In this paper, we studied the existence of solutions for a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation. That is to say, by using the symmetric mountain pass lemma, we proved that under some suitable conditions, the nonlocal sub-Laplacian system admits a sequence $ \{z_k\} $ of nontrivial solutions satisfying $ \lim_{k\rightarrow \infty}z_k = 0 $. To the best of our knowledge, this result is new even in the Euclidean case.
Citation: Yu-Cheng An, Bi-Jun An. Multiple solutions to a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation[J]. AIMS Mathematics, 2025, 10(5): 10605-10623. doi: 10.3934/math.2025482
In this paper, we studied the existence of solutions for a nonlocal sub-Laplacian system with critical growth and logarithmic perturbation. That is to say, by using the symmetric mountain pass lemma, we proved that under some suitable conditions, the nonlocal sub-Laplacian system admits a sequence $ \{z_k\} $ of nontrivial solutions satisfying $ \lim_{k\rightarrow \infty}z_k = 0 $. To the best of our knowledge, this result is new even in the Euclidean case.
| [1] | A. Bonfiglioli, E. Lanconelli, F. Uguzzoni, Stratified Lie groups and potential theory for their sub-Laplacians, Berlin: Springer, 2007. |
| [2] |
A. Loiudice, Semilinear subelliptic problems with critical growth on Carnot groups, Manuscripta Math., 124 (2007), 247–259. https://doi.org/10.1007/s00229-007-0119-x doi: 10.1007/s00229-007-0119-x
|
| [3] |
Y. Deng, Q. He, Y. Pan, X. Zhong, The existence of positive solution for an elliptic problem with critical growth and logarithmic perturbation, Adv. Nonlinear Stud., 23 (2023), 20220049. https://doi.org/10.1515/ans-2022-0049 doi: 10.1515/ans-2022-0049
|
| [4] |
T. Liu, W. Zou, Sign-changing solution for logarithmic elliptic equations with critical exponent, Manuscripta Math., 174 (2024), 749–773. https://doi.org/10.1007/s00229-024-01535-5 doi: 10.1007/s00229-024-01535-5
|
| [5] |
H. Hajaiej, T. Liu, L. Song, W. Zou, Positive solution for an elliptic system with critical exponent and logarithmic terms, J. Geom. Anal., 34 (2024). https://doi.org/10.1007/s12220-024-01655-0 doi: 10.1007/s12220-024-01655-0
|
| [6] |
H. Hajaiej, T. Liu, W. Zou, Wenming, Positive solution for an elliptic system with critical exponent and logarithmic terms: The higher-dimensional cases, J. Fixed Point Theory A., 26 (2024) 11. https://doi.org/10.1007/s11784-024-01099-7 doi: 10.1007/s11784-024-01099-7
|
| [7] |
Q. Li, Y. Han, T. Wang, Existence and nonexistence of solutions to a critical biharmonic equation with logarithmic perturbation, J. Differ. Equations, 365 (2023), 1–37. https://doi.org/10.1016/j.jde.2023.04.003 doi: 10.1016/j.jde.2023.04.003
|
| [8] |
Q. Zhang, Y. Z. Han, Existence and multiplicity of solutions for a critical Kirchhoff type elliptic equation with a logarithmic perturbation, arXiv Preprint, 2025. https://doi.org/10.48550/arXiv.2501.05083 doi: 10.48550/arXiv.2501.05083
|
| [9] |
L. Shen, M. Squassina, Existence and concentration of normalized solutions for p-Laplacian equations with logarithmic nonlinearity, J. Differ. Equations, 421 (2025), 1–49. https://doi.org/10.1016/j.jde.2024.11.049 doi: 10.1016/j.jde.2024.11.049
|
| [10] |
W. C. Troy, Uniqueness of positive ground state solutions of the logarithmic Schrödinger equation, Arch. Ration. Mech. An., 222 (2016), 1581–1600. https://doi.org/10.1007/s00205-016-1028-5 doi: 10.1007/s00205-016-1028-5
|
| [11] |
H. Yang, Y. Han, Blow-up for a damped p-Laplacian type wave equation with logarithmic nonlinearity, J. Differ. Equations, 306 (2022), 569–589. https://doi.org/10.1016/j.jde.2021.10.036 doi: 10.1016/j.jde.2021.10.036
|
| [12] |
S. Liang, X. Zhang, L. Guo, Normalized solutions for critical Choquard equations involving logarithmic nonlinearity in the Heisenberg group, Math. Method. Appl. Sci., 48 (2025), 3966–3978. https://doi.org/10.1002/mma.10528 doi: 10.1002/mma.10528
|
| [13] |
G. B. Folland, E. M. Stein, Estimates for the $\overline{\partial}_b$ complex and analysis on the Heisenberg group, Commun. Pur. Appl. Math., 27 (1974), 429–522. https://doi.org/10.1002/cpa.3160270403 doi: 10.1002/cpa.3160270403
|
| [14] |
Y. C. An, H. Liu, The Schrödinger-Poisson type system involving a critical nonliearity on the first Heisenberg group, Isr. J. Math., 235 (2020), 385–411. https://doi.org/10.1007/s11856-020-1961-8 doi: 10.1007/s11856-020-1961-8
|
| [15] | P. H. Rabinowitz, Minimax methods in critical point theory with applications to differential equations, American Mathematical Soc., 65 (1986). |
| [16] |
R. Kajikiya, A critical point theorem related to the symmetric mountain pass lemma and its applications to elliptic equations, J. Funct. Anal., 225 (2005), 352–370. https://doi.org/ 10.1016/j.jfa.2005.04.005 doi: 10.1016/j.jfa.2005.04.005
|
| [17] |
P. Pucci, L. Temperini, Existence for $(p, q)$ critical systems in the Heisenberg group, Adv. Nonlinear Anal., 9 (2020), 895–922. https://doi.org/10.1515/anona-2020-0032 doi: 10.1515/anona-2020-0032
|
| [18] |
P. Pucci, L. Temperini, Concentration-compactness results for systems in the Heisenberg group, Opusc. Math., 40 (2020), 151–163. https://doi.org/10.7494/OpMath.2020.40.1.151 doi: 10.7494/OpMath.2020.40.1.151
|
| [19] | M. Struwe, Variational methods, 4 Eds., Berlin: Springer, 2008. |
| [20] |
L. Capogna, D. Danielli, N. Garofalo, An embedding theorem and the Harnack inequality for nonlinear subelliptic equations, Commun. Part. Diff. Eq., 18 (1993) 1765–1794. https://doi.org/10.1080/03605309308820992 doi: 10.1080/03605309308820992
|