Research article Special Issues

Multiple solutions to a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation

  • Received: 22 March 2025 Revised: 21 April 2025 Accepted: 27 April 2025 Published: 09 May 2025
  • MSC : 35J20, 35H20

  • In this paper, we studied the existence of solutions for a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation. That is to say, by using the symmetric mountain pass lemma, we proved that under some suitable conditions, the nonlocal sub-Laplacian system admits a sequence $ \{z_k\} $ of nontrivial solutions satisfying $ \lim_{k\rightarrow \infty}z_k = 0 $. To the best of our knowledge, this result is new even in the Euclidean case.

    Citation: Yu-Cheng An, Bi-Jun An. Multiple solutions to a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation[J]. AIMS Mathematics, 2025, 10(5): 10605-10623. doi: 10.3934/math.2025482

    Related Papers:

  • In this paper, we studied the existence of solutions for a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation. That is to say, by using the symmetric mountain pass lemma, we proved that under some suitable conditions, the nonlocal sub-Laplacian system admits a sequence $ \{z_k\} $ of nontrivial solutions satisfying $ \lim_{k\rightarrow \infty}z_k = 0 $. To the best of our knowledge, this result is new even in the Euclidean case.



    加载中


    [1] A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Berlin: Springer, 2007.
    [2] A. Loiudice, Semilinear subelliptic problems with critical growth on Carnot groups, Manuscripta Math., 124 (2007), 247–259. https://doi.org/10.1007/s00229-007-0119-x doi: 10.1007/s00229-007-0119-x
    [3] Y. Deng, Q. He, Y. Pan, X. Zhong, The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation, Adv. Nonlinear Stud., 23 (2023), 20220049. https://doi.org/10.1515/ans-2022-0049 doi: 10.1515/ans-2022-0049
    [4] T. Liu, W. Zou, Sign-changing solution for logarithmic elliptic equations with critical exponent, Manuscripta Math., 174 (2024), 749–773. https://doi.org/10.1007/s00229-024-01535-5 doi: 10.1007/s00229-024-01535-5
    [5] H. Hajaiej, T. Liu, L. Song, W. Zou, Positive solution for an elliptic system with critical exponent and logarithmic terms, J. Geom. Anal., 34 (2024). https://doi.org/10.1007/s12220-024-01655-0 doi: 10.1007/s12220-024-01655-0
    [6] H. Hajaiej, T. Liu, W. Zou, Wenming, Positive solution for an elliptic system with critical exponent and logarithmic terms: The higher-dimensional cases, J. Fixed Point Theory A., 26 (2024) 11. https://doi.org/10.1007/s11784-024-01099-7 doi: 10.1007/s11784-024-01099-7
    [7] Q. Li, Y. Han, T. Wang, Existence and nonexistence of solutions to a critical biharmonic equation with logarithmic perturbation, J. Differ. Equations, 365 (2023), 1–37. https://doi.org/10.1016/j.jde.2023.04.003 doi: 10.1016/j.jde.2023.04.003
    [8] Q. Zhang, Y. Z. Han, Existence and multiplicity of solutions for a critical Kirchhoff type elliptic equation with a logarithmic perturbation, arXiv Preprint, 2025. https://doi.org/10.48550/arXiv.2501.05083 doi: 10.48550/arXiv.2501.05083
    [9] L. Shen, M. Squassina, Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity, J. Differ. Equations, 421 (2025), 1–49. https://doi.org/10.1016/j.jde.2024.11.049 doi: 10.1016/j.jde.2024.11.049
    [10] W. C. Troy, Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation, Arch. Ration. Mech. An., 222 (2016), 1581–1600. https://doi.org/10.1007/s00205-016-1028-5 doi: 10.1007/s00205-016-1028-5
    [11] H. Yang, Y. Han, Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity, J. Differ. Equations, 306 (2022), 569–589. https://doi.org/10.1016/j.jde.2021.10.036 doi: 10.1016/j.jde.2021.10.036
    [12] S. Liang, X. Zhang, L. Guo, Normalized solutions for critical Choquard equations involving logarithmic nonlinearity in the Heisenberg group, Math. Method. Appl. Sci., 48 (2025), 3966–3978. https://doi.org/10.1002/mma.10528 doi: 10.1002/mma.10528
    [13] G. B. Folland, E. M. Stein, Estimates for the $\overline{\partial}_b$ complex and analysis on the Heisenberg group, Commun. Pur. Appl. Math., 27 (1974), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403
    [14] Y. C. An, H. Liu, The Schrödinger-Poisson type system involving a critical nonliearity on the first Heisenberg group, Isr. J. Math., 235 (2020), 385–411. https://doi.org/10.1007/s11856-020-1961-8 doi: 10.1007/s11856-020-1961-8
    [15] P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Soc., 65 (1986).
    [16] R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352–370. https://doi.org/ 10.1016/j.jfa.2005.04.005 doi: 10.1016/j.jfa.2005.04.005
    [17] P. Pucci, L. Temperini, Existence for $(p, q)$ critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9 (2020), 895–922. https://doi.org/10.1515/anona-2020-0032 doi: 10.1515/anona-2020-0032
    [18] P. Pucci, L. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opusc. Math., 40 (2020), 151–163. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151
    [19] M. Struwe, Variational methods, 4 Eds., Berlin: Springer, 2008.
    [20] L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Commun. Part. Diff. Eq., 18 (1993) 1765–1794. https://doi.org/10.1080/03605309308820992 doi: 10.1080/03605309308820992
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(749) PDF downloads(61) Cited by(0)

Article outline

Other Articles By Authors

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog