Research article Special Issues

Computational analysis of generalized progressive hybrid log-logistic model and its modeling for physics and engineering applications

  • Published: 09 May 2025
  • MSC : 62F10, 62F15, 62N01, 62N02, 62N05

  • Modern products often have long life cycles and high reliability, making it difficult to collect comprehensive product life data with all unit failures for reliability and quality analysis. So, a new sampling plan called the generalized Type-Ⅱ progressive hybrid censored strategy has been suggested to minimize test time and costs. This study introduces a novel statistical framework for modeling lifetime data under generalized progressive hybrid censoring using the log-logistic (LogL) lifespan model. Besides traditional methodologies, our approach integrates frequentist and Bayesian inferential techniques to estimate key parameters and reliability metrics, such as the survival and hazard functions of the LogL distribution. The relevant approximate confidence intervals for unknown numbers are also constructed using the frequentest estimators' normal approximations. Incorporating the Markovian technique into Bayesian analysis, we leverage independent gamma priors and the Metropolis-Hastings algorithm to enhance computational efficiency to calculate the Bayes' point estimators along with their highest posterior density interval estimators. Additionally, we propose an optimal progressive censoring scheme that minimizes experimental costs while maintaining estimation accuracy. Extensive Monte Carlo simulations confirm the superiority of the proposed estimators, while three real-world applications in physics and engineering demonstrate their practical efficacy. The findings highlight the versatility of the LogL model and its potential as a robust survival analysis tool under complex real-world conditions.

    Citation: Heba S. Mohammed, Osama E. Abo-Kasem, Ahmed Elshahhat. Computational analysis of generalized progressive hybrid log-logistic model and its modeling for physics and engineering applications[J]. AIMS Mathematics, 2025, 10(5): 10709-10739. doi: 10.3934/math.2025487

    Related Papers:

  • Modern products often have long life cycles and high reliability, making it difficult to collect comprehensive product life data with all unit failures for reliability and quality analysis. So, a new sampling plan called the generalized Type-Ⅱ progressive hybrid censored strategy has been suggested to minimize test time and costs. This study introduces a novel statistical framework for modeling lifetime data under generalized progressive hybrid censoring using the log-logistic (LogL) lifespan model. Besides traditional methodologies, our approach integrates frequentist and Bayesian inferential techniques to estimate key parameters and reliability metrics, such as the survival and hazard functions of the LogL distribution. The relevant approximate confidence intervals for unknown numbers are also constructed using the frequentest estimators' normal approximations. Incorporating the Markovian technique into Bayesian analysis, we leverage independent gamma priors and the Metropolis-Hastings algorithm to enhance computational efficiency to calculate the Bayes' point estimators along with their highest posterior density interval estimators. Additionally, we propose an optimal progressive censoring scheme that minimizes experimental costs while maintaining estimation accuracy. Extensive Monte Carlo simulations confirm the superiority of the proposed estimators, while three real-world applications in physics and engineering demonstrate their practical efficacy. The findings highlight the versatility of the LogL model and its potential as a robust survival analysis tool under complex real-world conditions.



    加载中


    [1] N. Balakrishnan, E. Cramer, The Art of Progressive Censoring, New York: Birkhäuser, 2014. http://doi.org/10.1007/978-0-8176-4807-7
    [2] D. Kundu, A. Joarder, Analysis of Type-Ⅱ progressively hybrid censored data, Comput. Stat. Data Anal., 50 (2006), 2509–2528. http://doi.org/10.1016/j.csda.2005.03.007 doi: 10.1016/j.csda.2005.03.007
    [3] A. Childs, B. Chandrasekar, N. Balakrishnan, Exact likelihood inference for an exponential parameter under progressive hybrid censoring schemes, In: Statistical Models and Methods for Biomedical and Technical Systems, Boston: Birkhäuser, 2008,319–330. http://doi.org/10.1007/978-0-8176-4619-6_23
    [4] K. Lee, H. Sun, Y. Cho, Exact likelihood inference of the exponential parameter under generalized Type Ⅱ progressive hybrid censoring, J. Korean Stat. Soc., 45 (2016), 123–136. http://doi.org/10.1016/j.jkss.2015.08.003 doi: 10.1016/j.jkss.2015.08.003
    [5] B. Epstein, Truncated life tests in the exponential case, Ann. Math. Stat., 25 (1954), 555–564. http://doi.org/10.1214/aoms/1177728723 doi: 10.1214/aoms/1177728723
    [6] A. Childs, B. Chandrasekar, N. Balakrishnan, D. Kundu, Exact likelihood inference based on Type-Ⅰ and Type-Ⅱ hybrid censored samples from the exponential distribution, Ann. Inst. Stat. Math., 55 (2003), 319–330. http://doi.org/10.1007/BF02517815 doi: 10.1007/BF02517815
    [7] L. J. Bain, M. Engelhardt, Statistical Analysis of Reliability and Life-Testing Models, 2 Eds., New York: Marcel Dekker, 1991.
    [8] S. Ashour, A. Elshahhat, Bayesian and non-Bayesian estimation for Weibull parameters based on generalized Type-Ⅱ progressive hybrid censoring scheme, Pak. J. Stat. Oper. Res., 12 (2016), 213–226. http://doi.org/10.18187/pjsor.v12i2.1337 doi: 10.18187/pjsor.v12i2.1337
    [9] S. Ateya, H. Mohammed, Prediction under Burr-Ⅻ distribution based on generalized Type-Ⅱ progressive hybrid censoring scheme, J. Egypt. Math. Soc., 26 (2018), 491–508. http://doi.org/10.21608/joems.2018.3335.1075 doi: 10.21608/joems.2018.3335.1075
    [10] S. Cho, K. Lee, Exact Likelihood Inference for a Competing Risks Model with Generalized Type Ⅱ Progressive Hybrid Censored Exponential Data, Symmetry, 13 (2021), 887. http://doi.org/10.3390/sym13050887 doi: 10.3390/sym13050887
    [11] A. Elshahhat, H. S. Mohammed, O. E. Abo-Kasem, Reliability Inferences of the Inverted NH Parameters via Generalized Type-Ⅱ Progressive Hybrid Censoring with Applications, Symmetry, 14 (2022), 2379. http://doi.org/10.3390/sym14112379 doi: 10.3390/sym14112379
    [12] L. Wang, Y. Zhou, Y. Lio, and Y. M. Tripathi, Inference for Kumaraswamy Distribution under Generalized Progressive Hybrid Censoring, Symmetry, 14 (2022), 403. http://doi.org/10.3390/sym14020403 doi: 10.3390/sym14020403
    [13] A. Elshahhat, H. S. Mohammed, O. E. Abo-Kasem, Statistical Evaluations and Applications for IER Parameters from Generalized Progressively Type-Ⅱ Hybrid Censored Data, Axioms, 12 (2023), 565. http://doi.org/10.3390/axioms12060565 doi: 10.3390/axioms12060565
    [14] A. Elshahhat, O. E. Abo-Kasem, H. S. Mohammed, Statistical Analysis of Type-Ⅱ Generalized Progressively Hybrid Alpha-PIE Censored Data and Applications in Electronic Tubes and Vinyl Chloride, Axioms, 12 (2023), 601. http://doi.org/10.3390/axioms12060601 doi: 10.3390/axioms12060601
    [15] A. Elshahhat, O. E. Abo-Kasem, H. S. Mohammed, Reliability Analysis and Applications of Generalized Type-Ⅱ Progressively Hybrid Maxwell–Boltzmann Censored Data, Axioms, 12 (2023), 618. http://doi.org/10.3390/axioms12070618 doi: 10.3390/axioms12070618
    [16] D. Collet, Modelling Survival Data in Medical Research, London: Chapman and Hall, 2003.
    [17] C. Kus, M. F. Kaya, Estimation of parameters of the log-logistic distribution based on progressive censoring using the EM algorithm, Hacettepe J. Math. Stat., 35 (2006), 203–211.
    [18] S. Hyun, J. Lee, R. Yearout, Parameter estimation of Type-Ⅰ and Type-Ⅱ hybrid censored data from the log-logistic distribution, Ind. Syst. Eng. Rev., 4 (2016), 37–44.
    [19] Y. Du, Y. Guo, W. Gui, Statistical inference for the information entropy of the log-logistic distribution under progressive type-Ⅰ interval censoring schemes, Symmetry, 10 (2018), 445. http://doi.org/10.3390/sym10100445 doi: 10.3390/sym10100445
    [20] M. F. Sewailem, A. Baklizi, Inference for the log-logistic distribution based on an adaptive progressive type-Ⅱ censoring scheme, Cogent Math. Stat., 6 (2019), 1684228. http://doi.org/10.1080/25742558.2019.1684228 doi: 10.1080/25742558.2019.1684228
    [21] Y. Xie, W. Gui, Statistical inference of the lifetime performance index with the log-logistic distribution based on progressive first-failure-censored data, Symmetry, 12 (2020), 937. http://doi.org/10.3390/sym12060937 doi: 10.3390/sym12060937
    [22] M. Shrahili, A. R. El-Saeed, A. S. Hassan, I. Elbatal, M. Elgarhy, Estimation of entropy for log-logistic distribution under progressive type Ⅱ censoring, J. Nanomater., 2022 (2022), 2739606. https://doi.org/10.1155/2022/2739606 doi: 10.1155/2022/2739606
    [23] K. Maiti, S. Kayal, Estimating reliability characteristics of the log-logistic distribution under progressive censoring with two applications, Ann. Data Sci., 10 (2023), 89–128. https://doi.org/10.1007/s40745-020-00292-y doi: 10.1007/s40745-020-00292-y
    [24] S. Dey, A. Elshahhat, M. Nassar, Analysis of progressive type-Ⅱ censored gamma distribution, Comput. Stat., 38 (2023), 481–508. https://doi.org/10.1007/s00180-022-01239-y doi: 10.1007/s00180-022-01239-y
    [25] A. Gelman, J. B. Carlin, H. S. Stern, D. B. Rubin, Bayesian Data Analysis, 2 Eds., USA: Chapman and Hall/CRC, 2004.
    [26] S. M. Lynch, Introduction to Applied Bayesian Statistics and Estimation for Social Scientists, New York: Springer, 2007. http://doi.org/10.1007/978-0-387-71265-9
    [27] J. F. Lawless, Statistical Models and Methods for Lifetime Data, 2 Eds., Hoboken: John Wiley and Sons, 2003.
    [28] W. H. Greene, Econometric Analysis, 4 Eds., New York: Prentice-Hall, 2000.
    [29] M. H. Chen, Q. M. Shao, Monte Carlo estimation of Bayesian credible and HPD intervals, J. Comput. Gr. Stat., 8 (1999), 69–92. http://doi.org/10.1080/10618600.1999.10474802 doi: 10.1080/10618600.1999.10474802
    [30] A. Henningsen, O. Toomet, maxLik: A package for maximum likelihood estimation in R, Comput. Stat., 26 (2011), 443–458. http://doi.org/10.1007/s00180-010-0217-1 doi: 10.1007/s00180-010-0217-1
    [31] M. Plummer, N. Best, K. Cowles, K. Vines, CODA: Convergence diagnosis and output analysis for MCMC, R News, 6 (2006), 7–11.
    [32] D. Kundu, Bayesian inference and life testing plan for the Weibull distribution in presence of progressive censoring, Technometrics, 50 (2008), 144–154. https://doi.org/10.1198/004017008000000217 doi: 10.1198/004017008000000217
    [33] N. Balakrishnan, R. Aggarwala, Progressive Censoring: Theory, Methods and Applications, Boston: Birkhäuser, 2000.
    [34] H. K. T. Ng, P. S. Chan, N. Balakrishnan, Optimal progressive censoring plans for the Weibull distribution, Technometrics, 46 (2004), 470–481. https://doi.org/10.1198/004017004000000482 doi: 10.1198/004017004000000482
    [35] T. Sen, Y. M. Tripathi, R. Bhattacharya, Statistical inference and optimum life testing plans under Type-Ⅱ hybrid censoring scheme, Ann. Data Sci., 5 (2018), 679–708. https://doi.org/10.1007/s40745-018-0158-z doi: 10.1007/s40745-018-0158-z
    [36] S. K. Ashour, A. A. El-Sheikh, A. Elshahhat, Inferences and optimal censoring schemes for progressively first-failure censored Nadarajah-Haghighi distribution, Sankhya A, 84 (2020), 885–923. https://doi.org/10.1007/s13171-019-00175-2 doi: 10.1007/s13171-019-00175-2
    [37] A. Elshahhat, W. S. Abu El Azm, Statistical reliability analysis of electronic devices using generalized progressively hybrid censoring plan, Qual. Reliab. Eng. Int., 38 (2022), 1112–1130. https://doi.org/10.1002/qre.3058 doi: 10.1002/qre.3058
    [38] M. G. Bader, A. M. Priest, Statistical aspects of fibre and bundle strength in hybrid composites, Prog. Sci. Eng. Compos., 1982, 1129–1136.
    [39] S. V. Singh, V. K. Sharma, S. K. Singh, Inferences for two parameter Teissier distribution in case of fuzzy progressively censored data, Reliab.: Theory Appl., 17 (2022), 559–573.
    [40] M. Nassar, R. Alotaibi, A. Elshahhat, Bayesian estimation of some reliability characteristics for Nakagami model using adaptive progressive censoring, Phys. Scr., 99 (2024), 095271. http://doi.org/10.1088/1402-4896/ad6f4a doi: 10.1088/1402-4896/ad6f4a
    [41] D. Hinkley, On quick choice of power transformation, J. R. Stat. Soc., 26 (1977), 67–69.
    [42] A. Elshahhat, R. Bhattacharya, H. S. Mohammed, Survival Analysis of Type-Ⅱ Lehmann Fr$ \breve{0}$0e9chet Parameters via Progressive Type-Ⅱ Censoring with Applications, Axioms, 11 (2022), 700. http://doi.org/10.3390/axioms11120700 doi: 10.3390/axioms11120700
    [43] A. Elshahhat, A. H. Muse, O. M. Egeh, B. R. Elemary, Estimation for parameters of life of the Marshall-Olkin generalized-exponential distribution using progressive Type-Ⅱ censored data, Complexity, 2022 (2022), 8155929. https://doi.org/10.1155/2022/8155929 doi: 10.1155/2022/8155929
    [44] R. Alotaibi, M. Nassar, A. Elshahhat, Rainfall data modeling using improved adaptive type-Ⅱ progressively censored Weibull-exponential samples, Sci. Rep., 14 (2024), 30484. https://doi.org/10.1038/s41598-024-80529-5 doi: 10.1038/s41598-024-80529-5
    [45] N. M. Alfaer, A. M. Gemeay, H. M. Aljohani, A. Z. Afify, The extended log-logistic distribution: inference and actuarial applications, Mathematics, 9 (2021), 1386. http://doi.org/10.3390/math9121386 doi: 10.3390/math9121386
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(898) PDF downloads(69) Cited by(0)

Article outline

Figures and Tables

Figures(12)  /  Tables(22)

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog