In this paper, we employed the $ q $-Bessel Tricomi functions of zero-order to introduce bivariate extended $ q $-Laguerre-based Appell polynomials. Then, the bivariate extended $ q $-Laguerre-based Appell polynomials were established in the sense of quasi-monomiality. We examined some of their properties, such as $ q $-multiplicative operator property, $ q $-derivative operator property and two $ q $-integro-differential equations. Additionally, we acquired $ q $-differential equations and operational representations for the new polynomials. Moreover, we drew the zeros of the bivariate extended $ q $-Laguerre-based Bernoulli and Euler polynomials, forming 2D and 3D structures, and provided a table including approximate zeros of the bivariate extended $ q $-Laguerre-based Bernoulli and Euler polynomials.
Citation: Mohra Zayed, Waseem Ahmad Khan, Cheon Seoung Ryoo, Ugur Duran. An exploratory study on bivariate extended $ q $-Laguerre-based Appell polynomials with some applications[J]. AIMS Mathematics, 2025, 10(6): 12841-12867. doi: 10.3934/math.2025577
In this paper, we employed the $ q $-Bessel Tricomi functions of zero-order to introduce bivariate extended $ q $-Laguerre-based Appell polynomials. Then, the bivariate extended $ q $-Laguerre-based Appell polynomials were established in the sense of quasi-monomiality. We examined some of their properties, such as $ q $-multiplicative operator property, $ q $-derivative operator property and two $ q $-integro-differential equations. Additionally, we acquired $ q $-differential equations and operational representations for the new polynomials. Moreover, we drew the zeros of the bivariate extended $ q $-Laguerre-based Bernoulli and Euler polynomials, forming 2D and 3D structures, and provided a table including approximate zeros of the bivariate extended $ q $-Laguerre-based Bernoulli and Euler polynomials.
| [1] |
N. Ahmad, W. A. Khan, A new generalization of $q$-Laguerre-based Appell polynomials and quasi-monomiality, Symmetry, 17 (2025), 439. https://doi.org/10.3390/sym17030439 doi: 10.3390/sym17030439
|
| [2] |
W. A. Al-Salam, $q$-Bernoulli numbers and polynomials, Math. Nachr., 17 (1958), 239–260. https://doi.org/10.1002/mana.19580170311 doi: 10.1002/mana.19580170311
|
| [3] |
W. A. Al-Salam, $q$-Appell polynomials, Ann. Mat. Pura Appl., 77 (1967), 31–45. https://doi.org/10.1007/BF0241693 doi: 10.1007/BF0241693
|
| [4] | G. E. Andrews, R. Askey, R. Roy, Special functions, Cambridge University Press, Cambridge, 1999. https://doi.org/10.1017/CBO9781107325937 |
| [5] |
S. Araci, Construction of degenerate $q$-Daehee polynomials with weight $\alpha $ and its applications, Funda. J. Math. Appl., 4 (2021), 25–32. https://dx.doi.org/10.33401/fujma.837479 doi: 10.33401/fujma.837479
|
| [6] |
R. Askey, Limits of some $q$-Laguerre polynomials, J. Approx. Theory, 46 (1986), 213–216. https://doi.org/10.1016/0021-9045(86)90062-6 doi: 10.1016/0021-9045(86)90062-6
|
| [7] |
J. Cigler, Operator methods for $q$-identities. Ⅱ. $q$-Laguerre polynomials, Monatshefte Math., 91 (1981), 105–117. https://doi.org/10.1007/BF01295141 doi: 10.1007/BF01295141
|
| [8] |
J. Cao, N. Raza, M. Fadel, Two-variable $q$-Laguerre polynomials from the context of quasi-monomiality, J. Anal. Appl., 535 (2024), 128126. https://doi.org/10.1016/j.jmaa.2024.128126 doi: 10.1016/j.jmaa.2024.128126
|
| [9] | G. Dattoli, Hermite-Bessel and Laguerre-Bessel functions: A by-product of the monomiality principle, Proc. Melfi Sch. Adv. Top. Math. Phys., 1 (2000), 147–164. |
| [10] |
G. Dattoli, S. Lorenzutta, A. M. Mancho, A. Torre, Generalized polynomials and associated operational identities, J. Comput. Appl. Math., 108 (1999), 209–218. https://doi.org/10.1016/S0377-0427(99)00111-9 doi: 10.1016/S0377-0427(99)00111-9
|
| [11] | G. Dattoli, A. Torre, Operational methods and two variable Laguerre polynomials, Atti Accad. Sci. Torino, Cl. Sci. Fis. Mat. Nat., 132 (1998), 3–9. |
| [12] |
G. Dattoli, A. Torre, Exponential operators, quasi-monomials and generalized polynomials, Radiat. Phys. Chem., 57 (2000), 21–26. https://doi.org/10.1016/S0969-806X(99)00346-1 doi: 10.1016/S0969-806X(99)00346-1
|
| [13] | T. Ernst, $q$-Bernoulli and $q$-Euler polynomials, an umbral calculus approach, Int. J. Difference Equ., 1 (2006), 31–80. |
| [14] | T. Ernst, A comprehensive treatment of $q$-calculus, Birkhäuser/Springer Basel, Basel, 2012. https://doi.org/10.1007/978-3-0348-0431-8 |
| [15] |
R. Florenini, L. Vinet, Quantum algebras and $q$-special functions, Ann. Phys., 221 (1993), 53–70. https://doi.org/10.1006/aphy.1993.1003 doi: 10.1006/aphy.1993.1003
|
| [16] |
M. Fadel, M. S. Alatawi, W. A. Khan, Two variable $q$-Hermite-based Appell polynomials and their applications, Mathematics, 12 (2024), 1358. https://doi.org/10.3390/math12091358 doi: 10.3390/math12091358
|
| [17] |
M. Fadel, N. Raza, A. Al-Gonah, U. Duran, Bivariate $q$-Laguerre-Appell polynomials and their applications, Appl. Math. Sci. Eng., 32 (2024), 2412545. https://doi.org/10.1080/27690911.2024.2412545 doi: 10.1080/27690911.2024.2412545
|
| [18] |
S. Khan, M. W. Al-Saad, R. Khan, Laguerre-based Appell polynomials: Properties and applications, Math. Comput. Model., 52 (2010), 247–259. https://doi.org/10.1016/j.mcm.2010.02.022 doi: 10.1016/j.mcm.2010.02.022
|
| [19] |
B. Kim, E. Kim, $q$-Laguerre polynomials and partitions with inequality conditions, Ramanujan J., 66 (2025), 57. https://doi.org/10.1007/s11139-024-00992-6 doi: 10.1007/s11139-024-00992-6
|
| [20] |
R. Koekoek, Generalizations of a $q$-analogue of Laguerre polynomials, J. Approx. Theory, 66 (2025), 57. https://doi.org/10.1016/0021-9045(92)90049-T doi: 10.1016/0021-9045(92)90049-T
|
| [21] |
D. S. Moak, The $q$-analogue of the Laguerre polynomials, J. Math. Anal. Appl., 81 (1981), 20–47. https://doi.org/10.1016/0022-247X(81)90048-2 doi: 10.1016/0022-247X(81)90048-2
|
| [22] |
D. W. Niu, Generalized q-Laguerre type polynomials and $q$-partial differential equations, Filomat, 33 (2019), 1403–1415. http://dx.doi.org/10.2298/FIL1905403N doi: 10.2298/FIL1905403N
|
| [23] |
M. Riyasat, S. Khan, M. Haneef, Generalized $2$D extension of the $q$-Bessel polynomials, J. Math. Anal. Appl., 90 (2022), 63–80. https://doi.org/10.1016/S0034-4877(22)00051-9 doi: 10.1016/S0034-4877(22)00051-9
|
| [24] |
N. Raza, M. Fadel, K. S. Nisar, M. Zakarya, On 2-variable $q$-Hermite polynomials, AIMS Math., 6 (2021), 8705–8727. https://doi.org/10.3934/math.2021506 doi: 10.3934/math.2021506
|
| [25] | M. Zayed, W. A. Khan, C. S. Ryoo, U. Duran, Generalized bivariate $q$-Laguerre polynomials from the context of quasi-monomiality, submitted for publication, 2025. |