Research article

Orthogonality preserving transformations on complex projective spaces

  • Published: 20 May 2025
  • MSC : 05C60, 05E30, 15A63

  • It is well known that transformations of $ \mathbb{C}^n $ preserving the standard inner product are unitary transformations. In this paper, all bijective transformations of isotropic sets of $ \mathbb{C}P^{n} $ preserving $ H $-orthogonality in both directions, called $ H $-orthogonal transformations, have been determined. This is a generalization of Uhlhorn's version of Wigner's unitary-antiunitary theorem. The group of $ H $-orthogonal transformations on some other sets of $ \mathbb{C}P^{n} $ were also determined.

    Citation: Kai Zhou, Zhenhua Gu, Hongfeng Wu. Orthogonality preserving transformations on complex projective spaces[J]. AIMS Mathematics, 2025, 10(5): 11411-11434. doi: 10.3934/math.2025519

    Related Papers:

  • It is well known that transformations of $ \mathbb{C}^n $ preserving the standard inner product are unitary transformations. In this paper, all bijective transformations of isotropic sets of $ \mathbb{C}P^{n} $ preserving $ H $-orthogonality in both directions, called $ H $-orthogonal transformations, have been determined. This is a generalization of Uhlhorn's version of Wigner's unitary-antiunitary theorem. The group of $ H $-orthogonal transformations on some other sets of $ \mathbb{C}P^{n} $ were also determined.



    加载中


    [1] G. Birkhoff, J. von Neumann, The logic of quantum mechanics, Ann. Math., 36 (1936), 823–843. https://doi.org/10.2307/1968621 doi: 10.2307/1968621
    [2] W. L. Chow, On the geometry of algebraic homogeneous spaces, Ann. Math., 50 (1949), 32–67. https://doi.org/10.2307/1969351 doi: 10.2307/1969351
    [3] A. M. Gleason, Measures on the closed subspaces of a Hilbert space, J. Math. Mech., 6 (1957), 885–893.
    [4] Z. Gu, Z. Wan, Automorphisms of subconstituents of symplectic graphs, Algebr. Colloq., 20 (2013), 333–342. https://doi.org/10.1142/S1005386713000308 doi: 10.1142/S1005386713000308
    [5] Z. Gu, Z. Wan, Orthogonal graphs of odd characteristic and their automorphisms, Finite Fields Th. App., 14 (2008), 291–313. https://doi.org/10.1016/j.ffa.2006.12.001 doi: 10.1016/j.ffa.2006.12.001
    [6] Z. Gu, Z. Wan, Subconstituents of orthogonal graphs of odd characteristic, Linear Algebra Appl., 434 (2011), 2430–2447. https://doi.org/10.1016/j.laa.2010.12.030 doi: 10.1016/j.laa.2010.12.030
    [7] Z. Gu, Z. Wan, K. Zhou. Subconstituents of orthogonal graphs of odd characteristic–continued, Linear Algebra Appl., 439 (2013), 2861–2877. https://doi.org/10.1016/j.laa.2013.08.010 doi: 10.1016/j.laa.2013.08.010
    [8] Z. Gu, Z. Wan, K. Zhou, Automorphisms of subconstituents of unitary graphs over finite fields, Linear Multilinear A., 64 (2016), 1833–1852. https://doi.org/10.1080/03081087.2015.1122721 doi: 10.1080/03081087.2015.1122721
    [9] M. Györy, Transformations on the set of all n-dimensional subspaces of a Hilbert space preserving orthogonality, Publ. Math. Debrecen, 65 (2004), 233–242.
    [10] L. Hua, Z. Wan, Collected Works of Hua Luogeng: Algebra Volume Ⅰ, Beijing: Science Press, 2010.
    [11] M. Pankov, Geometry of semilinear embeddings: Relations to graphs and codes, World Scientific, 2015.
    [12] M. Pankov, Orthogonality preserving transformations of Hilbert Grassmannians, Linear Algebra Appl., 605 (2020), 180–189. https://doi.org/10.1016/j.laa.2020.07.019 doi: 10.1016/j.laa.2020.07.019
    [13] M. Pankov, Wigner-type theorems for Hilbert Grassmannians, Cambridge University Press, 2020. https://doi.org/10.1017/9781108800327
    [14] L. Rodman, P. Šemrl, Orthogonality preserving bijective maps on real and complex projective spaces, Linear Multilinear A., 54 (2006), 355–367. https://doi.org/10.1080/03081080500310204 doi: 10.1080/03081080500310204
    [15] L. Rodman, P. Šemrl, Preservers of generalized orthogonality on finite dimensional real vector and projective spaces, Linear Multilinear A., 57 (2009), 839–858. https://doi.org/10.1080/03081080802335297 doi: 10.1080/03081080802335297
    [16] P. Šemrl, Orthogonality preserving transformations on the set of $n$-dimensional subspaces of a Hilbert space, Illinois J. Math., 48 (2004), 567–573. https://doi.org/10.1215/ijm/1258138399 doi: 10.1215/ijm/1258138399
    [17] P. Šemrl, Maps on Grassmann spaces preserving the minimal principal angle, Acta Sci. Math., 90 (2024), 109–122. https://doi.org/10.1007/s44146-023-00093-8 doi: 10.1007/s44146-023-00093-8
    [18] Z. Tang, Z. Wan, Symplectic graphs and their automorphisms, Eur. J. Combin., 29 (2006), 38–50. https://doi.org/10.1016/j.ejc.2004.08.002 doi: 10.1016/j.ejc.2004.08.002
    [19] U. Uhlhorn, Representation of symmetry transformations in quantum mechanics, Arkiv Fysik, 1963.
    [20] Z. Wan, K. Zhou, Orthogonal graphs of characteristic 2 and their automorphisms, Sci. China Ser. A-Math., 52 (2009), 361–380. https://doi.org/10.1007/s11425-009-0018-6 doi: 10.1007/s11425-009-0018-6
    [21] Z. Wan, K. Zhou, Unitary graphs and their automorphisms, Ann. Comb., 14 (2010), 367–395. https://doi.org/10.1007/s00026-010-0065-2 doi: 10.1007/s00026-010-0065-2
    [22] E. Wigner, Gruppentheorie und ihre Anwendung auf die Quantenmechanik der Atomspektren, Vieweg+Teubner Verlag Wiesbaden, 1931. https://doi.org/10.1007/978-3-663-02555-9
    [23] E. P. Wigner, Group theory and its applicaton to quantum mechanics of atomic spectra, New York and London: Academic Press, 1959.
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(842) PDF downloads(39) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog