Research article

Codimension one and codimension two bifurcations analysis of discrete mussel-algae model

  • Published: 20 May 2025
  • MSC : 34C23, 37N25

  • In this paper, a continuous mussel-algae model was discretized using the explicit Euler method, yielding a discrete mussel-algae interaction model. Within this work, the stability and bifurcations of a discrete mussel-algae model were studied. First, the existence of the unique positive equilibrium point was given. By choosing the time step $ \tau $ as the bifurcation parameter, we investigated several dynamic behaviors of the model. Using the center manifold theorem and bifurcation theory, the conditions for the existence of codimension-one bifurcations (Flip bifurcation and Neimark-Sacker bifurcation) were derived. Then, by substituting several variables and introducing new parameters, the conditions corresponding to the codimension-two bifurcation (1:2, 1:3, and 1:4 strong resonance) were evaluated. One can identify the existence of different bifurcation forms by essentially calculating the critical non-degeneracy coefficients. The numerical simulations validated the proposed results and illustrated the complicated dynamical behaviors of the mussel algae system. In addition, via numerical simulations, we discovered several pathways through which the system could reach chaos. Specifically, both the Flip bifurcation and the strong resonance bifurcations could eventually guide the system into a chaotic state. These results were distinct from those of the corresponding continuous model, providing a novel perspective for studying the relationship between the population densities of mussels and algae.

    Citation: Qingkai Xu, Chunrui Zhang, Xingjian Wang. Codimension one and codimension two bifurcations analysis of discrete mussel-algae model[J]. AIMS Mathematics, 2025, 10(5): 11514-11555. doi: 10.3934/math.2025524

    Related Papers:

  • In this paper, a continuous mussel-algae model was discretized using the explicit Euler method, yielding a discrete mussel-algae interaction model. Within this work, the stability and bifurcations of a discrete mussel-algae model were studied. First, the existence of the unique positive equilibrium point was given. By choosing the time step $ \tau $ as the bifurcation parameter, we investigated several dynamic behaviors of the model. Using the center manifold theorem and bifurcation theory, the conditions for the existence of codimension-one bifurcations (Flip bifurcation and Neimark-Sacker bifurcation) were derived. Then, by substituting several variables and introducing new parameters, the conditions corresponding to the codimension-two bifurcation (1:2, 1:3, and 1:4 strong resonance) were evaluated. One can identify the existence of different bifurcation forms by essentially calculating the critical non-degeneracy coefficients. The numerical simulations validated the proposed results and illustrated the complicated dynamical behaviors of the mussel algae system. In addition, via numerical simulations, we discovered several pathways through which the system could reach chaos. Specifically, both the Flip bifurcation and the strong resonance bifurcations could eventually guide the system into a chaotic state. These results were distinct from those of the corresponding continuous model, providing a novel perspective for studying the relationship between the population densities of mussels and algae.



    加载中


    [1] W. J. Qin, X. W. Tan, X. T. Shi, J. H. Chen, X. Z. Liu, Dynamics and bifurcation analysis of a Filippov predator-prey ecosystem in a seasonally fluctuating environment, Int. J. Bifur. Chaos, 29 (2019), 1950020. https://doi.org/10.1142/S0218127419500202 doi: 10.1142/S0218127419500202
    [2] X. X. Li, H. G. Yu, C. J. Dai, Z. L. Ma, Q. Wang, M. Zhao, Bifurcation analysis of a new aquatic ecological model with aggregation effect, Math. Comput. Simul., 190 (2021), 75–96. https://doi.org/10.1016/j.matcom.2021.05.015 doi: 10.1016/j.matcom.2021.05.015
    [3] G. A. K. van Voorn, B. W. Kooi, Combining bifurcation and sensitivity analysis for ecological models, Eur. Phys. J. Spec. Top., 226 (2017), 2101–2118. https://doi.org/10.1140/epjst/e2017-70030-2 doi: 10.1140/epjst/e2017-70030-2
    [4] Y. L. Song, H. P. Jiang, Q. X. Liu, Y. Yuan, Spatiotemporal dynamics of the diffusive mussel-algae model near Turing-Hopf bifurcation, SIAM J. Appl. Dyn. Syst., 16 (2017), 2030–2062. https://doi.org/10.1137/16M1097560 doi: 10.1137/16M1097560
    [5] S. Djilali, B. Ghanbari, S. Bentout, A. Mezouaghi, Turing-Hopf bifurcation in a diffusive mussel-algae model with time-fractional-order derivative, Chaos Solitons Fract., 138 (2020), 109954. https://doi.org/10.1016/j.chaos.2020.109954 doi: 10.1016/j.chaos.2020.109954
    [6] Z. C. Jiang, W. C. Zhang, Bifurcation analysis in a diffusion mussel-algae interaction system with delays considering the half-saturation constant, Nonlinear Dyn., 108 (2022), 2793–2814. https://doi.org/10.1007/s11071-022-07316-7 doi: 10.1007/s11071-022-07316-7
    [7] S. H. Zhong, J. D. Xia, B. Liu, Spatiotemporal dynamics analysis of a semi-discrete reaction-diffusion mussel-algae system with advection, Chaos Solitons Fract., 151 (2021), 111282. https://doi.org/10.1016/j.chaos.2021.111282 doi: 10.1016/j.chaos.2021.111282
    [8] J. van de Koppel, M. Rietkerk, N. Dankers, P. M. J. Herman, Scale-dependent feedback and regular spatial patterns in young mussel beds, Am. Nat., 165 (2005), E66–E77. https://doi.org/10.1086/428362 doi: 10.1086/428362
    [9] A. J. Koch, H. Meinhardt, Biological pattern formation: from basic mechanisms to complex structures, Rev. Mod. Phys., 66 (1994), 1481. https://doi.org/10.1103/RevModPhys.66.1481 doi: 10.1103/RevModPhys.66.1481
    [10] J. A. Sherratt, Periodic traveling waves in integrodifferential equations for nonlocal dispersal, SIAM J. Appl. Dyn. Syst., 13 (2014), 1517–1541. https://doi.org/10.1137/140969725 doi: 10.1137/140969725
    [11] S. Kondo, T. Miura, Reaction-diffusion model as a framework for understanding biological pattern formation, Science, 329 (2010), 1616–1620. https://doi.org/10.1126/science.1179047 doi: 10.1126/science.1179047
    [12] N. Ahmed, A. Elsonbaty, A. Raza, M. Rafiq, W. Adel, Numerical simulation and stability analysis of a novel reaction-diffusion COVID-19 model, Nonlinear Dyn., 106 (2021), 1293–1310. https://doi.org/10.1007/s11071-021-06623-9 doi: 10.1007/s11071-021-06623-9
    [13] Y. Lou, R. B. Salako, Mathematical analysis of the dynamics of some reaction-diffusion models for infectious diseases, J. Differ. Equ., 370 (2023), 424–469. https://doi.org/10.1016/j.jde.2023.06.018 doi: 10.1016/j.jde.2023.06.018
    [14] J. van de Koppel, J. C. Gascoigne, G. Theraulaz, M. Rietkerk, W. M. Mooij, P. M. J. Herman, Experimental evidence for spatial self-organization and its emergent effects in mussel bed ecosystems, Science, 322 (2008), 739–742. https://doi.org/10.1126/science.1163952 doi: 10.1126/science.1163952
    [15] Q. X. Liu, E. J. Weerman, P. M. J. Herman, H. Olff, J. van de Koppel, Alternative mechanisms alter the emergent properties of self-organization in mussel beds, Proc. R. Soc. B, 279 (2012), 2744–2753. https://doi.org/10.1098/rspb.2012.0157 doi: 10.1098/rspb.2012.0157
    [16] Q. X. Liu, A. Doelman, V. Rottschafer, M. de Jager, P. M. J. Herman, M. Rietkerk, et al., Phase separation explains a new class of self-organized spatial patterns in ecological systems, Proc. Natl. Acad. Sci. U.S.A., 110 (2013), 11905–11910. https://doi.org/10.1073/pnas.1222339110 doi: 10.1073/pnas.1222339110
    [17] R. H. Wang, Q. X. Liu, G. Q. Sun, Z. Jin, J. van de Koppel, Nonlinear dynamic and pattern bifurcations in a model for spatial patterns in young mussel beds, J. R. Soc. Interface, 6 (2009), 705–718. https://doi.org/10.1098/rsif.2008.0439 doi: 10.1098/rsif.2008.0439
    [18] R. A. Cangelosi, D. J. Wollkind, B. J. Kealy-Dichone, I. Chaiya, Nonlinear stability analyses of Turing patterns for a mussel-algae model, J. Math. Biol., 70 (2015), 1249–1294. https://doi.org/10.1007/s00285-014-0794-7 doi: 10.1007/s00285-014-0794-7
    [19] H. P. Jiang, Delay-included Turing-Hopf bifurcation in the diffusive mussel-algae model, Math. Methods Appl. Sci., 44 (2021), 8638–8647. https://doi.org/10.1002/mma.7290 doi: 10.1002/mma.7290
    [20] N. Chafee, Asymptotic behavior for solutions of a one-dimensional parabolic equation with homogeneous Neumann boundary conditions, J. Differ. Equ., 18 (1975), 111–134. https://doi.org/10.1016/0022-0396(75)90084-4 doi: 10.1016/0022-0396(75)90084-4
    [21] T. Faria, L. T. Magalhaes, Normal forms for retarded functional differential equations with parameters and applications to Hopf bifurcation, J. Differ. Equ., 122 (1995), 181–200. https://doi.org/10.1006/jdeq.1995.1144 doi: 10.1006/jdeq.1995.1144
    [22] J. Guckenheimer, Bifurcations of dynamical systems, In: Dynamical systems, Boston, MA: Birkhäuser, 1980, 5–123. https://doi.org/10.1007/978-1-4899-3743-8_1
    [23] Y. A. Kuznetsov, I. A. Kuznetsov, Y. Kuznetsov, Elements of applied bifurcation theory, New York: Springer, 1998.
    [24] M. B. D'Amico, G. R. Chen, E. E. Paolini, J. L. Moiola, Controlling Neimark-Sacker bifurcations in discrete-time multivariable systems, Syst. Control Lett., 58 (2009), 359–364. https://doi.org/10.1016/j.sysconle.2009.01.002 doi: 10.1016/j.sysconle.2009.01.002
    [25] L. Li, Z. Wang, Y. X. Li, H. Shen, J. W. Lu, Hopf bifurcation analysis of a complex-valued neural network model with discrete and distributed delays, Appl. Math. Comput., 330 (2018), 152–169. https://doi.org/10.1016/j.amc.2018.02.029 doi: 10.1016/j.amc.2018.02.029
    [26] D. P. Hu, H. J. Cao, Bifurcation and chaos in a discrete-time predator-prey system of Holling and Leslie type, Commun. Nonlinear Sci. Numer. Simul., 22 (2015), 702–715. https://doi.org/10.1016/j.cnsns.2014.09.010 doi: 10.1016/j.cnsns.2014.09.010
    [27] Z. Eskandari, J. Alidousti, Stability and codimension 2 bifurcations of a discrete time SIR model, J. Franklin Inst., 357 (2020), 10937–10959. https://doi.org/10.1016/j.jfranklin.2020.08.040 doi: 10.1016/j.jfranklin.2020.08.040
    [28] T. S. Parker, L. Chua, Practical numerical algorithms for chaotic systems, Springer Science & Business Media, 2012.
    [29] M. G. Crandall, P. H. Rabinowitz, The Hopf bifurcation theorem in infinite dimensions, Arch. Ration. Mech. Anal., 67 (1977), 53–72. https://doi.org/10.1007/BF00280827 doi: 10.1007/BF00280827
    [30] V. A. Kim, R. I. Parovik, Application of the explicit Euler method for numerical analysis of a nonlinear fractional oscillation equation, Fractal Fract., 6 (2022), 1–19. https://doi.org/10.3390/fractalfract6050274 doi: 10.3390/fractalfract6050274
    [31] L. M. Zhang, Y. K. Xu, G. Y. Liao, Codimension-two bifurcations and bifurcation controls in a discrete biological system with weak Allee effect, Int. J. Bifur. Chaos, 32 (2022), 2250036. https://doi.org/10.1142/S0218127422500365 doi: 10.1142/S0218127422500365
    [32] J. Y. Ma, M. X. Duan, Codimension-two bifurcations of a two-dimensional discrete time Lotka-Volterra predator-prey model, Discrete Contin. Dyn. Syst. B, 29 (2024), 1217–1242. https://doi.org/10.3934/dcdsb.2023131 doi: 10.3934/dcdsb.2023131
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(715) PDF downloads(48) Cited by(0)

Article outline

Figures and Tables

Figures(16)

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog