Research article

Convergence and parameter-robust analysis of several locking-free algorithms for a linear poroelasticity model

  • Published: 21 May 2025
  • MSC : 65N30, 65M12

  • The quasi-static linear poroelasticity model is widely applied in science, geophysics, biomechanics, and engineering. The simulations of this model exhibits locking phenomena and may depend on some model parameters. In this work, we follow the idea proposed in [Feng, Ge, and Li, IMA J. Numer. Anal., 2018,330–359] to transform the linear poroelasticity model into a four-field problem. The new four-field problem has a built-in mechanism to circumvent the locking phenomena existing in the original problem. We first prove that the inf-sup condition holds uniformly independent of the model parameters for the four-field problem and design several coupled, decoupled, and BDF2 algorithms in time. After that, we establish the analysis of the unconditionally optimal convergence and parameter robustness for the proposed algorithms. Finally, numerical examples are provided to investigate the convergence and parameter robustness of the proposed algorithms, which have no locking phenomena and are consistent with our theory. In addition, we also apply the algorithms to simulate brain edema, which is aligned with the experiment results.

    Citation: Peizhen Wang, Wenlong He, Yajuan Di. Convergence and parameter-robust analysis of several locking-free algorithms for a linear poroelasticity model[J]. AIMS Mathematics, 2025, 10(5): 11627-11655. doi: 10.3934/math.2025527

    Related Papers:

  • The quasi-static linear poroelasticity model is widely applied in science, geophysics, biomechanics, and engineering. The simulations of this model exhibits locking phenomena and may depend on some model parameters. In this work, we follow the idea proposed in [Feng, Ge, and Li, IMA J. Numer. Anal., 2018,330–359] to transform the linear poroelasticity model into a four-field problem. The new four-field problem has a built-in mechanism to circumvent the locking phenomena existing in the original problem. We first prove that the inf-sup condition holds uniformly independent of the model parameters for the four-field problem and design several coupled, decoupled, and BDF2 algorithms in time. After that, we establish the analysis of the unconditionally optimal convergence and parameter robustness for the proposed algorithms. Finally, numerical examples are provided to investigate the convergence and parameter robustness of the proposed algorithms, which have no locking phenomena and are consistent with our theory. In addition, we also apply the algorithms to simulate brain edema, which is aligned with the experiment results.



    加载中


    [1] M. Biot, Theory of elasticity and consolidation for a porous anisotropic media, J. Appl. Phys., 26 (1955), 182–185. https://doi.org/10.1063/1.1721956 doi: 10.1063/1.1721956
    [2] W. Pao, R. Lewis, I. Masters, A fully coupled hydro-thermo-poro-mechanical model for black oil reservoir simulation, Int. J. Numer. Anal. Met., 25 (2001), 1229–1256. https://doi.org/10.1002/nag.174 doi: 10.1002/nag.174
    [3] D. Gawin, P. Baggio, B. Schrefler, Coupled heat, water and gas flow in deformable porous media, Int. J. Numer. Meth. Fl., 20 (1995), 969–978. https://doi.org/10.1002/fld.1650200817 doi: 10.1002/fld.1650200817
    [4] J. Hudson, O. Stephansson, J. Andersson, C. Tsang, L. Ling, Coupled T–H–M issues related to radioactive waste repository design and performance, Int. J. Rock Mech. Min., 38 (2001), 143–161. https://doi.org/10.1016/S1365-1609(00)00070-8 doi: 10.1016/S1365-1609(00)00070-8
    [5] D. Nemec, J. Levec, Flow through packed bed reactors: 1. single-phase flow, Int. J. Chem. Eng., 60 (2005), 6947–6957. https://doi.org/10.1016/j.ces.2005.05.068 doi: 10.1016/j.ces.2005.05.068
    [6] O. Coussy, Poromechanics, Wiley & Sons, 2004.
    [7] M. Doi, S. Edwards, The theory of polymer dynamics, Oxford: Clarendon Press, 1986.
    [8] R. Showalter, Diffusion in poro-elastic media, J. Math. Anal. Appl., 251 (2000), 310–340. https://doi.org/10.1006/jmaa.2000.7048 doi: 10.1006/jmaa.2000.7048
    [9] P. Phillips, M. Wheeler, A coupling of mixed and continuous Galerkin finite element methods for poroelasticity I: the continuous in time case, Computat. Geosci., 11 (2007), 131–144. https://doi.org/10.1007/s10596-007-9045-y doi: 10.1007/s10596-007-9045-y
    [10] P. Phillips, M. Wheeler, A coupling of mixed and continuous Galerkin fnite element methods for poroelasticity II: The discrete-in-time case, Computat. Geosci., 11 (2007), 145–158. https://doi.org/10.1007/s10596-007-9044-z doi: 10.1007/s10596-007-9044-z
    [11] P. Phillips, M. Wheeler, A coupling of mixed and discontinuous Galerkin finite-element methods for poroelasticity, Computat. Geosci., 12 (2008), 417–435. https://doi.org/10.1007/s10596-008-9082-1 doi: 10.1007/s10596-008-9082-1
    [12] S. Yi, A coupling of nonconforming and mixed finite element methods for Biot's consolidation model, Numer. Meth. Part. D. E., 9 (2013), 1949–1777. https://doi.org/10.1002/num.21775 doi: 10.1002/num.21775
    [13] X. Hu, C. Rodrigo, F. Gaspar, L. Zikatanov, A nonconforming finite element method for the Biot's considation model in poroelasticity, J. Comput. Appl. Math., 310 (2017), 143–154. https://doi.org/10.1016/j.cam.2016.06.003 doi: 10.1016/j.cam.2016.06.003
    [14] C. Rodrigo, F. Gaspar, X. Hu, L. Zikatanov, Stability and montonicity for some discretizations of the Biot's considation model, Comput. Method. Appl. M., 298 (2016), 183–204. https://doi.org/10.1016/j.cma.2015.09.019 doi: 10.1016/j.cma.2015.09.019
    [15] G. Ju, M. Cai, J. Li, J. Tian, Parameter-robust multiphysics algorithms for Biot model with application in brain edema simulation, Math. Comput. Simulat., 177 (2020), 385–403. https://doi.org/10.1016/j.matcom.2020.04.027 doi: 10.1016/j.matcom.2020.04.027
    [16] S. Yi, A study of two models of locking in poroelasticity, SIAM J. Numer. Anal., 55 (2017), 1915–1936. https://doi.org/10.1137/16M1056109 doi: 10.1137/16M1056109
    [17] X. Feng, Z. Ge, Y. Li, Analysis of a multiphysics finite element method for a poroelasticity model, IMA J. Numer. Anal., 38 (2018), 330–359. https://doi.org/10.1093/imanum/drx003 doi: 10.1093/imanum/drx003
    [18] J. Korsawe, G. Starke, A least-squares mixed finite element method for Biot's consolidation problem in porous media, SIAM J. Numer. Anal., 43 (2005), 318–339. https://doi.org/10.1137/S0036142903432929 doi: 10.1137/S0036142903432929
    [19] J. Korsawe, G. Starke, W. Wang, O. Kolditz, Finite element analysis of poro-elastic consolidation in porous media: Standard and mixed approaches, Comput. Method. Appl. M., 195 (2006), 1096–1115. https://doi.org/10.1016/j.cma.2005.04.011 doi: 10.1016/j.cma.2005.04.011
    [20] M. Murad, A. Loula, On stability and convergence of finite element approximations of Biot's consolidation problem, Int. J. Numer. Meth. Eng., 37 (1994), 645–667. https://doi.org/10.1002/nme.1620370407 doi: 10.1002/nme.1620370407
    [21] M. Murad, V. Thomée, A. Loula, Asymptotic behavior of semidiscrete finite-element approximations of Biot's consolidation problem, SIAM J. Numer. Anal., 33 (1996), 1065–1083. https://doi.org/ 10.1137/0733052 doi: 10.1137/0733052
    [22] S. Yi, M. Bean, Iteratively coupled solution strategies for a four-field mixed finite element method for poroelasticity, Int. J. Numer. Anal. Met., 41 (2017), 159–179. https://doi.org/10.1002/nag.2538 doi: 10.1002/nag.2538
    [23] S. Yi, Convergence analysis of a new mixed finite element method for Biot's consolidation model, Numer. Meth. Part. D. E., 30 (2014), 1189–1210. https://doi.org/10.1002/num.21865 doi: 10.1002/num.21865
    [24] A. Naumovich, On finite volume discretization of the three-dimensional biot poroelasticity system in multilayer domains, Comput. Method. Appl. M., 6 (2006), 306–325. https://doi.org/10.2478/cmam-2006-0017 doi: 10.2478/cmam-2006-0017
    [25] H. Peng, W. Qi, Weak Galerkin finite element method with the total pressure variable for Biot's consolidation model, Appl. Numer. Math., 207 (2025), 450–469. https://doi.org/10.1016/j.apnum.2024.09.017 doi: 10.1016/j.apnum.2024.09.017
    [26] S. Gu, S. Chai, C. Zhou, J. Zhou, Weak Galerkin finite element method for linear poroelasticity problems, Appl. Numer. Math., 190 (2023), 200–219. https://doi.org/10.1016/j.apnum.2023.04.015 doi: 10.1016/j.apnum.2023.04.015
    [27] X. Li, H. Holst, S. Kleiven, Influence of gravity for optimal head positions in the treatment of head injury patients, Acta Neurochir., 153 (2011), 2057–2064. https://doi.org/10.1007/s00701-011-1078-2 doi: 10.1007/s00701-011-1078-2
    [28] S. Brenner, L. R. Scott, The mathematical theory of finite element methods, 3 Eds., Springer, 2008. http://dx.doi.org/10.1016/B978-0-12-775850-3.50017-0
    [29] P. Ciarlet, The finite element method for elliptic problems, North-Holland, Amsterdam, 1978. http://doi.org/10.1016/0378-4754(80)90078-6
    [30] R. Temam, Navier-Stokes equations, Studies in Mathematics and its Applications, North-Holland, 33 (1977).
    [31] V. Girault, P. Raviart, Finite element method for Navier-Stokes equations: Theory and algorithms, Springer Science & Business Media, 5 (2012).
    [32] R. Dautray, J. Lions, Mathematical analysis and numerical methods for science and technology, Springer Verlag, 1 (1990).
    [33] F. Brezzi, M. Fortin, Mixed and hybrid finite element methods, New York: Springer, 1992.
    [34] M. Bercovier, O. Pironneau, Error estimates for finite element solution of the Stokes problem in the primitive variables, Numer. Math., 33 (1979), 211–224. https://doi.org/10.1007/bf01399555 doi: 10.1007/bf01399555
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(698) PDF downloads(40) Cited by(0)

Article outline

Figures and Tables

Figures(6)  /  Tables(13)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog