Research article Special Issues

Relaxed conditions for universal approximation by radial basis function neural networks of Hankel translates

  • Published: 12 May 2025
  • MSC : 41A30, 46F12

  • Radial basis function neural networks (RBFNNs) of Hankel translates of order $ \mu > -1/2 $ with varying widths whose activation function $ \sigma $ is a.e. continuous, such that $ z^{-\mu-1/2}\sigma(z) $ is locally essentially bounded and not an even polynomial, are shown to enjoy the universal approximation property (UAP) in appropriate spaces of continuous and integrable functions. In this way, the requirement that $ \sigma $ be continuous for this kind of networks to achieve the UAP is weakened, and some results that hold true for RBFNNs of standard translates are extended to RBFNNs of Hankel translates.

    Citation: Isabel Marrero. Relaxed conditions for universal approximation by radial basis function neural networks of Hankel translates[J]. AIMS Mathematics, 2025, 10(5): 10852-10865. doi: 10.3934/math.2025493

    Related Papers:

  • Radial basis function neural networks (RBFNNs) of Hankel translates of order $ \mu > -1/2 $ with varying widths whose activation function $ \sigma $ is a.e. continuous, such that $ z^{-\mu-1/2}\sigma(z) $ is locally essentially bounded and not an even polynomial, are shown to enjoy the universal approximation property (UAP) in appropriate spaces of continuous and integrable functions. In this way, the requirement that $ \sigma $ be continuous for this kind of networks to achieve the UAP is weakened, and some results that hold true for RBFNNs of standard translates are extended to RBFNNs of Hankel translates.



    加载中


    [1] D. S. Broomhead, D. Lowe, Multivariable functional interpolation and adaptive networks, Complex Syst., 2 (1988), 321–355.
    [2] R. P. Lippmann, Pattern classification using neural networks, IEEE Commun. Mag., 27 (1989), 47–64. https://doi.org/10.1109/35.41401 doi: 10.1109/35.41401
    [3] S. Renals, R. Rohwer, Phoneme classification experiments using radial basis functions, International 1989 Joint Conference on Neural Networks, Washington DC (USA), 1989,461–467. https://doi.org/10.1109/IJCNN.1989.118620
    [4] J. Park, I. W. Sandberg, Universal approximation using Radial-Basis-Function networks, Neural Comput., 3 (1991), 246–257. https://doi.org/10.1162/neco.1991.3.2.246 doi: 10.1162/neco.1991.3.2.246
    [5] J. Park, I. W. Sandberg, Approximation and radial-basis-function networks, Neural Comput., 5 (1993), 305–316. https://doi.org/10.1162/neco.1993.5.2.305 doi: 10.1162/neco.1993.5.2.305
    [6] Y. Liao, S. C. Fang, H. L. W. Nuttle, Relaxed conditions for radial-basis function networks to be universal approximators, Neural Netw., 16 (2003), 1019–1028. https://doi.org/10.1016/S0893-6080(02)00227-7 doi: 10.1016/S0893-6080(02)00227-7
    [7] D. Nan, W. Wu, J. L. Long, Y. M. Ma, L. J. Sun, $L^p$ approximation capability of RBF neural networks, Acta Math. Sin.-Engl. Ser., 24 (2008), 1533–1540. https://doi.org/10.1007/s10114-008-6423-x doi: 10.1007/s10114-008-6423-x
    [8] M. Leshno, V. Y. Lin, A. Pinkus, S. Schocken, Multilayer feedforward networks with a nonpolynomial activation function can approximate any function, Neural Netw., 6 (1993), 861–867. https://doi.org/10.1016/S0893-6080(05)80131-5 doi: 10.1016/S0893-6080(05)80131-5
    [9] A. Pinkus, TDI-subspaces of $C(\mathbb{R}^d)$ and some density problems from neural networks, J. Approx. Theory, 85 (1996), 269–287. https://doi.org/10.1006/jath.1996.0042 doi: 10.1006/jath.1996.0042
    [10] C. Arteaga, I. Marrero, A scheme for interpolation by Hankel translates of a basis function, J. Approx. Theory, 164 (2012), 1540–1576. https://doi.org/10.1016/j.jat.2012.08.005 doi: 10.1016/j.jat.2012.08.005
    [11] I. Marrero, The role of nonpolynomiality in uniform approximation by RBF networks of Hankel translates, J. Funct. Spaces, 2019 (2019), 1845491 https://doi.org/10.1155/2019/1845491 doi: 10.1155/2019/1845491
    [12] I. Marrero, Radial basis function neural networks of Hankel translates as universal approximators, Anal. Appl. (Singap.), 17 (2019), 897–930. https://doi.org/10.1142/S0219530519500064 doi: 10.1142/S0219530519500064
    [13] C. Arteaga, I. Marrero, Universal approximation by radial basis function networks of Delsarte translates, Neural Netw., 46 (2013), 299–305. https://doi.org/10.1016/j.neunet.2013.06.011 doi: 10.1016/j.neunet.2013.06.011
    [14] H. Corrada, K. Lee, B. Klein, R. Klein, S. Iyengar, G. Wahba, Examining the relative influence of familial, genetic, and environmental covariate information in flexible risk models, Proc. Natl. Acad. Sci. USA, 106 (2009), 8128–8133. https://doi.org/10.1073/pnas.0902906106 doi: 10.1073/pnas.0902906106
    [15] S. Hamzehei Javaran, N. Khaji, A. Noorzad, First kind Bessel function ($J$-Bessel) as radial basis function for plane dynamic analysis using dual reciprocity boundary element method, Acta Mech., 218 (2011), 247–258. https://doi.org/10.1007/s00707-010-0421-7 doi: 10.1007/s00707-010-0421-7
    [16] L. Schwartz, Théorie des distributions, Vols. Ⅰ, Ⅱ, Publications de l'Institut de Mathématique de l'Université de Strasbourg, Paris: Hermann & Cie, 1950-1951.
    [17] A. H. Zemanian, A distributional Hankel transformation, SIAM J. Appl. Math., 14 (1966), 561–576. https://doi.org/10.1137/0114049 doi: 10.1137/0114049
    [18] A. H. Zemanian, Generalized integral transformations, Pure and Applied Mathematics, Vol. 18, New York: John Wiley & Sons, 1968.
    [19] A. H. Zemanian, The Hankel transformation of certain distributions of rapid growth, SIAM J. Appl. Math., 14 (1966), 678–690. https://doi.org/10.1137/0114056 doi: 10.1137/0114056
    [20] J. de Sousa Pinto, A generalised Hankel convolution, SIAM J. Math. Anal., 16 (1985), 1335–1346. https://doi.org/10.1137/0516097 doi: 10.1137/0516097
    [21] J. J. Betancor, I. Marrero, The Hankel convolution and the Zemanian spaces $\mathcal{B}_\mu$ and $\mathcal{B}_\mu'$, Math. Nachr., 160 (1993), 277–298. https://doi.org/10.1002/mana.3211600113 doi: 10.1002/mana.3211600113
    [22] J. Betancor, I. Marrero, Structure and convergence in certain spaces of distributions and the generalized Hankel convolution, Math. Japon., 38 (1993), 1141–1155.
    [23] I. Marrero, J. J. Betancor, Hankel convolution of generalized functions, Rend. Mat. Ser. VII, 15 (1995), 351–380.
    [24] J. J. Betancor, A new characterization of the bounded operators commuting with Hankel translation, Arch. Math., 69 (1997), 403–408. https://doi.org/10.1007/s000130050138 doi: 10.1007/s000130050138
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(718) PDF downloads(45) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog