Research article Topical Sections

First chen inequality for biwarped product submanifold of a Riemannian space forms

  • Published: 27 April 2025
  • MSC : 53B25, 53C40, 53C42, 53Z05

  • Within this paper, we have formulated the first Chen inequality for bi-warped product sub-manifolds within Riemannian space forms. This inequality intricately involved extrinsic invariants such as mean curvature and the lengths of the warping functions, while also incorporating intrinsic invariants like sectional curvature and $ \delta $-invariants. Furthermore, we extensively explored and analyzed the scenarios where equality conditions were met within the context of this inequality.

    Citation: Biswabismita Bag, Meraj Ali Khan, Tanumoy Pal, Shyamal Kumar Hui. First chen inequality for biwarped product submanifold of a Riemannian space forms[J]. AIMS Mathematics, 2025, 10(4): 9917-9932. doi: 10.3934/math.2025454

    Related Papers:

  • Within this paper, we have formulated the first Chen inequality for bi-warped product sub-manifolds within Riemannian space forms. This inequality intricately involved extrinsic invariants such as mean curvature and the lengths of the warping functions, while also incorporating intrinsic invariants like sectional curvature and $ \delta $-invariants. Furthermore, we extensively explored and analyzed the scenarios where equality conditions were met within the context of this inequality.



    加载中


    [1] B. Y. Chen, Some pinching and classification theorems for minimal submanifolds, Arch. Math., 60 (1993), 568–578. https://doi.org/10.1007/BF01236084 doi: 10.1007/BF01236084
    [2] B. Y. Chen, Pseudo-Riemannian geometry, $\delta$-invariants and applications, World Scientific, 2011. https://doi.org/10.1142/8003
    [3] B. Y. Chen, A. Prieto-Martín, Classification of Lagrangian submanifolds in complex space forms satisfying a basic equality involving $\delta(2, 2)$, Differen. Geom. Appl., 30 (2012), 107–123. https://doi.org/10.1016/j.difgeo.2011.11.008 doi: 10.1016/j.difgeo.2011.11.008
    [4] B. Y. Chen, F. Dillen, L. Vrancken, Lagrangian submanifolds in complex space forms attaining equality in a basic inequality, J. Math. Anal. Appl., 387 (2012), 139–152. https://doi.org/10.1016/j.jmaa.2011.08.066 doi: 10.1016/j.jmaa.2011.08.066
    [5] R. L. Bishop, B. O'Neill, Manifolds of negative curvature, Trans. Amer. Math. Soc., 145 (1969), 1–49. https://doi.org/10.1090/S0002-9947-1969-0251664-4 doi: 10.1090/S0002-9947-1969-0251664-4
    [6] B. Y. Chen, F. Dillen, Optimal inequalities for multiply warped product submanifolds, Int. Electron. J. Geom., 1 (2008), 1–11.
    [7] B. O'Neill, Semi-Riemannian geometry with applications to relativity, Academic Press, 1983.
    [8] B. Y. Chen, Geometry of warped product submanifolds: a survey, arXiv, 2013. https://doi.org/10.48550/arXiv.1307.0236
    [9] I. Mihai, I. Presură, An improved first Chen inequality for Legendrian submanifolds in Sasakian space forms, Period. Math. Hung., 74 (2017), 220–226. https://doi.org/10.1007/s10998-016-0161-0 doi: 10.1007/s10998-016-0161-0
    [10] A. Mustafa, C. Ozel, A. Pigazzini, R. Kaur, G. Shanker, First Chen inequality for general warped product submanifolds of a Riemannian space form and applications, Adv. Pure Appl. Math., 14 (2023), 0979. https://doi.org/10.21494/ISTE.OP.2023.0979 doi: 10.21494/ISTE.OP.2023.0979
    [11] F. A. Alghamdi, L. S. Alqahtani, A. Ali, Chen inequalities on warped product Legendrian submanifolds in Kenmotsu space forms and applications, J. Inequal. Appl., 2024 (2024), 63. https://doi.org/10.1186/s13660-024-03133-1 doi: 10.1186/s13660-024-03133-1
    [12] Y. Li, N. Alshehri, A. Ali, Riemannian invariants for warped product submanifolds in $ \mathbb{Q}^m_{\epsilon}\times \mathbb{R}$ and their applications, Open Math., 22 (2024), 20240063. https://doi.org/10.1515/math-2024-0063 doi: 10.1515/math-2024-0063
    [13] Y. Tian, X. Su, C. Shen, X. Ma, Exponentially extended dissipativity-based filtering of switched neural networks, Automatica, 161 (2024), 111465. https://doi.org/10.1016/j.automatica.2023.111465 doi: 10.1016/j.automatica.2023.111465
    [14] F. Dobarro, B. Ünal, Curvature of multiply warped products, J. Geom. Phys., 55 (2005), 75–106. https://doi.org/10.1016/j.geomphys.2004.12.001 doi: 10.1016/j.geomphys.2004.12.001
  • Reader Comments
  • © 2025 the Author(s), licensee AIMS Press. This is an open access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/4.0)
通讯作者: 陈斌, bchen63@163.com
  • 1. 

    沈阳化工大学材料科学与工程学院 沈阳 110142

  1. 本站搜索
  2. 百度学术搜索
  3. 万方数据库搜索
  4. CNKI搜索

Metrics

Article views(851) PDF downloads(43) Cited by(0)

Article outline

/

DownLoad:  Full-Size Img  PowerPoint
Return
Return

Catalog