122947X
    [34] N. Ho, Parameter estimation and multilevel clustering with mixture and hierarchical models, 2017.
    [35] S. G. Coles, J. A. Tawn, Modeling extreme multivariate events, J. R. Stat. Soc. B, 53 (1991), 377-392. https://doi.org/10.1111/j.2517-6161.1991.tb01830.x doi: 10.1111/j.2517-6161.1991.tb01830.x
    [36] R. L. Smith, Extreme value theory, In: Handbook of applicable mathematics, 7 (1990), 437–471.
    [37] J. Beirlant, Y. Goegebeur, J. Segers, J. L. Teugels, Statistics of extremes: Theory and applications, John Wiley & Sons, 2004. https://doi.org/10.1002/0470012382
    [38] P. Chen, X. Xiao, Novel closed-form point estimators for the beta distribution, Stat. Theor. Relat. Fields, 9 (2025), 12–33. https://doi.org/10.1080/24754269.2024.2419360 doi: 10.1080/24754269.2024.2419360
    [39] A. Xu, G. Fang, L. Zhuang, C. Gu, A multivariate t-student process model for dependent tail-weighted degradation data, IISE Trans., 2024, 1–17 https://doi.org/10.1080/24725854.2024.2389538 doi: 10.1080/24725854.2024.2389538
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(645) PDF downloads(36) Cited by(0)

Article outline

Figures and Tables

Figures(3)  /  Tables(15)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog