It is well known that transformations of $ \mathbb{C}^n $ preserving the standard inner product are unitary transformations. In this paper, all bijective transformations of isotropic sets of $ \mathbb{C}P^{n} $ preserving $ H $-orthogonality in both directions, called $ H $-orthogonal transformations, have been determined. This is a generalization of Uhlhorn's version of Wigner's unitary-antiunitary theorem. The group of $ H $-orthogonal transformations on some other sets of $ \mathbb{C}P^{n} $ were also determined.
Citation: Kai Zhou, Zhenhua Gu, Hongfeng Wu. Orthogonality preserving transformations on complex projective spaces[J]. AIMS Mathematics, 2025, 10(5): 11411-11434. doi: 10.3934/math.2025519
It is well known that transformations of $ \mathbb{C}^n $ preserving the standard inner product are unitary transformations. In this paper, all bijective transformations of isotropic sets of $ \mathbb{C}P^{n} $ preserving $ H $-orthogonality in both directions, called $ H $-orthogonal transformations, have been determined. This is a generalization of Uhlhorn's version of Wigner's unitary-antiunitary theorem. The group of $ H $-orthogonal transformations on some other sets of $ \mathbb{C}P^{n} $ were also determined.
| [1] |
G. Birkhoff, J. von Neumann, The logic of quantum mechanics, Ann. Math., 36 (1936), 823–843. https://doi.org/10.2307/1968621 doi: 10.2307/1968621
|
| [2] |
W. L. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math., 50 (1949), 32–67. https://doi.org/10.2307/1969351 doi: 10.2307/1969351
|
| [3] | A. M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885–893. |
| [4] |
Z. Gu, Z. Wan, Automorphisms of subconstituents of symplectic graphs, Algebr. Colloq., 20 (2013), 333–342. https://doi.org/10.1142/S1005386713000308 doi: 10.1142/S1005386713000308
|
| [5] |
Z. Gu, Z. Wan, Orthogonal graphs of odd characteristic and their automorphisms, Finite Fields Th. App., 14 (2008), 291–313. https://doi.org/10.1016/j.ffa.2006.12.001 doi: 10.1016/j.ffa.2006.12.001
|
| [6] |
Z. Gu, Z. Wan, Subconstituents of orthogonal graphs of odd characteristic, Linear Algebra Appl., 434 (2011), 2430–2447. https://doi.org/10.1016/j.laa.2010.12.030 doi: 10.1016/j.laa.2010.12.030
|
| [7] |
Z. Gu, Z. Wan, K. Zhou. Subconstituents of orthogonal graphs of odd characteristic–continued, Linear Algebra Appl., 439 (2013), 2861–2877. https://doi.org/10.1016/j.laa.2013.08.010 doi: 10.1016/j.laa.2013.08.010
|
| [8] |
Z. Gu, Z. Wan, K. Zhou, Automorphisms of subconstituents of unitary graphs over finite fields, Linear Multilinear A., 64 (2016), 1833–1852. https://doi.org/10.1080/03081087.2015.1122721 doi: 10.1080/03081087.2015.1122721
|
| [9] | M. Györy, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. Debrecen, 65 (2004), 233–242. |
| [10] | L. Hua, Z. Wan, Collected Works of Hua Luogeng: Algebra Volume Ⅰ, Beijing: Science Press, 2010. |
| [11] | M. Pankov, Geometry of semilinear embeddings: Relations to graphs and codes, World Scientific, 2015. |
| [12] |
M. Pankov, Orthogonality preserving transformations of Hilbert Grassmannians, Linear Algebra Appl., 605 (2020), 180–189. https://doi.org/10.1016/j.laa.2020.07.019 doi: 10.1016/j.laa.2020.07.019
|
| [13] | M. Pankov, Wigner-type theorems for Hilbert Grassmannians, Cambridge University Press, 2020. https://doi.org/10.1017/9781108800327 |
| [14] |
L. Rodman, P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear Multilinear A., 54 (2006), 355–367. https://doi.org/10.1080/03081080500310204 doi: 10.1080/03081080500310204
|
| [15] |
L. Rodman, P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear Multilinear A., 57 (2009), 839–858. https://doi.org/10.1080/03081080802335297 doi: 10.1080/03081080802335297
|
| [16] |
P. Šemrl, Orthogonality preserving transformations on the set of $n$-dimensional subspaces of a Hilbert space, Illinois J. Math., 48 (2004), 567–573. https://doi.org/10.1215/ijm/1258138399 doi: 10.1215/ijm/1258138399
|
| [17] |
P. Šemrl, Maps on Grassmann spaces preserving the minimal principal angle, Acta Sci. Math., 90 (2024), 109–122. https://doi.org/10.1007/s44146-023-00093-8 doi: 10.1007/s44146-023-00093-8
|
| [18] |
Z. Tang, Z. Wan, Symplectic graphs and their automorphisms, Eur. J. Combin., 29 (2006), 38–50. https://doi.org/10.1016/j.ejc.2004.08.002 doi: 10.1016/j.ejc.2004.08.002
|
| [19] | U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Arkiv Fysik, 1963. |
| [20] |
Z. Wan, K. Zhou, Orthogonal graphs of characteristic 2 and their automorphisms, Sci. China Ser. A-Math., 52 (2009), 361–380. https://doi.org/10.1007/s11425-009-0018-6 doi: 10.1007/s11425-009-0018-6
|
| [21] |
Z. Wan, K. Zhou, Unitary graphs and their automorphisms, Ann. Comb., 14 (2010), 367–395. https://doi.org/10.1007/s00026-010-0065-2 doi: 10.1007/s00026-010-0065-2
|
| [22] | E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Vieweg+Teubner Verlag Wiesbaden, 1931. https://doi.org/10.1007/978-3-663-02555-9 |
| [23] | E. P. Wigner, Group theory and its applicaton to quantum mechanics of atomic spectra, New York and London: Academic Press, 1959. |